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Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus linear confining
potential in position space. However, because the quarks in mesons move at an appreciable fraction of
the speed of light, it is necessary to use a relativistic treatment of the bound-state problem. Such a treat-
ment is most easily carried out in momentum space. However, the position-space linear and Coulomb
potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to
remove these singularities exactly and thereby solve the Schrodinger equation in momentum space for all
partial waves. Furthermore, we generalize the linear and Coulomb potentials to relativistic kernels in
four-dimensional momentum space. Again we use a subtraction procedure to remove the relativistic
singularities exactly for all partial waves. This enables us to solve three-dimensional reductions of the
Bethe-Salpeter equation. We solve six such equations for Coulomb plus confining interactions for all

partial waves.

PACS number(s): 11.10.St, 11.10.Qr, 14.80.Dq

I. INTRODUCTION

Meson spectroscopy [1] has been one of the most in-
teresting and fundamental subjects in elementary-particle
physics for the last two decades. It has provided one of
the basic testing grounds for our understanding of both
the symmetries and dynamics of the strong interaction
between quarks, mediated by gluons. Future studies are
also of great interest, particularly as they may provide
evidence of constituent glue. Given the important role of
meson spectroscopy, it is vital that our theoretical
description of these relativistic g systems be as accurate
and consistent as possible. Thus one would ideally like to
be able to connect the theoretical description of mesons
to the fundamental theory of strong interactions, namely,
quantum chromodynamics (QCD). However, the non-
Abelian nature of QCD leads to strong self-interactions
between the gluons, resulting in field equations that are
highly nonlinear and are unable to be solved by standard
diagrammatic methods except in the perturbative regime.
In the region of large distances, lattice-gauge calculations
[2], which provide the most direct link to QCD, have led
to the conclusion that in the static quark limit the force
between quarks can be very well described with a linearly
rising plus Coulomb potential. Nonrelativistic models
which use such a potential have been very successful in
accounting for both the masses and decays of mesons,
particularly those containing heavy quarks.

However, pure nonrelativistic model calculations have
limitations. First, for systems containing one light quark,
the use of pure nonrelativistic formalism is obviously
unjustified. Second, the nonrelativistic formalism has in-
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trinsic problems such as the incorrect dependence of the
meson mass on the quark mass; i.e., the mesons with light
quarks can become heavier than the mesons with heavier
quarks [3,4]. Also, the nonrelativistic linear potential
does not lead to linear Regge trajectories [3]. None of
these problems occur in semirelativistic treatments where
the relativistic expression for the energy is used. Clearly,
then, one must also introduce relativistic effects. Such
studies have been made, and good descriptions of the en-
tire meson family have been obtained [5]. However, if
one incorporates relativity into a position-space calcula-
tion, then many different relativistic effects must be put in
“by hand,” leading to a significant number of adjustable
parameters [S]. A much more satisfactory approach can
be made by doing calculations in momentum space,
where relativistic effects can be handled in a much more
economic way.

Such calculations immediately present two difficulties.
First, because one would like to retain a manifestly co-
variant approach, it is natural to transform the linear
plus Coulomb potentials to momentum space. The prob-
lem is, however, that both potentials lead to singular ker-
nels. Second, because many mesons of interest contain
quarks of comparable mass, one should ideally solve the
two-body Bethe-Salpeter (BS) equation [6] and certainly
not consider only the one-body Klein-Gordon or Dirac
equations. Although the best way to do meson physics in
the two-body framework would be to solve the BS equa-
tion, it is more practical to solve a three-dimensional
[7-11] reduction of it. However, there exist, in principle,
infinitely many possible three-dimensional reductions
[7-11] of the BS equation, and generally there is no
reason to prefer one reduction to another, although in
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some cases the physical problem itself might suggest a
particular reduction scheme. Therefore, for the general
qq problem, it is useful to carry out a systematic study of
the various reductions of the BS equation.

In this paper we present a complete study of how to
solve relativistic two-body bound-state equations in
momentum space with kernels which are a generalization
of Coulomb plus linear potentials. A method for treating
linear and Coulomb potentials in momentum space for
the nonrelativistic case was presented by Spence and
Vary [18], but their method is not easily generalizable for
the relativistic case if one retains retardation in the in-
teraction. We present a systematic treatment of how to
deal with the momentum-space singularities for both
Coulomb and confining interactions for all partial waves
and for both the nonrelativistic Schrodinger equation and
six different three-dimensional reductions [7-11] of the
Bethe-Salpeter equation. The only parameters that our
method permits are the quark masses and the Coulomb
and confining couplings. Our study is a comprehensive
treatment of relativistic effects, but with a very restrictive
parameter set, and should thus eventually provide a
definitive description of the entire meson spectrum. The
main purpose of the present paper is to present the theoreti-
cal subtraction techniques necessary to solve two-body rela-
tivistic bound-state equations in momentum space.

II. SCHRODINGER EQUATION
AND POTENTIALS IN MOMENTUM SPACE

The nonrelativistic power-law potential in » space can
be written as

V¥r)=AylimrNe ",
n—0

2.1

where A, is the strength of the potential and 7 is the
screening parameter. The index N indicates the type of
potential under consideration; i.e., N =—1 corresponds
to a Coulomb potential (Ay=A¢) and N =1 corresponds
to a linear potential (Ay=A;). In the present paper, we
shall be considering only these two types of potential.
For the bound-state problem of two particles with masses
m, and m, interacting via ¥"(q), the Schrédinger equa-
tion in momentum space is

2
%¢<p)+fVN(q)¢<p')dp'=E¢(p) , 2.2)
where p is the reduced mass. The momentum-space po-
tential is given by the Fourier transform of Eq. (2.1),
namely,

Ay gV +1 1
VMq)=—%lim(—1)" "1 —— | ———
q 2 NHT | 2

, (2.3)
T 70 an

where q=p’—p. The Schrodinger equation for the /th
partial wave is given by

2 0
Zatu et [ VG P o 0 =Edu(p) , 2.4)

where p =|pl, n is the principal quantum number, and /
is the orbital quantum number. The partial-wave com-
ponents of the potential are readily obtained as

V,N(p',p)=21rf_llVN(q)P,(x)dx

A N+1 o Q(p)
=N i, —1V 2 EET o)
T an pp
where x =cos6,,, and y is defined as
24 12,2
- n
y=2 tp ,+ . (2.6)
2pp
The exact lim,_,, will be taken shortly. Special cases of
interest are the Coulomb case (N =—1) and the linear

potential (N =1), and they are readily obtained from Eq.
(2.5) as

A Q,(»)
(p’,p)="—=lim — 2.7
Vi(p',p) 7TTIII_IB) o 2.7
and
A 2 (»)
VIL(p',p)=--L—1ima—2 Q”,’ (2.8a)
T 7—0 877 pp
A /(y) 2
ML i |2 Yo | (2.8b)
T 70 | (pp’) (pp")

Here Q,(y) are the Legendre polynomials of the second
kind, and their first and second derivatives are taken with
respect to y: i.e.,

, aQ[(y)
Q/(y)= ay (2.9a)
" ale(y)
Qr'yY)=—-5—". (2.9b)
ay

We note here that these potentials (at 7=0) have singu-
larities when p’=p, which corresponds to y =1. In order
to see the singularity structure explicitly, we rewrite
Q,(y) in terms of Qy(y) as

O, (¥y)=P,(y)Qo(y)—w, _(y), (2.10a)
where
1
w_ (=3 ip,,,n(y)Pm_l(y). (2.10b)
m=1
Note also that
Qo(y)=Lm|(y +1)/(y —1)]
=11]n M , (2.11a)
ol =pr ey’
1
I( —
QO y) 1_y2
—1 1
=pp’ , (2.11b)
pp (pl__p)2+,’72 (P'+P)2+712
and
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2
o (y)=

1
(p'+pr+mn’

(2.11¢)

In the expression for Q,(y), the only term that is singu-
lar (at n=0) is Qy(y). Therefore the Coulomb potential
has a logarithmic singularity from Q,(y) and the linear
potential has higher-order singularities from Q(y) and
Q¢ (y). We note that the singularity structure of these
potentials are the same for all partial waves.

As mentioned above, the potentials we are interested in
have singularities at p’=p, and in the following sections
we will show how to take care of these singularities in the
momentum-space Schrodinger equation. There are two
useful integrals which will be used repeatedly in the fol-
lowing sections. They are

w Qo(»,7=0) 2
f Q0y7’7 dp’
p

=T
p = 5 (2.12)
© 2
[7 1505 pm+06()
o | pp

dp'=0 . (2.13)

A. Nonrelativistic Coulomb problem

In this subsection we will present a subtraction method
which will treat the Coulomb singularity properly. For
the pure Coulomb problem in momentum space, the ex-
act analytic bound-state solutions were found by Fock
[12], but our aim is to solve the Schrodinger equation and
later relativistic equations for a combined linear plus
Coulomb interaction. Thus we need to be able to imple-
ment a numerical subtraction procedure in momentum
space. Apart from the rearrangement of terms, this
method is identical to the one developed in Refs. [13]
and [14], but we reproduce it here for completeness.
With the potential given in Eq. (2.7) and using the expres-
sion (2.10a) for Q,(y), the Schrodinger equation (2.4),
with =0, becomes

2 A 2
p L . ®© ’” ’
S b S lim [ 11505 (0 +05(y)

mpe

Gnolp")dp" = E, 06 ,0(p)

AC i Q()(y) ’ 2
¢n1 7rp Pl(y)—,_¢nl(P )p"“dp

- ﬂ—cf W, 1(9)$(p" 0’ dp' =Eydy(p) . (2.14)
p Yo

Since w; _(y) contains no singularity, the second integral
needs no special treatment. In order to remove the singu-
larity arising from the Q(y) term, we subtract and add a
term from the integrand of the first integral of Eq. (2.13).
The added term is proportional to the integral of Eq.
(2.12), and we obtain a singularity-free equation

g_;¢nl(p)
fw QO(y) P?$up % dp'
%;— %szqﬁnz(p)
fw w; 1Y)y (p')p' dp'=E,;,(p (2.15)

Note that at the singular point we have p =p’, y =1 and
P, (1)=1. Therefore the terms in the square brackets
cancel exactly and remove the singularity arising from
Qo(y). The numerical solution of this equation is dis-
cussed in the section on numerical methods (Sec. I C).

B. Nonrelativistic confining problem

In the case of the linear potential, there are singulari-
ties arising from Qy(y), Q¢(y), and Qg (y). We are in-
terested in solving the Schrodinger equation in the limit
17=0. For the sake of clarity, we will first consider the
I =0 case. For !/ =0 the potential is

Now, by adding and subtracting a term in the integral, we obtain

_¢n0(P ) +

11m f

2
1 0u(»)+04(y)
Pp,Qoy Qoly

[$nolp") = Bnolp)

2 ¢n0

AL Q’(y>
Vi(p',p)=—1lim ~—17—Q O (2.16)
T 7—0 | (pp’ (pp’)
Therefore the s-wave Schrodinger equation is
(2.17)
lap’
hmf Qe W +Q6(») |=Eobuolp) . (2.18)

From Eq. (2.13) we see that the last integral is identically zero. Now we can take the =0 limit explicitly [15,16], and

we finally get

2 A
P L[>
2 8o+ 5 [ Qo nolp) — uolp

]dp En0¢n0

(2.19)
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In the above equation, Qy(y) has a double-pole singularity at p =p’ [see Eq. (2.11b)].
around the point p’=p, we can see that only a principal-value singularity is left, which can be treated by con-
Next, we consider the case for general /. After removing the terms which

$nolp")

ventional means (see Sec. II C and Ref. [17]).

By a Taylor-series expansion of

can be shown to vanish when the =0 limit is taken, the form of the potential is

A 2 o) | PIQo( —w]_(»)
VEp',p)="Llim | Pi(y) |—L=0p (»)+ % - IyQ"y,z g (2.20)
T 7—0 (pp") (pp") (pp’)
Substituting this into the Schrodinger equation (2.4), we have
2 }\' . 2 , ,
Sttt s lim [ Piy) | 70500+ Qo0) |+ PI0IQo) =iy 0) | 6u(p")dp' = E i (p 2.21)

In order to remove the singularities, we must now perform two separate subtractions. The first subtraction is for the

singularities coming from Q(y) and Q¢ (y)

, and the second subtraction is for Q,(y). For the singularities arising from

Q' and Q", by using Eq. (2.13) we can make a subtraction without having to add anything back, and for the singularity
arising from Q,, by using Eq. (2.12) we subtract and add a term as for the Coulomb case. In addition, we have shown
previously [15] how to take the explicit =0 limit. Thus our singularity-free equation in the exact =0 limit is

p* $up) o Qo y> I(I1+1) P$ulp)
+ P,(y) 2P’ — Ip’ + P/( n — - dp’
¢n1 p) f 1(DQo(y) [dnp P,y f 1(y p'dulp > Pl(y)
Ay o1a+1) | ot ' ,
T | 5Pt 1 W)$u(p'Vdp' =E by (p) . (2.22)
P
|
At the singular point (p’=p, y =1), we have P,(y =1)=1 However, for the linear potential this method does not

and the term in the large parentheses in the first integral
vanishes. Therefore, as in the [ =0 case, we are left with
a principal-value singularity. In the second integral, at
the singular point, P/(y =1)=1(/ +1)/2, and the term in
the large parentheses again vanishes and kills the loga-
rithmic singularity arising from Q,(y). Note that, for
1 =0, Eq. (2.22) reduces to Eq. (2.19). Now we are in a
position to solve Eq. (2.15) for the pure Coulomb poten-
tial or Eq. (2.22) for the pure linear potential for all par-
tial waves. It is also obvious how to treat the combined
Coulomb plus linear potentials together.

C. Numerical methods

Consider first the Coulomb equation (2.15). An impor-
tant point to note is that at the singular point p’=p the
term in the square brackets of the first integral goes to
zero faster than the logarithmic singularity in Q,(y), and
therefore the integrand of the first term is identically zero
at p’=p. By using Gaussian quadrature, one can easily
write the whole equation (2.15) as a matrix equation with
¢,:(p) as the eigenvectors and E,; as the eigenvalues. Be-
cause the kernel of the first integral is zero when p’'=p,
the diagonal term of the corresponding matrix will van-
ish; i.e., the matrix coefficients of the matrix eigenvectors
will vanish at p’=p. However, there remain nonzero
terms multiplying ¢,,(p). These can be used as nonzero
diagonal coefficient terms for the eigenvectors. The re-
sult is that one can obtain eigenvalues and eigenvectors
directly from one’s matrix equation. As we shall see
later, this is no longer possible for the linear potential.
These techniques for the pure Coulomb case are also very
well explained in Refs. [13] and [14].

work. (For the sake of simplicity, let us discuss the / =0
linear-potential equation only. The methods are identical
for the higher-/ equation.) The reason that the above
method does not work in Eq. (2.19) is because Q(y) has
a double-pole singularity, and even after the subtraction a
principal-value singularity is left. Thus the integral must
be evaluated explicitly. However, to do this we must
know what the functions ¢,(p) are before we solve the
problem. The way around this dilemma is to expand
&,0(p) in a suitable set of basis functions:

M
.0p)= 3 Cigi(p) (2.23)

Inserting this expansion in Eq. (2.19), multiplying by

ngj(p), and integrating over p, we obtain
M 4
®p
C; —
2G|, 2 (p)

i

g;(p)dp

AL ro ;e
+“,ff0 fo Qo(»g;(p)lg:(p')—g;(p)ldp’ dp

M
=E, 3 C; fo p’g;(p)gi(pldp ,  (2.24)
i
which is just the matrix equation
> A4;C=E,> G;C (2.25)
i i

which is symmetric under interchange of i and j
(equivalent to symmetry under interchange of p and p’),
thus ensuring that the eigenvalues are all real.

The double integral still contains a principal-value
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singularity. In order to treat this, the integration over p’
is performed by integrating from O to 2p and then 2p to
oo with the singularity at the midpoint of the first region,
which is carried out using Gaussian quadrature with an
even number of points. This type of integration yields
the Cauchy principal value automatically [17]. When we
solve (2.25), we get M eigenvalues E,; to E,, and a cor-
responding set of M eigenvectors C,; to C,,. Thus Eq.
(2.25) is solved for the energies E,, and the coefficients
C;, which yield the wave function when substituted back
into Eq. (2.23). Convergence is obtained by increasing
the number of basis functions M and integration points.
In order to obtain the wave function in coordinate space,
one simply takes the Fourier transform g;(r) of the basis
functions g,(p) and uses the same set of coefficients C; but
now multiplying g;(r) to obtain the coordinate-space
wave function. [Thus it is very convenient to pick g;(p)
so that they have a simple Fourier transform.] For the
masses and couplings considered in this paper, a con-
venient set of functions g;(p) is

g:(p)=exp[ —pZi*/M], (2.26)

where M is the maximum number of functions used in the
expansion Eq. (2.23). Note, however, that for different
masses and couplings [15] a different set of basis func-
tions is necessary to achieve rapid convergence.

When solving the general Coulomb plus linear prob-
lem, one cannot take advantage of the simplicity of the
Coulomb numerical procedure [13,14] by itself. One
must employ the basis-function expansion method de-
scribed above. The basis functions appropriate to the
linear potential alone also turn out to be suitable for the
general linear plus Coulomb problem for the masses and
couplings of this paper.

D. Nonrelativistic results

We have carried out many different tests of our
methods. First, for the pure Coulomb case, we solved the
problem with the method of Refs. [13] and [14], which
does not require any basis-function expansion. We com-
pared to the exact Coulomb energies and found that we
could easily generate over 20 eigenvalues very accurately.
Second, as an additional check, we also solved the pure
Coulomb case using an appropriate set of basis expansion
functions and were able to obtain about 10 eigenvalues
quite accurately. Third, the pure linear problem was
solved for / =0 (see Ref. [15] for details) and compared to
the exact results. (For the /=0 pure linear-potential
case, the exact eigenvalues can be obtained in terms of
the roots of the Airy functions.) The calculated eigen-
functions also agreed with the exact results. Fourth, the
combined Coulomb plus linear problem was solved with
the expansion functions in Eq. (2.26) for / =0,1,2,3 and
compared to a coordinate-space calculation. (The
coordinate-space code integrates the Schrodinger equa-
tion out from the origin at »r =0 and in from large r, and
matches the logarithmic derivatives at the classical turn-
ing point.) Fifth, the combined Coulomb plus linear re-
sults were also compared to those listed in Ref. [18] and

also with a coordinate-space code. Excellent agreement
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was obtained.

In summary, we have very thoroughly tested our
methods for Coulomb plus linear potentials for many par-
tial waves against results from exact calculations,
coordinate-space codes, and the results of others authors
for both eigenvalues and wave functions.

III. RELATIVISTIC TWO-BODY EQUATIONS
AND INTERACTION KERNELS

In traditional nuclear physics, the deuteron is the only
two-particle bound-state system. It has been studied both
in the nonrelativistic framework and numerous relativis-
tic frameworks. Compared to the deuteron, the ¢g sys-
tem is a very rich system and its spectra provides an ideal
testing ground in which a systematic study of three-
dimensional relativistic equations can be made.

The Bethe-Salpeter (BS) equation for the bound-state
problem in the center-of-mass frame is given by
\I'<p,P0)=—(27’T)4 [ V(p.p" )G (p",Py)¥(p,Py)d p’

As mentioned above, there are infinitely many three-
dimensional reductions of the BS equation. In this sec-
tion we are going to work with six particular reductions
which we believe to be a fair representative sample of the
most commonly used three-dimensional reductions of the
BS equation. In order to reduce Eq. (3.1) into a three-
dimensional equation, we replace the propagator G by a
three-dimensional propagator g which has the same elas-
tic cut. A systematic study of these three-dimensional
relativistic equations for the problem of scattering of sca-
lar particles has been performed in Ref. [11]. As stated in
the Introduction, in this paper we will make a similar
study of the bound state of two particles interacting via a
confining integration. Some results have already been
previously discussed [16]. The choice of the three-
dimensional propagator can be categorized into two types
in general: one which renders the interaction to be in-
stantaneous and one which does not. In this paper we
study six three-dimensional reductions, three of each
type: the minimal relativity (MR) equation [8], Ka-
dyshevsky (K) equation [9], and Gross (G) equation [7],
all of which retain the retardation in the interaction. The
equations with instantaneous interaction (no retardation)
are the Blankenbecler-Sugar (BBS) equation [8], Ka-
dyshevsky (KO) (without retardation) [9], and Thompson
(T) equation [10]. All six equations can be generically
written as [compare to Eq. (2.2)]

D;¢(p)=— [dp' Vi(p,p")$(p") ,

where ¢(p) is a Schrédinger-like wave function. We will
neglect the couplings to the negative-energy channels
since the subtraction method is the same for the
coupled-channel case. The D; are given in Table I, and
the index i can be MR, K, G, BBS, KO, and T. Note that
for MR, K, and G equations the interaction V; has retar-
dation and for the other three equations it does not. We
will choose to use MR, BBS, K, and KO equations to
study the bound states of two scalar particles interacting
via a confining integration and G and T equations to

(3.1)

(3.2)
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TABLE 1. D; operators for relativistic equations. G and T
equations describe pseudoscalar mesons with spinor quarks.
The other four relativistic equations are for scalar quarks.

i Name D; Retardation
MR  Minimal AE (E}—W?/4) yes
relativity
BBS Blankenbecler and same as MR no
Sugar
K Kadyshevsky 2E}E,—W/2) yes
KO Kadyshevsky same as K no
G Gross 2E, — W yes
T Thompson same as G no

study the bound state of spinor quarks [7].

The confining interaction to be used in these relativistic
equations is a straightforward generalization of the
linearly rising potential discussed in Sec. II. We simply
replace the three-vector q of Eq. (2.2) by a four-vector q.
Now g?is given by

=(p—p' V—(E,—E,) . 3.3)
In this generalization the form of the Coulomb-type in-
teraction and the confining interaction remain the same
as in the nonrelativistic case, but now q° is replaced by
g% The partial-wave components of these interactions
will be given by Eq. (2.5), but for the equations that in-
clude retardation (MR, K, G), the variable y is now re-
placed by ¥ [instead of Eq. (2.6) with 7=0], where

B P'2+P2‘(EP—EP')2
= " . (3.4)
2pp

<

Equations without retardation (BBS, KO, T) retain the
original form of y in Eq. (2.6) with n=0. Here p and p’
are only the magnitude of the three-vectors. Again, we
note that these relativistic interactions will introduce
singularities as in the nonrelativistic case at g>=0 or at
y=1. Note also that, although the variables are different,
the singularity structures are similar to the nonrelativistic
case, i.e., the Coulomb interaction will have a logarithmic
singularity and the confining interacting has higher-order
singularities. For the equations without retardation, the
interaction V,(p,p’) is instantaneous and it is exactly the
same as the nonrelativistic case. For the instantaneous
interaction, relativistic effects come in to the equation
only through the kinematics, i.e., only through the opera-
tor D;. The singularities in this interaction can be han-
dled exactly the same way as in the nonrelativistic case.

In the following subsections, we will discuss how the
singularities in the relativistic confining and Coulomb in-
teractions can be treated properly.

A. Relativistic Coulomb problem

The relativistic generalization of the Coulomb interac-
tion in the partial-wave form is given by

1187
Ae . Qy)
VEp'p)=—"lim = 5 (3.5)
T 7—0 pp
and by using the expression for @, Eq. (3.2) becomes
D; ¢nl(p)+ fwPI( ¢nl IzdP
'&wawl—l(}_’)gb (pp'dp'=0 (3.6)
yZ2Ra "

for the MR, K, and G equations only. For the instantane-
ous equations BBS, KO, and T, instead of the above Egq.
(3.6), we have simply the Schrodinger equation (2.14), but
with the operator D; replacing the Schrodinger propagator.
Note that the only singularity in Eq. (3.6) arises from
Qo(¥). We want to handle this singularity in a similar
fashion as in the nonrelativistic case, i.e., by adding and
subtracting a term. But we must also be able to handle
the added term analytically or numerically. Unfortunate-
ly, because of the presence of retardation, we cannot just
subtract a ¢,;, and use Eq. (2.12) as in the nonrelativistic
case. In order to take advantage of Eq. (2.12), we sub-
tract a term proportional to the nonrelativistic interac-
tion and obtain [compare to Eq. (2.15)]

Qo(¥)bu(p')p

Ac pow
D, b=
LR N

p2¢nI(P)

—Qo(y)
QOy p’P,(J7)

7»c

2
2 )z
¢n1 2 ]

o]
f w;_(y

for the MR, K, and G equations only. Again, for the in-
stantaneous equations BBS, KO, and T instead of the
above Eq. (3.7), we have simply the Schrodinger equation
(2.15), but with the operator D; replacing the Schrodinger
propagator Note that we again have at the singular
point p'=p, y=1, and P,( =1)=1, and by Taylor ex-
panding Q,(y) around p’=p, one can show that the term
in the square brackets vanishes at the singular point.

). (p')p'dp'=0 (3.7)

B. Relativistic confining problem

In the case of the relativistic confining interaction, the
functional structure of the interaction is again the same
as the nonrelativistic case, but with y replaced by y. We
therefore use the same type of subtraction used in the rel-
ativistic Coulomb case. That is, we subtract and add a
term proportional to the nonrelativistic confining interac-
tion. We obtain [compare to Eq. (2.22)]
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TABLE II. Energy ratios E, ,,/E, for pure confining interaction with / =0. G and T equations are
for spinor quarks with k =0.2 GeV2. The other four relativistic equations are for scalar quarks with
k =0.2 GeV*. The nonrelativistic (NR) equation is with kX =0.2 GeV2. All masses are in units of GeV.
n MR BBS K KO G T NR Mass
1 1.73 1.71 1.74 1.72 1.79 1.72 1.75 1.5
2 2.31 2.27 2.34 2.30 2.47 2.30 2.36 1.5
3 2.81 2.75 2.87 2.80 3.09 2.80 2.90 1.5
1 1.58 1.50 1.68 1.54 1.90 1.67 1.75 0.5
2 2.00 1.82 221 1.89 2.73 2.18 2.36 0.5
3 2.35 2.08 2.65 2.16 3.52 2.62 2.90 0.5
1 1.51 1.41 1.66 1.44 1.98 1.63 1.75 0.3
2 1.87 1.65 2.13 1.69 2.92 2.11 2.36 0.3
3 2.17 1.84 2.52 1.89 3.84 2.51 2.90 0.3
A E | $u(p)
L *® ' = ' 4 ' nl — ’
D;¢,,(p)+— F)pup)— | — | Qoy)——= (¥ )dp
1¢n1 4 1Tp2 fO QO ¢nl P m 0 P](y)
Ap © p lI+1) TN
+—= Qo3P ) =5 ———=Q0(¥)d,(p) | P;(y)dp
wp? J o |0 p' 2P/(F) "
AL o M1 +1) ot
- W)_1(7)¢,,(p")dp'+ —¢,u(p)=0 (3.8)
sz fo 1—1(7)d,(p")dp 1Tp2 2 p o Pni

for the MR, K, and G equations, only. Once more for the
instantaneous equations BBS, KO, and T, instead of the
above Eq. (3.8), we have the Schrodinger equation (2.22),
but with the operator D; replacing the Schrodinger propa-
gator. The factor El,z/m2 in the subtracted term of the
first integral in Eq. (3.8) in necessary in order to cancel
the singularity arising from Q(7) exactly at the singular
point. This can easily be seen by Taylor expanding Q ()
at p’=p. Equation (3.8) is now ready to be solved for
various choices of D; when there is retardation in the in-
teraction. For cases without retardation, V; is identical
to the nonrelativistic problem and the subtraction tech-
nique developed in the nonrelativistic section can be used.

C. Relativistic results and conclusions

The main purpose of the present paper is to present the
theoretical subtraction techniques necessary to solve two-
body relativistic bound-state equations in momentum

space. Therefore Egs. (3.7) and (3.8) are our major re-
sults.

Nevertheless, for the sake of illustration, we shall
present some numerical solutions for the pure confining
problem with Eq. (3.8) written in terms of a single chan-
nel. Such results will at least allow us to see whether our
theoretical methods give reasonable results. The useful-
ness of these relativistic equations depends on the extent
to which they reproduce global properties of the spec-
trum characterized by the dependence of the energy E,;
on the principal quantum number n. This dependence is
most easily revealed by studying the ratio E,; /E ;. The
E, is related to the total energy W,, through
E, =W, —2m. Tables II-1V contain the results for the
ratio E,; /E; for the equations listed above for a reason-
able choice of mass and coupling parameters. [ values
range from O to 2.

There are three observations to make from these tables.
First, all of the energy ratios are reasonably close to the

TABLE III. Energy ratios E, ;,/E, for pure confining interaction with / =1. Notation and units

are the same as Table II.

n MR BBS K KO G T NR Mass
1 1.44 1.43 1.45 1.44 1.49 1.43 1.45 1.5
2 1.82 1.79 1.85 1.81 1.92 1.80 1.85 1.5
3 2.16 2.11 2.20 2.15 2.33 2.13 2.20 1.5
1 1.38 1.31 1.47 1.35 1.56 1.39 1.45 " 05
2 1.67 1.54 1.84 1.59 2.09 1.71 1.85 0.5
3 1.92 1.72 2.17 1.79 2.60 2.00 2.20 0.5
1 1.37 1.27 1.52 1.30 1.61 1.36 1.45 0.3
2 1.64 1.45 1.90 1.50 2.21 1.67 1.85 0.3
3 1.87 1.60 2.22 1.65 2.80 1.93 2.20 0.3
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TABLE 1V. Energy ratios E, ,,/E, for pure confining interaction with /=2. Notation and units
are the same as Table II.

n MR BBS K KO G T NR Mass
1 1.32 1.31 1.33 1.31 1.35 1.31 1.33 1.5
2 1.59 1.57 1.62 1.59 1.68 1.58 1.62 1.5
3 1.84 1.81 1.88 1.84 1.99 1.82 1.89 1.5
1 1.29 1.23 1.37 1.26 1.41 1.27 1.33 0.5
2 1.52 1.40 1.67 1.45 1.80 1.51 1.62 0.5
3 1.71 1.55 1.94 1.61 2.19 1.72 1.89 0.5
1 1.30 1.20 1.44 1.23 1.45 1.25 1.33 0.3
2 1.52 1.35 1.78 1.39 1.89 1.47 1.62 0.3
3 1.72 1.47 2.06 1.52 2.33 1.67 1.89 0.3

nonrelativistic results for heavy quark masses. Second,
the difference between the relativistic and nonrelativistic
results gets bigger for smaller quark mass. Third, the
higher radial excitations show more pronounced relativis-
tic corrections, which is consistent with the virial
theorem [3] for a positive power-law potential which re-
quires larger kinetic energies for orbits with greater aver-
age radii. These results lead us to conclude that our
theoretical methods are valid and give us confidence that
the methods developed herein will be suitable when a full
coupled-channel calculation is performed and compared
to experimental data.

In conclusion, we have presented the theoretical sub-
traction techniques necessary to solve two-body relativis-

tic bound-state equations in momentum space with
Coulomb plus confining interactions. Future work will
be devoted to including spinors and coupling to the
negative-energy channels in all six equations so that de-
tailed comparisons to experiment can be carried out.
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