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A three-dimensional relativistic equation is used to calculate the quarkonium spectra. The kernel is
the one obtained by projecting the Bethe-Salpeter (BS) kernel with both fermions being on the mass
shell. The potential in the momentum representation is assumed to have a Coulomb part with high-
momentum cutoff and a confinement part regularized by a small mass parameter. A complete Dirac bi-
linear covariant set is used to describe the spin structure of the potential. The quarkonium wave func-
tion is expanded in terms of the free Dirac spinors which are classified by the irreducible representation
of the Lorentz group. Most of the quarkonium states are embedded in the continuum which exists due
to the finite barrier of the confinement potential. Several sets of parameters for qualitatively fitting the
experimental data are considered. The results show that the axial-vector and tensor bilinear covariants
have to be included in the spin structure of the original BS kernel to explain the spectra of the quarkoni-
um system. This property is different from that in the Schrodinger formalism„where the spin-dependent
forces originate from relativistic corrections of vector covariants. The mixing of S and D components in
the wave function of the J/f system is shown to be sensitive to the presence of the axial-vector and ten-
sor components of the potential.

PACS number(s}: 14.40.Jz, 11.10.Qr, 11.10.st, 12.40.Qq

I. INTRODUCTION

The Schrodinger formalism with various modified
forms of the phenomenological potential has provided an
overwhelmingly successful approach for the description
of quarkonium and meson states. (See Refs. [1—3] and
references quoted therein. ) However, even from a purely
phenomenological point of view, one always fee1s a great
deal of uneasiness about using the Schrodinger formal-
ism. First, the dynamical input in the three-dimensional
nonrelativistic potential does not distinctly link up with
those in the covariant kernel in nonperturbative pro-
cedures. Although the nonperturbative procedure [for
example, the Bethe-Salpeter (BS) equation] [4,5] by itself
is completely phenomenological, it is highly desirable
that the dynamical parameters in these two procedures
have a clear connection. Second, it is inevitable to use
the BS amplitude with a covariant spin structure in the
calculation of the external current matrix elements be-
tween hadron states [6,7]. There is quite a vague rela-
tionship between the BS amplitudes and nonrelativistic
wave functions. As a result, a plentiful knowledge of the
Schrodinger wave functions is not suScient in the phe-
nomenological analysis of the standard model.

There are infinite ways to project the BS equation into
a three-dimensional relativistic equation [8—11]. Each of
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them has the same mathematical structure as the
Schrodinger equation and no more difhculty in numerical
computation than solving the Schrodinger equation.
However, the spin structures in these three-dimensional
relativistic equations are Lorentz covariant and the po-
tentials in these equations are directly related to the BS
kernel. Therefore it makes a great deal of sense to estab-
lish quarkonium and meson structure in the three-
dimensional relativistic equation. It will definitely help
us to understand the relationship between two types of
phenomenological approaches and make the bound-state
wave functions a much more active ingredient in the cal-
culations of the external current matrix elements between
hadron states.

Among all of these three-dimensional relativistic equa-
tions, the equation with an on-shell BS kernel is the most
simple and, probably, special [8]. The main feature of
this equation is that both quarks of the hadron in the ker-
nel are on the mass shell. So we are able to expand the
hadron wave function in terms of free Dirac spinors. All
the quantum numbers such as orbital angular momentum
and the internal spin in the nonrelativistic theory can be
preserved in the Lorentz-covariant representation. It be-
comes very convenient to compare the results in the non-
relativistic theory to the wave function in the covariant
representation. In other types of the three-dimensional
relativistic equations such as the one with one fermion
being on the mass shell [9] or the one-time relativistic
equation [10], the constituent quarks are off the mass
shell; therefore, the free-Dirac-spinor representation is
not complete any more. One has to use Llewellyn-
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Smith's representation [12] for solving these equations
and classify the hadron states only by space and charge
or G parity. However, once we have a solution in terms
of the covariant Dirac spinors, it will be direct to observe
its connection to the complete basis of 4X4 y matrices
[12].

In Sec. II we review the relationship of the BS and
three-dimensional relativistic equations to have a clear
starting point for the on-mass-shell projection. A poten-
tial including a Coulomb part with a large momentum
cutoff AQCD and a confinement part with an infrared reg-
ularization, small parameter p, is written down. Both po-
tentials are associated with a complete spin structure in
terms of bilinear covariants. The wave function is ex-
panded in terms of free Dirac spinors, which are
classified by the irreducible representation of the inhomo-
geneous Lorentz group. Most of the details are collected
in Appendix A. The explicit expression of the potential
for various quarkonium states is given in Appendix B.
Also, the relationship of space and charge parity with the
relative angular momentum and spin in the relativistic
representation is reviewed. In Sec. III a numerical study
of the three-dimensional relativistic equation has been
developed. Since the confinement potential with a regu-
larization to take account of the light-cone singularity
possesses a barrier with a finite height, most of the excit-
ed bound states are embedded in a kind of spurious con-
tinuum. These bound states are carefully identified from
the continuum by counting nodes of the corresponding
wave functions. Several sets of parameters for fitting the
experimental spectral data are given. The corresponding
wave functions have been obtained and are displayed.
From the numerical results and the analysis of the analyt-
ical behavior of the kernel in the finite-momentum re-
gion, the difference between the Schrodinger formalism
and the three-dimensional relativistic approach is ex-
plored, which shows that all of the spin-dependent forces
in these two approaches have a different origin. Finally,
a brief summary is given in Sec. IV.

If the BS kernel of the same system is assumed to have a
general structure of

I (p, q) =Q I~(pq) 1 jI ~,
J

(2)

I
A2'( —p +21 lA~+( —q)] . (3)

Here

b, =(E~ E) ——(p —q) (4)

with Ez=(p +m )' and A*(p) represent the projec-
tion operators for positive- and negative-energy Dirac
spinors given by (A13). There have been many papers
during the past four decades to develop a reduction of the
BS equation to a three-dimensional relativistic equation
including Eqs. (1)—(4). Each of these approaches has its
own point of focus. The general context of this topic can
be found from the original papers [8] and some review
papers [11]. Since Eqs. (1)—(4) play the role of a basic
equation of motion for our calculations, it becomes neces-
sary, at the first instant, to review certain important
features in the relationship of these equations to the BS
equation.

In the BS equation, both fermions are off the mass
shell, and so one is working in eight-dimensional space,
which includes the two energy variables, the real energy
of the two-particle system, and the relative energy vari-
able, which lacks any physical meaning. Let us first in-
troduce a projection operator to restrict the relative ener-

gy variable to a certain special value such that

U(Mk)kq, 'q)q2) =5(M —Q )5 (K—Q)UM~(k;q q),

and

where [I J] is the complete basis of the 4X4 matrices,
then the potential V(p, q) in (1) is given by

V(p, q) =Q I'(b, )[A, (p)P, 1 JA,+(q)]
J

II. EQUATION OF MOTION
AND THE POTENTIAL

U~~(k;q q)=5 E„+q 5 (k——q)A,+(k, )A2+(k~),
2

A. Equation of motion

Let us start with a two-identical-quark system. The
three-dimensional relativistic equation of this system can
be written as

(M 2E, )WM(p)= J—d'e V(p q)PM(q) .

where Q =q&+q2, q =
—,'(q& —q2), and the same definition

for K and k. Obviously, this operator projects the spin
structure of the two-quark system into two free Dirac spi-
nors and fixes the relative energy variable at Ek —M/2.
Next, we define a Green s function in eight-dimensional
space:

pid p2
Go(k& k2&k ikz ) —m dM U(k, k2', Mp, pz)g (Mp, pz) U(Mpip~~k &kz )

aIid

1
g(Mpip2) =

M H, (p, )
—H2(pz) —ie—

with H;(p)=a; p+m/3, , m is the quark mass, and E and E in the denominator of (7) are formally introduced to as-
Pl P2
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sure covariance of the three-dimensional integration. It can be easily checked that the dimensional scale of Go is the
same as the product of the two single-particle Feynman Green's functions. Now we turn to the BS equation for the
quark-quark scattering amplitude

T(k)kq,'k )k2 ) =I(k)kq, k )k2 )+f I(k)k2', g)gq)Gp(g)$2, 'g)gq)T(g)q2, k )kq ),
where the repeated Greek letters indicate the integration variables and omit the corresponding integration symbols.
Here the kernel I is obtained as a summation of all the irreducible Feynman graphs for two-particle initial and final
states and Go is given by

Gp(k&kp, 'k&k2)=Sp(k& k'& )Sy(k2 —k2) . (10)

The scattering amplitude will include all the singular terms arising from the two-quark bound states. Since the T func-
tion is independent of any boundary condition, we are able to rearrange Eq. (9) according to the Green s function (7)
into the form

T(k 1 k2i k ]k2 ) I (k& k2,'—k lk2 )+fI (k ]k2, g&42)G p(gig2', ri)'92) T('gl'rj2, 'k ~k2 ) .

The new kernel I' relates to the original BS kernel I by

I (k, k„k,k, ) —I(k, k, ;k,k, )+f r(k, k, ;g,g, )[Gp(g, g„.~,q, ) —Gp(g, g„q,q, )]I (~,q, ;k,k, ) . (12)

Multiplying by the projection operator (5) from the left and the right on both sides of Eq. (11) and integrating over with
all the variables, we obtain an equation of the form

T(Mkik2~M ktk2) —I'( Mkk 2,

' M'
k& kz) +m fde I'( Mk& k2egig2)g(sg~g2)F(eg)$2~™)k2) .

E~ Eg
(13)

Here we have used expression (7) for Gp and introduced the notation

O(Mk, k2, M k, k2) —f U(Mk, k2, $,$2)O (g, g2, g, g2) U(g, g~, M k, k2), (14)

which represents a projection of the eight-dimensional Feynman amplitude to the surface of eight-dimensional space,
i.e., a seven-dimensional amplitude without the relative energy variable. Considering that the total four-momentum is
conserved both in the projection operator (5) and the usual Feynman amplitude, we can factorize this 5 function out of
Eqs. (11)—(14). In other words,

0 (k, k~; k', k2 ) =5 (K —K')Ox (k; k'),
O(Mk, k2;M'k', k2) =6(M —M')5 (IC —K')OM~(k;k'),

where

(15)

(16)

K K
OMx'(k;k ) —Ai +k A2 —k OMx' Eq—

2 2
k;E .— k' A+ +k' A+ —k' (17)

In getting this expression, we have used the explicit form
of the projection operator (6). Substituting (16) into (13)
and taking the center-of-mass frame K=0, we have

f~(k;k')= IM(k;k')+ fd'JIM(k;g)gM(g)~M(g;k''),

(18)

where we have dropped the factor m /E& by remember-

inp that the normalization of the Dirac spinors should be
u u = 1 instead of uu = 1, as is usually used.

It is easy to find that procedures which reduce a BS
equation [Eq. (9)] to an equivalent Lippmann-Schwinger-
type equation [Eq. (18)] are exact; however, they are
artificial. There are infinite ways to introduce the projec-
tion operators (5) and (6). Also, there are many choices
to define the three-dimensional Green's function (8). The
differences among various types of three-dimensional rel-

ativistic equations, such as (18), are not only refiected in
the choice of gz(g) and the projection of the kernel I' to
I', but also in the relationship of I' to the original BS ker-
nel I [Eq. (12)]. The "goodness" of neglecting the higher
term in Eq. (12) is most important for using the three-
dimensional equation to replace the BS equation. Ap-
parently, there will be no unique criterion for making the
choice of the reduction procedure. It depends very much
on the special physical problem and the kinematic region.
The formalism adapted here has been widely suggested
[8] in various modifications. The primary motivation is
that for the low-energy scattering the dominant contribu-
tion to the four-point Green's function from the inter-
mediate states with constituent fermions does not vary
much from its mass shell. For a bound state, it means
that the binding energy is small compared with the con-
stituent quark masses, i.e., (2m —M)/2m ((1. There-
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fore the Green's function Go [Eq. (10)] in the BS equation
can be replaced by Go [Eq. (7)], which only produces a
two-fermion cut in the physical region. In other words,
negative spinor space with a large value of the relative en-
ergy [k ))(m —M/2)] which characterizes components
of an antifermion can be put into a role as higher-order
corrections represented by the expansion (12) or just sim-
ply can be neglected.

Now the wave function QM(q) in the three-dimensional
space can be de6ned as

f d q' TM(q;q')QM(q')= f d q'IM(q'q )QM(q ) (19)

where f~(q) satisfies the equation

[M —~i(p) —~2( —p)]4M(p)=0 .

Substituting (18) into (19), we have

qM(q)=/M(q)+ fd'9'gM(q)IM(q q'WM(q'»

(20)

(21)

and its integro-differential form is

[E—II, (q) —H ( —q)]g (q) = f d q' I' (q;q')f (q') .

Noting the projection operator in (17), the operator on
the left-hand side of (22) can be replaced by (E 2E& ). If-
all the corrections to the BS kernel in Eq. (12) are
neglected, I'=I, and assuming that the BS kernel is a
function of only the four-momentum transfer, then we
have reached Eqs. (1)—(4) stated at the beginning of this
section. One characteristic feature of this equation is
that when we assume that the BS kernel is only a func-
tion of the four-momentum transfer and is energy in-
dependent, the potential in Eq. (3) is also energy indepen-
dent. As a result, Eq. (1) becomes a completely linear ei-

genvalue problem such as the Schrodinger equation with
a Hermitian potential. Consequently, the normalization
of the wave function takes the same form as the
Schrodinger theory. If we take into account higher-order
corrections to the kernel, terms in Eq. (12) beyond the
first term, the three-dimensional potential must be energy
dependent even though the BS kernel is energy indepen-
dent. In that case the normalization of the wave function
in the nonlinear equation has to follow the same rule for
the normalization of the BS wave function as is used usu-
ally [13]. Another comment we would like to make is
that the relationship between the three-dimensional wave
function which is introduced by Eq. (19) and the BS wave
function is not clear, at least there is no analytical formal-
ism to connect them. This disadvantage appears in this
special reduction approach. For other types of reduction
formalism, for example, the one-time relativistic equation
[10], it is possible to present explicitly a relation both for
the wave function and the scattering amplitude.

Finally, for the quarkonium system, we need to charge
conjugate one of the quarks in our identical two-quark
system, which amounts to including a matrix C (C ') on
the incoming (outgoing) antiquark side of each vertex
where C =i y y is the charge-conjugation matrix. How-
ever, we will only consider the charge conjugation for one
of the quarks (for example, quark 2), both in the incom-
ing and outgoing sides. The reason for excluding another
possibility that both incoming (outgoing) quarks charge
conjugate to be antiquarks is the following: The color
coupling matrix for a quark-gluon vertex is a Gell-Mann
matrix, which will vanish on contraction with color-
singlet quarkonium states; in other words, quarkonium
states cannot directly couple to a single gluon [3]. How-
ever, we do not know whether this argument is true or
not for the confinement part of the coupling. With these
comments we can write down the equation of motion for
the quarkonium system as

[M 2F. ]PM(p)=—g f d q IJ(b, )[A&+(p)/3&I ~&A&+(q)]g~(q)[A2 (
—q)P2(1 ~z)'A2 (

—p)] . (23)
J

Here we have used that C 'A —(p)C =A+(p) and CI, C '=(I;) . T indicates the transpose operation, and 1; for
the basic 4X4 matrix are given by

() „)s)'=)'„r5 (24)

The wave function g(q) in (23) will be expanded in spinor
space with one of them undergoing a charge-conjugate
transformation. Details of the representation will be
presented in a later section.

Coulomb-like interaction with a damping form factor at
short distances plus a scalar-type repulsive linearlike in-
teraction at large distance. The simplest form of the po-
tential can be written as

B. Potential a,'+a, r —a, e-~", (25)
The nonrelativistic potential model has been extensive-

ly tested for the pion and up to the c with widely used po-
tentials with modifications reAecting various spin struc-
tures. The essential feature of the interquark interaction
probably can be summarized as a vector-type attractive

where an exponential factor with p~O has been multi-
plied to regularize the infrared divergence in the momen-
turn representation. The three-dimensional Fourier
transformation of (25) is given by
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a,
k+p

2a)+2pao 8al p+
(k2+ 2)2 (k2+ 2)3

(26)

With this in mind, we assume the BS kernel of the
quark-quark interaction to have the form

C. Free-spinor representation

In the center-of-mass frame of the quark-antiquark sys-
tem, a direct product of two free spinors can be arranged
in a matrix set:

I(k )= I, (k ) gg;I;sl;+I, (k ) pc;I;I";,

where

a, (k )
I,(k )=4m.

k —p

2 2a&+2pao «tp
I, (k )= 4' —'

2
+

(k2 p2)2 (k2 p2)3

(27)

(28)

(29)

XH(P1 1P2) H(PP1)UH( PP2 (31)

where p is the relative momentum, p, and p2 are the ei-
genvalues of the helicity operators for the free quark and
antiquark, respectively, and the index 0 indicates the hel-
icity representation. The definition and the transforma-
tion properties of the Dirac spinor are collected in Ap-
pendix A. In particular, we are using a normalization of
u u =U U =1. Therefore

where the index i in (29) represents s, p, U, a, and t corre-
sponding to I"; that are 1, y5, y„,y„y5,and o.„,respec-
tively. The running coupling constant a, (k ) in (28) in
the lowest order of QCD has the form [1]

a, (k )= ', kazoo .
Pln(k /A2)

Here A =
AQCD is the scale parameter of the

renormalization-group equation with respect to the sub-
traction point. However, this form will prevent us from
having an analytic expression after the angle integration
and will present other computational difficulties. For
simplicity, we assume [14]

W4
a, (k )=a,' k4+A4 '

and we still understand this A to be AQCD 100—1000
MeV. Later on, we will find that Eq. (30) will provide a
cutoff of the coupling constant in the angle integration,
which would not change the analytic behavior of the
Coulomb-like interaction. It has to be emphasized that
the four-dimensional kernel given by Eqs. (28) and (29) is
not a Fourier transformation of any three-dimensional
potential, although it duplicates the potential (25) when
k =0. Furthermore, the value of p cannot be zero no
matter how small it is, since the confinement potential
[Eq. (29)] with p, =0 does not exist. Therefore we have to
realize the kernel given by Eqs. (27)—(30) as a distinct
model to be compared with the nonrelativistic potential.
This model includes three parameters a„a&, and ao plus
a QCD scale parameter and an infrared regularizing pa-
rameter p, which is supposed to be much smaller than
the binding energy of the hadrons, p (((m —M/2). One
expects that the solution will not be very sensitive to A
and p. The ten parameters for describing the spin struc-
tures in (27) obviously are redundant. The actual calcula-
tions given in the next section show that for the
confinement potential most of the parameters have to be
set as zero. In brief, we have a kernel with three parame-
ters, and a definite spin structure and a well-behaved ana-
lytic property both in the ultraviolet and the infrared re-
gion.

Tr[XM(pp, p2)XM(p1u', p2)] =6,5
)"z)"z

(32)

1/22J+1
XH(pe1c 2) =g dM „(~»H(p'JMJv 1t22»

JM

(33)

where p =
~p~ and 8 is the direction of p. The inverse re-

lation of Eq. (33) can be written through the orthogonali-
ty relation for the rotation matrices:

XH(pJMJvu 2)

2J+1
4~

1/2

J d&dM p. (~)XH(PP11M2) ~ (34)

where dQ=sin8d&dg.
Now we expand the three-dimensional wave function

in terms of the X tensor (31):

PM(P) g PM(PP1P2)XH(ptu']P2) (35)

In the c.m. frame of the two-particle system, the relative
orbital angular momentum is perpendicular to the rela-
tive momentum; therefore, the summation of the projec-
tion of the spin for two particles along the direction of
the relative motion is equal to the projection of the total
spin in the same direction. The projection of the total
spin of the quark-antiquark system is along the direction
of the relative motion, p =p, +p2, where the plus sign is
due to the fact that the spin projection for the negative-
energy state is defined along the negative z axis, thus ro-
tating the negative z axis to the —p direction just like ro-
tating the z axis to the p direction. As a result, the helici-
ty of the quark and antiquark is added to each other,
which is opposite to the case of the two-particle system.
Although Eq. (31) has a definite value for the projection
of the total spin on the direction of relative motion, it
does not transform according to an irreducible represen-
tation of the three-dimensional rotation group and it can
be expanded in terms of the matrix with a definite total
spin (see Appendix A):
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and

PM(pplp2) =Tr[X'(plu'11122 @M(P ) ]

Substituting Eq. (35) into Eq. (23), we obtain

(36)

(M 2—E )As(ptulp2)

= g f d'e(&1&2I «p q) ~vlP2WM(q~1~2)

where

(&1&2~ V(p, q)lpllM2)=+I (&')Tr[X (plM11M2)&1+(p)p, l 1 &1+(q)X(q&1&2)&2 ( —q)(12)'P2&2 (
—p)I

=+I (b, )Tr[P X (pp, ,p )P,I,~(qA, ,A, )(I )'I

=+I (b, ')[u(pp, )t, u (qA, , )eu( —q&, )(I, )'U( —pp, )] . (38)

Al+(q)XH(qk14)A2 ( —q) =XH(qklk2), (39)

In obtaining the second equality of Eq. (38), we have used
the relation

extremely simple unitary transformation relating the
basis represented by p& and p2 to the representation with
relative orbital angular momentum L and internal spin S
[17]:

and

2 (
—P»H (PlM1P2)&1'(P) =XH (PlM1P2) . (40)

XH(P JAP 1@2)—g CJM (P,P2 LS)X(PJ.MJLS),
LS

(46)

By applying Eq. (33), we are able to carry out the integra-
tion with respect to the angle and transform [Eq. (37)] to
the representation with a total spin. To do this, we define

' 1/22J+1
CM(PP1PZ) X 4 dMJp(~KM (PP1I 2)

JMJ

CJM (P,P2..LS)
1/22J+1

2L +1 (LOS@iJP & & -,'lM, —,'lM, IS1M )

(47)

and
1/2

(41)
Equations (46) and (47) are derived in Appendix A. Al-
though the derivation is a little lengthy, the result of Eqs.
(46) and (47) is much simpler than if we started with the
canonical representation. Let us define

JMJ
4M (~V1V2)=

2J+1
4~ fd+ dMJp ( ~)PM(PP1P2)

(pLS) =Tr [X(pJMJLS)g(p) I (48)

where

(pplp2) =Tr[XH (pJMJplp2)g(p)] (43)

(44)

where

(~1~2~ V 4 0) ~P1P2) f d+qdM2 (~q )(~1~2~ V(P q) ~i 1P2)

(45)

where 0 is the polar angle for q. In reaching this equa-
tion, we have used d M(0) =5

One of the advantages for setting the equation of
motion in the helicity representation is that there is an

Substituting Eq. (41) into Eq. (37) and choosing p in the
direction of the z axis, we have

JMJ
(M 2&„)WM'(S V1V

—2)

= & f e'de(~14~V'V q)IV1V2WM'(~~14»

Equation (45) can be written as

(L'S'~ V (pq) ~LS )

CJM ( k, X2:L 'S' )CJM (P, ,P2:LS)

P IP2XIA2

X ( ~1~21 V'(S e) IP 11M2) (50)

Combining Eqs. (17), (27), (38), (45), (47), and (50) and the
definition of helicity spinors given in Appendix A, we
have calculated all the matrix elements (L'S'~ V (pq) ~LS )

for J =0 and 1, as listed in Appendix B. Now we come
to the end of the algebraic derivation. %'hat is left is the
numerical work to solve Eq. (49) for the wave function of
states with definite L, S, and J.

( M 2E„)gM (PLS—)

= g f q dq(L'S'~ V (Pq)~LS)QM (qL'S'), (49)
L'S'

where
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D. Space and charge parity Eq. (55), we get

P =L+1,
C=L+S .

(51)

(52)

Let us take a look at how these relations are realized in a
covariant free-spinor space. Under the space inversion,
according to (A19), the X tensors transform as

PXH(PP1P2)8 =Ail (PP1)U( PP2)8

= —XH( —p —Pl —P2) . (53)

Under charge conjugation the quarkonium system trans-
forms to itself if we add an interchange operation with a
Fermi statistical sign. So the charge parity will be deter-
mined by the transformation of the basis under the action
of the exchange operator —c,2 that interchanges the in-
dices of two spinors. It is defined as

The bound states can be classified by the quantum
numbers L and S only if we can expand the bound-state
wave function in terms of free-quark and antiquark spi-
nors. Generally speaking, we cannot restrict the covari-
ant spin structure to only such a free-quark —antiquark
system. For the quarkonium system, space and charge
parity are the rigorous quantum numbers for classifying
its states [12]. In nonrelativistic potential models, it is
well known that space and charge parity relate to L and S
by

= —X (
—1) ' 'AJM Ls(~+~ »—P—2)

JMJ LS

XX (pJMJLS), (57)

(
—1) AJMJLS(e+~ Pl P2)— —

A JM LS ( ~P 1P2 ) (58)

Combining (53), (55), (57), and (58), we have

PX (PJMJL'S)P '=( —1)'+ X(PJMJLS) . (59)

By the same token, the right-hand side of Eq. (54) is given
as

( —1)"XH( —P —
P2

—P i )

AJM LS(8+sr P2 Pl )X—(pJM—JLS) .
JMJ LS

(60)

where the phase is given by (
—1) again since the

1+@) p2

direction of —p on the left-hand side is defined not just
by changing 0~8++, but by the extra phase given by
(Al) —(A4). By using the symmetry properties of 3j sym-
bols and the rotation functions, it is easy to show from
(56) that

E12XH(PP 1P2) = ( 1) "XH( P P2 P 1 ) .
From Eq. (56) we have

(54)

XH(PP1P2) g AJMJLS(~P1P2)X(pJMJ
JM~LS

where

AJMJLS(~P1P2)

2J+1
)+4'(2L + 1)

(55)

To expand the right-hand side of Eq. (53), according to

The meaning of this transformation can be explained in
two aspects. (i) The spin projection in the helicity repre-
sentation has the same value as the spinor in the rest
frame (see Appendix A), and the z axis for defining the
spin projection is opposite for the positive- and the
negative-energy spinors. Therefore, when the index p2
(Pl ) is exchanged to positive (negative) spinors, one must
flip their sign at the same time. (ii) Exchanging the in-
dices also includes a reversal of the relative momentum in
each spinor. However, we cannot just simply let p go to
—p and vice versa. In the helicity representation, the
phase of the spinors is fixed independently for p and —p.
Therefore, when we Hip the direction of p, a phase
difference has to be counted precisely. The phase
( —1 ) " in Eq. (54) is the phase difference in the
definition of spinors for the positive and negative direc-
tions of the momentum (Al) —(A4).

Combining Eqs. (33), (46), and (47), we have

AJMJLs(~+~ P2 P'1) ( 1) AJMJLS(~PlP2)

and

E,2X—(pJMJLS) =( —1) + X(pJMJLS) .

(61)

(62)

Equations (59) and (62) demonstrate that the basis of free
covariant spinors in the c.m. frame of the quarkonium
system with the quantum numbers J, L, and S possesses
the same space and charge parity as that given by Eqs.
(51) and (52).

III. RESULTS

q =gtanlrx/2, x H [0, 1j, (63)

where g is a constant scale parameter. For simplicity, the
interval is partitioned into X equal-length steps and a tra-
pezoidal rule has been used. In several cases we have
tried Gaussian quadrature to evaluate the integral equa-
tion, but no qualitative difference is found. The key issue
of this numerical calculation is to find out the consistency
of the physical model. The numerical accuracy will make
sense after we understand the general behavior of this
model, and therefore we prefer to use a simple numerical
method to study Eq. (49) at this stage. Now the integral

The aim of this section is to find the low-lying eigenso-
lutions of Eq. (49) with the potential given in Appendix
B. The numerical integration is performed by mapping
the magnitude of momentum, q, onto a finite interval. In
our calculation we have used
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equation (49) is transformed to an eigensystem of linear
equations of order X for the case of J =0 +, 1+
0++, and 1++ and of order 2X for the case of J =1
The transformation scaling factor g will be fixed by
minimizing the lowest eigenvalue of bound states J for
each set of points N. g does not vary significantly for
different J . However, it increases rapidly with N. Now
let us describe the main results of solving the integral
equation (49) to obtain eigenvalues and wave functions of
the low-lying states.

A. Bound states embedded
in the spurious continuums

The major difference between Eq. (49) and the
Schrodinger equation with the linear potential is that, in
addition to bound states, continuum states can also be
solutions of (49). This is due to the fact that the height of
the potential in the equation of motion in momentum
space is finite. In the Schrodinger equation with the
linear potential, which can be infinitely high, only well-
separated bound states are solutions. Unlike this case,
the potential with the well-behaved property in the in-
frared regime in momentum space does not lead to ade-
quate confinement. Whenever the infrared regularization

parameter p (however small) is used, the potential pro-
vides a barrier with a finite height. As a result, the con-
tinuum states are also solutions of Eq. (49) as long as the
eigenvalue is larger than twice the mass of the constituent
quark. These states do not have any physical meaning.
Their existence is due to a complete lack of an ansatz to
describe absolute confinement in the momentum space.
So we call it the "spurious continuum" since it is caused
by the approximation scheme. Assuming that the charm
quark has a mass of —1.64 GeV, most of the charmoni-
um states except g, (2.980) and J/P (3.096) are higher
than the mass of two free charm quarks. In other words,
most of the charmonium states are embedded in the
spurious continuum. For the bb system, except for the
ground state, all of the excited states have a similar
feature. Therefore the first task in working with this
model is to identify bound states in the spurious continu-
um. Actually, the identification of an eigenvalue (bound
state) is quite unique: by counting the nodes of the corre-
sponding eigenfunction. In Table I the first 30 states
have been listed for the system g, with J =L =S =0. In
the case of X =60, the states with 0, 1,2,3,. . . nodes are
buried, in order, in the continuum states, i.e., states with
a large number of nodes. When the number of points is
increased to 100 and 150, more and more states with

TABLE I. First 30 states for g, system with J=L =S=0.
N =60, /=0. 914 GeV

Eigenvalue No. of
(MeV) nodes

N = 100, $= 1.160 GeV
Eigenvalue No. of

(Mev) nodes

N =150, /=1. 400 GeV
Eigenvalue No. of

(MeV) nodes

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

3055
3389
3428
3471
3517
3567
3621
3631
3678
3740
3804
3872
3942
4015
4029
4090
4167
4245
4321
4324
4403
4480
4537
4556
4629
4690
4697
4756
4782
4808

0
31
30
31
41
31
29

1

30
31
31
30
29
28

2
28
28
26

3
26
25
24

4
21
19

5
16
14

8
13

3041
3303
3317
3332
3348
3365
3384
3404
3425
3447
3471
3495
3521
3549
3577
3594
3607
3639
3671
3705
3741
3777
3815
3855
3895
3937
3974
3980
4025
4070

0
27
28
28
29
35
30
42
32
33
34
39
33
33
35

1

35
35
35
35
35
37
36
36
39
40

2
35
50
41

3040
3286
3292
3299
3306
3314
3323
3333
3343
3354
3365
3377
3389
3402
3416
3430
3444
3459
3475
3491
3508
3526
3544
3562
3582
3593
3601
3621
3642
3664

0
43
27
28
54
34
68
33
29
30
29
38
32
40
34
35
32
43
35
33
33
38
34
34
34

1

37
47
46
38
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redundant nodes are embedded between the ground state
and the state with one node. So these high-node states
without any stability appear for various grid sizes and
their position changes rapidly. On the other hand, com-
paring the eigenvalue of the ground state and the state
with one node in the case of X =100 and 150, one finds
that they are absolutely stable. Thus we find that the
method of counting the number of nodes in the eigen-
function provides us an identification of bound states
without confusion. One more example of the J/f system
is given in Table II. There are two components corre-
sponding to JLS =101 and 121 coupled together in Eq.
(49). We have to count the nodes for both components,
say, (ns, nD ). In Table II we have omitted a large num-
ber of these meaningless continuum states, but kept the
ones that appear in the region where the bound states are
embedded. It is clearly shown that the first and second
excited states with nodes (1,2) and (2,2) buried in the con-
tinuums have almost the same eigenvalue in the cases of
1V =100 and 150. In these two examples, the lowest ei-
genvalue which is below the value of 2m, is a bound
state. For the other cases such as J = 1+, 0++, and
1++, even the lowest eigenvalue is embedded in the mid-
dle of a host of continuum states.

In the above calculation, the scaling parameter g is

fixed by minimizing the lowest eigenvalue among bound
states as mentioned earlier. The spin parameters have
been chosen to be 1 for c, and g, and 0 for all the others.
In other words, only the scalar confinement and vector
Coulomb parts have been considered. The detailed role
of other parameters will be discussed in the following
subsection.

B. General features of the parameters

Since there are so many parameters involved, it is
better to have a general idea about these parameters be-
fore we use this model to fit the experimental data. The
purpose of this numerical calculation is to study the
characteristics of the equation itself. Therefore the pa-
rameters adopted here will rely a great deal on the experi-
ence provided by previous works [I—3].

There is not much ambiguity for the quark-mass pa-
rameters m, =1.64 CxeV and mb=5 GeV. It has been
checked that the solutions of the equation are highly in-
sensitive to the parameter of the ultraviolet cutoff for the
Coulomb potential, AQCD There is no significant
difference that can be found when AQCD varies from 200
to 800 MeV. We have fixed AQCD to be 800 MeV. The
most sensitive parameter in this model is p, the one for

TABLE II. Example of J/g system.

N =100, /=1. 160 GeV
Eigenvalue No. of nodes No. of nodes

(MeV) in S wave in D wave

N =150, /=1. 400 GeV
Eigenvalue No. of nodes No. of nodes

(MeV) in S wave in D wave

1

2
3
4
5

28
29
30
31
32
33
34
35
36
37
38
39
48
49
50
51
52
53
54
55
56
57
58
59
60

3041
3286
3303
3303
3317
3549
3577
3578
3595
3607
3608
3639
3639
3645
3671
3672
3705
3855
3895
3896
3937
3938
3975
3980
3981
4006
4024
4025
4069
4070

0
0
9

24
25
22
31
22

1

32
21
32
23

2
34
25
34
28
35
28
35
28

2
35
28

3
36
29
35
28

0
15
19
19
19
29
29
29

2
28
28
27
27

2
28
28
30
30
30
30
30
30

1

30
30

2
29
29
29
29

3041
3280
3286
3286
3292
3402
3415
3416
3430
3430
3444
3445
3459
3460
3475
3476
3491
3563
3582
3582
3593
3601
3602
3622
3622
3642
3643
3644
3664
3664

0
0

25
0

25
20
29
20
29
20
31
22
31
22
31
22
31
24
31
24

1

32
23
32
25
34
27

2
32
25

0
13
41
15
27
25
25
25
25
25
25
25
27
27
27
27
27
29
29
29

2
28
28
29
29
27
27

2
32
28
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regularizing infrared behavior, particularly in the
confinement part of the potential. (For the Coulomb
part, this regularization is not necessary. ) The variation
of p could cause a rapid change of the solution, which
means that p characterizes a steep variation of the
confinement potential in the infrared regime. As a result,
p becomes a sensitive parameter for the eigensystem.
However, there exists a kind of convergent picture if we
increased the grid points X when p is reduced. Therefore
it depends very much on the capacity of the computer.
In this work we have fixed p=50 MeV. A trial with a
smaller value of p will lead to a very large eigensystem if
consistent results are to be produced.

The potential parameters a„a&,and ao will be chosen
for duplicating the model in the Schrodinger formalism
so that a, =0.272, ai =0.25 CreV, and ao = 1 GeV [1—3].
Any small adjustment of these parameters will be justified
in the course of the calculations. The set of parameters
stated above has been used in obtaining Tables I and II.
Now we turn to the spin parameters. The five parameters
for modifying the confinement potential are indicated by
c c c cp and c, . We find that the mass spectroscopy
of g, and J/f does 'not change significantly when we
vary the combination (c„c„)=(0,1), (1,0), and (0.5,0.5).
Therefore it is reasonable to describe the spin structure of
the confinement potential by taking a scalar interaction
plus certain components of the vector term. This is con-
sistent with the assumption made in Ref. [1]. However,
any small admixture of the axial-vector, pseudoscalar,
and tensor components will completely destroy the spec-
trum of the J/P system. Even the lowest eigenvalues of
J/g and i), are totally unacceptable even for a small
value of c„c„andc . Therefore an assumption must be
made that this kind of confinement potential does not in-
volve any spin component arising from the pseudoscalar,
axial-vector, and tensor components. For simplicity, the
c parameter set is c, =1, c~ =c,=c, =c„=O;i.e., only the
scalar type of confinement potential has been considered.

The modification of the spin structures characterized
by g„g,g„g„andg, to the Coulomb part of the poten-
tial appears quite different. %'hen we change each of
these parameters individually, the mass spectroscopy
varies smoothly in a very similar pattern within a reason-
able range. Therefore the main task in obtaining the
mass spectroscopy of the quarkonium system is to deter-
mine this set of parameters. There are two significant
features of the solution in terms of the variation of these
five parameters: (a) Whenever we change the parameters
g, and g, by any reasonable value, the ground state of q,
of J/P remain stubbornly degenerate, as shown in Tables
I and II. In other words, the scalar and vector (even in-
cluding pseudoscalar) terms do not provide any
sigmficant spin-spin interaction, in the terminology of the
nonrelativistic description. In order to have an appropri-
ate separation between the two lowest states 0 + and
1 (or 'So and Si+ Di), one has to include a certain
amount of the axial-vector and tensor interaction com-
ponents in the Coulomb part of the potential. (b) The
variation of the pseudoscalar parameter g seems to have
no effect on any eigenvalues.

These two general features are probably the most im-
portant reasons that account for the great success of the
nonrelativistic approach. Since the wave functions of
bound states must decrease rapidly in the region of high
momenta, the eigenvalues of Eq. (49) are determined by
the part of the kernel with relatively small momentum
components. If we drop all the terms which are propor-
tional to 8 in the kernel given by Appendix B, as one
usually does in the nonrelativistic approximation where
B~ = ~p~/(E~+m) &&1 when ~p~ is small, the asymptotic
part of the kernel in the region with small p looks like

(00~ Vo(pq) ~00) —r, (1)+r,(1) r, (1)+—r, (t),
(01~ Vi(pq) ~01)—r, (1)+r,(1)+r,(l) r,—(1),
(21~ Vi(pq) ~21) ——'r, (1—) —'r, (1)+ '—r (1)—'—r, (1)—

(64)

(65)

+ —,'[r, (3)+r„(3)—r, (3)+3r,(3)], (66)

(01~ V, (pq)~01)- [r, (1)—r, (1)],2&2

(11
~ Vo(pq) ~

11)—r, (2)+ r, (2)—r, (2)+ r, (2),
(10 Vi(pq) ~10)-r,(2)+r, (2)—r, (2)+r, (2),
(11~Vi(pq)~11) —r, (2)+r, (2)+r (2)—r, (2),

(6g)

(69)

(70)

C. Mass spectroscopy of quarkonium systems

The mass and potential parameters as analyzed in the
last subsection are given in Table III ~ The spin parame-

where r, (n ) are defined by (B9)—(B13). They represent
parameters of the corresponding spin structure multiply-
ing the angle integrals, which are well defined both in the
ultraviolet and infrared region and vary smoothly with
the momentum variable. From (64) and (65), we can im-
mediately find that the differences of the potential for the

and S components of J/g, corresponding to
JLS=OOO and 101, are only those that appear from the
axial-vector and tensor components; the scalar and vector
components are completely the same. Therefore the
spin-spin interaction in the nonrelativistic terminology
cannot be provided only by vector and scalar bilinear co-
variants. The source of the spin-spin interaction is main-
ly due to the axial-vector and tensor components. Fur-
thermore, from (67), the coupling potential, which would
be called the tensor interaction in the nonrelativistic re-
gime, between S and D components of the J/g system
also arises from the same source. In other words, both
the spin-spin and tensor forces in the nonrelativistic
theory should be derived from the axial-vector and
tensor-bilinear covariants. Finally, among all of the ex-
pressions of (64)—(70), the pseudoscalar component never
appears, and so the y5(3@5 term never plays a significant
role. A brief summary for the spin parameters in the
Coulomb part of the potential is that the scalar and vec-
tor terms have very similar property for all states, the
axial-vector and tensor components are absolutely impor-
tant in determining the spectra of quarkonium systems,
and the pseudoscalar term can be neglected in bound-
state problems.
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TABLE III. Mass and potential parameters.

m, =1640 MeV
p=50 MeV
&qcD=800 MeV
a, =0.272
a& =0.25 & 10 MeV
ao =780 MeV

TABLE IV. Spin parameters c, =1, c~ =c,=c, =c,=0, and

gp =0.

Set 1

Set 2
Set 3
Set 4
Set 5

gs

0
0
2.49
2.45
1.87

1.89
1 ~ 86
0
0
0.49

ga

0
—0.73

0
—0.776

0.76

0.985
0
1.01
0
2.00

ters are given in Table IV, where five sets of the combina-
tion of g„g„,g„andg, are suggested. As we mentioned
earlier, the parameters g, and g, play a similar role and

g, and g, are essential for determining the spin structure.
So sets 1 and 2 are chosen by combining g, and g, or g„
respectively. Sets 3 and 4 have a similar combination ob-
tained by replacing g, with g, . In terms of the spectra
only, we really do not have too much reason to search for
more complicated mixing parameters since there are
many different possibilities which could reproduce the
spectra by specially fitting certain states and not so well
to others. However, to ascertain a variation of the com-
bination, we give a parameter set 5, which gives better re-
sults for the first and second excited states of J/g. It is
quite a difficult numerical work. So many parameters are
involved in such a highly nonlinear problem that involves
diagonalizing five matrices at the same time. Particular-
ly, in order to find the eigenvalues, one must calculate the
eigenfunctions for identifying the bound states embedded
in the spurious continuum.

The results are given in Table V. The first column
gives the experimental data as taken from the Particle
Data Group [19]. The data for h, (3510) are taken from
[20], but the evidence is not overwhelming. In the calcu-
lation of the eigenvalues as well as in obtaining the wave
function of the eigenstates (next section), the number of
integration points (N) is chosen to be 150 and the tri-
gonometry scale parameter is g = 1.412 GeV, which mini-
mize the mass of g, and J/g. The results provide a qual-
itative fit to the experimental spectra by various pararne-
ter sets. We cannot draw any meaningful dynamical con-
clusions by using so many parameters to fit the data on
the energy of charmonium states, while ignoring com-
pletely the experimental database on the electromagnetic
and weak transition rates. However, we do learn an im-
portant message about the relationship between the
Schrodinger formalism and the three-dimensional relativ-
istic approach for studying meson spectroscopy. We can
assume that the starting point of the two approaches is
the same because both procedures are starting from an

on-shell Feynman diagram as the kernel of a nonpertur-
bative calculation. There are mainly three approxima-
tions being made to reduce the nonperturbative problem
to a Schrodinger equation within Pauli space in nonrela-
tivistic approach.

(a) The first approximation is a kinematical one, that a
nonrelativistic expansion has been carried out for the ki-
netic energy of a free particle, E . In configuration space
this approximation immediately leads to a differential
equation. However, for a bound-state problem, the
momentum of the constituent quark would not reach
very high values in terms of the scale of the heavy quark
mass. In addition, a numerical accuracy for treating a
differential equation is much better than solving an in-
tegral equation. Therefore we do not believe that there
would be too much advantage to replacing a differential
equation by an integral equation as we have done in the
three-dimensional relativistic approach.

(b) In order to write a differential equation in
configuration space, a static or instantaneous approxima-
tion has to be made in the on-mass-shell kernel. This ap-
proximation misses a pole singularity in the light cone.
But in our treatment this light-cone pole singularity has
been regularized by introducing a small mass p. So there
is still no significant difference between the two ap-
proaches in this aspect. For example, for the spin-spin
force, the static approximation is to move the 5 singulari-
ty from the light cone to the space origin. One cannot
expect to make much of a mistake by this approximation.
As to the region away from the light cone, whenever a
Yukawa function or a Bessel function [21] is taken as the
kernel of equation, it would not make a big difference.

(c) Now we come to the third approximation which
causes a major difference between the two approaches.
All of the spin-dependent forces in the Schrodinger for-
malism are produced from the small components of the
Dirac spinors. In order to make a Fourier transforma-
tion of these terms to configuration space, one has to
make an approximation that

E +en 2m
(71)

This approximation is reasonable for calculating an in-
dependent matrix element with small momentum. How-
ever, using this approximation in the off-shell kernel
would greatly overestimate the importance of the spin-
dependent forces. It is clear that the factor on the left-
hand side of Eq. (71), which is always smaller than 1, can
never be important in all regions of the momentum, un-
like the right-hand side of Eq. (71), which can be
significant up to certain finite values of the momentum.
Furthermore, in the case of bound states, high-
momentum configurations are automatically suppressed
which reduce the effect of the factor p/(E~+m) in the
potential. It is hard to produce considerable corrections
with such small numbers. Actually, this fact has been re-
peatedly emphasized in the %'ise-Isgur symmetry during
recent years [22]. On the other hand, when a factor on
the right-hand side of (71) is used, it can produce a con-
siderable effect in the region with a finite but large
momentum. As we mentioned in the previous subsection,
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TABLE V. Spectra of cc system.

Name

g, (2980)
g, (3591)

J/II/(3096)
$(3686)
1((3770)
i//(4040)

4(4159)
$(4415)
yo(3415)

3510
A, (3510)

JPC

0-+
0—+

1

1

1

1

1

1
0++
1++
1+—

Set 1

2980
3588
3096
3728
4029
4090
4314
4395
3359
3483
3340

Set 2

2980
3570
3096
3728
3737
4008
4106
4295
3343
3506
3328

Set 3

2980
3630
3096
3628
3787
4078
4143
4360
3402
3522
3367

Set 4

2908
3614
3096
3674
3790
4061
4155
4344
3388
3542
3357

Set 5

2980
3634
3096
3684
3771
4074
4121
4356
3403
3489
3369

the pseudoscalar interaction does not produce any ob-
servable effect because the potential related to the pseu-
doscalar term is proportional to the factor B (see Ap-
pendix B). The spin-spin force which is supposed to
separate g, and J/g cannot be produced by a vector or
scalar component since the difference of the potential for
rI, and the L =0 state of J/f is proportional to B B
[see (Bl) and (BS)], and it can be neglected since it is
small. Furthermore, the tensor force which leads to a
mixing between S and D components of the J/f system
cannot get this effect from the vector and scalar com-
ponents [see (B7)]. It is quite an ironic result. In the
Schrodinger formalism, the spin-dependent force is con-
sidered as a type of relativistic correction. However, the
relativistic corrections would disappear or, at least,
would become small when one does a relativistic calcula-
tion. In order to provide an appropriate spin-dependent
force in the three-dimensional relativistic approach, we
must put in certain spin structures in the BS kernel in the
first place, i.e., to mix certain axial-vector and tensor
components in the Coulomb part of the potential. It is
obvious that the spin-spin interaction produced by the
vector-bilinear covariant is related to the small com-
ponent of the Dirac spinor, i.e., proportional to 8, but
the same interaction produced by the axial-vector and
tensor-bilinear covariants is related to the large com-
ponent of the Dirac spinor and is of order 1. It is in-
teresting to note that the strength of the S and D com-
ponents of the wave function is determined by g, and g,
and is large [(B5) and (B6)]. The coupling potential be-
tween S and D components in the J/g system is dominat-
ed by g, and g, [Eq. (B7)]. Therefore, if only the vector
potentials were considered, the tensor force would be ex-
traordinarily small. In other words, one cannot expect
too much coupling between S and D components with
only the vector coupling. The mixing of the D com-
ponent in the excited states of the charmonium system is
considered in studies of electromagnetic transitions [23].
This problem could shed light on the relationship of the
two nonperturbative approaches.

In summary, the nonrelativistic approximation can be
phrased simply: The square root factor of E should be
replaced by I or a first-order expansion whenever it ap-
pears. In the kinetic term and the gluon propagator, this
substitution is acceptable. In the small components of

the Dirac spinors, this substitution exaggerates the spin-
dependent forces and this effect will be significantly
suppressed in the three-dimensional relativistic approach.
As a result, the spin-dependent forces have a completely
different origin in these two approaches. In the
Schrodinger formalism, it belongs to the higher-order rel-
ativistic correction. In the three-dimensional relativistic
approach, it should be assumed that the BS kernel is
composed of a complicated mixture of the Dirac bilinear
covariants in the first place. We are not intending to
create an impression that the Schrodinger approach has
anything "wrong" since both approaches are entirely
phenornenological. Although the spin-dependent force is
exaggerated as a result of the nonrelativistic approxima-
tion, this approach is simple, powerful, and, more irnpor-
tantly, successful for classifying a great deal of the experi-
mental data. However, the different physical origin of
the spin-dependent force does raise a very interesting
question for a future study of the meson spectroscopy.

A final remark should be made about the bb system.
We have not given the numerical results of the bb system
here for the following reasons. First, for such a heavy
quark mass, the contributions to the equation are spread
over a large momentum region. As a result, we have to
increase the number of integration points so that the
large momentum region can be covered accurately.
Second, from the theoretical point of view and from ex-
perience with the calculated results, the spectra of the bb
system must possess very similar pattern as the cc system.
This is confirmed by observing the experimental data,
with the exception of one phenomenon. In the J/g sys-
tem, the excited states appear as pair of states close to-
gether such as P(3686) and g(3770) that are far away
from the next pair g(4040) and g(4159). However, in the
Y system the experiment does not show any neighboring
state around Y(10023), as the coupled equation between
5 and D waves frequently predicts. In any case, it is
necessary to treat the bb system more carefully and the
results are planned to be presented in a separate paper.

D. Wave functions

The wave functions of g„g,', yo, and J/f are plotted
in Figs. 1 —4. The results are obtained by using parame-
ter set 5, which has been indicated as a lower index under
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FIG. 1. Wave function of q, (2980) for parameter set 5. FIG. 3. Wave function of go(3415) for parameter set 5.

each particle name. The general shape and number of
nodes do not change when we vary from one parameter
set to another. The wave functions of y& and h, have
very similar pattern as go with a small numerical change
of the height and center of the lump. The dashed line in
Fig. 4 represents the D component in J/g and can really
be neglected. So J/ttj is a purely 1S state without prob-
lem. However, things become very difFerent when we go
to the excited states of J/g. Five excited states of the
J/P particle are shown in Figs. 5 —9, where the solid and
dashed lines represent the S and D components, respec-
tively. Each of these figures includes three graphs (a), (b),
and (c), corresponding to parameter sets 1, 2, and 5, re-
spectively. One can immediately find that the pattern of
the D wave coupled to the S wave is very sensitive to
di6'erent parameter sets. In Figs. 6 and 8, which corre-
spond to the states P(3770) and g(4159), the principal
quantum number or nodes of the S wave can be changed
with di6'erent parameter sets. The fluctuation of the
curves apparently is a numerical problem caused by the
kernel given by (Bl 1) within the region of the small mo-
menta where one has to face a numerical uncertainty.
Since the diagonal matrix elements of the D state are
much larger than those for the S state, the corresponding
eigenfunctions will fluctuate easily under a variation of
the large matrix elements.

In terms of parameter set 5, we can identify P particles
in the following way: ttj(3686) is the 2S state with small
mixture of the 1D state, P(3770) is a 1D state with certain
mixture of the 2S state, P(4040) is a 3S-2D mixing state,
1t(4159) is a 4S state, and ttt(4415) is a 4S-3D mixing state.
However, in this description the explicit mixing of states
is highly sensitive to the axial-vector and tensor com-
ponents in the kernel. It is well known that the transition
rates are highly sensitive to the wave functions. It will be
a useful exercise to consider the energy-level scheme as
well as weak and electromagnetic transition rates. This
would permit us to make a definite choice of the covari-
ant components that provide the spin structure. Such
calculations are in progress. Results would help us to un-
derstand the nature and structure of J/g and the excited
states. So the three-dimensional relativistic equation with
a di6'erent spin structure of the bilinear covariants pro-
vides a very powerful tool to classify the complete experi-
mental data including the transition rates.

IV. SUMMARY

In this paper we have concentrated on the development
of an algorithm describing the quarkonium states in
terms of a three-dimensional relativistic equation with a
covariant spinor structure. This method mainly includes
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FIG. 2. Wave function of g, (3591) for parameter set 5. FICx. 4. Wave function of J/g(3096) for parameter set 5.
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four steps. In step 1, a four-dimensional BS kernel, in-
cluding the Coulomb part with a high-momentum cutout;
a confinement part with a light-cone regularization, and
both associated with a complete set of Lorentz covari-
ants, is proposed [Eqs. (17)—(29)]. In step 2, the phenom-
enological BS kernel is projected onto a three-
dimensional space with each fermion being on the mass
shell in both incoming and outgoing channels [Eq. (14)].
By using the three-dimensional kernel, the equation of
motion for the quarkonium system is given by (23). Step
3 is to expand the wave function in terms of the tensor
composed of free Dirac spinors in the helicity representa-
tion and L-S representation. This expansion has been
proved in Appendix A. Using this expansion, the equa-
tion of motion can be written in the corresponding repre-
sentation and the angle integration can be carried out
analytically as given in Appendix B. Finally, in step 4,
the integral equations in one variable, which is the mag-
nitude of the momentum, are studied in detail by a nu-
merical method.

The potential barrier within the equation of motion in
momentum space is not infinitely high. As a result, most

of the excited quarkonium states are embedded in a spuri-
ous continuum, a property caused by the approximation
of the potential with a finite height. By using the method
of counting the nodes of the eigenfunction, the bound
states can be identified. By changing the number of in-
tegration points, the energy of the bound states does not
change much, even though the background continuum
states are shifted dramatically.

The two mass parameters, quark mass and AQCD are
fixed without much ambiguity. The infrared treatment
for the Coulomb part can be performed in a more sophis-
ticated manner in the future, but the p parameter for re-
gularizing the infrared behavior of the confinement po-
tential has a certain inherent ambiguity. The three po-
tential constants a„aI,and ao are chosen to be consistent
with the nonrelativistic phenomenology. Only the scalar
spin structure in the confinement potential has been con-
sidered. A set of scalar, vector, axial-vector, and tensor
mixing parameters in the Coulomb potential is given for
fitting the mass spectroscopy of the quarkonium system.

It is hard to draw any definite dynamical conclusion
for this equation unless one can fit the complete experi-
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mental data, including various decay rates, at least elec-
tromagnetic and weak. However, the characteristic
difference between the Schrodinger formalism and the
three-dimensional relativistic equation approach emerges
in the numerical study and in the discussion of the
asymptotic behavior of the kernel in the region with large
but finite momentum. The principal conclusion is that all
types of spin-dependent forces which decide the general
features of the spectra of the quarkonium system appear
to be a higher-order relativistic correction in the
Schrodinger approach, but must be considered as an in-

put of the mixing of the various Lorentz covariants in the
original BS kernel. The different physical origin of the
spin-dependent potential in these two approaches has
posed an interesting question in the study of the hadronic
structure. The mixing of S and D components in the
wave function of the J/f system is shown to be sensitive
to the presence of the axial-vector and tensor components
in the potential.

As far as one would like to continue to study the ha-

dronic wave function of the quark model in momentum
space, a serious challenge is to search for a more ade-
quate regularization method for the light-cone singularity
in the confinement potential, without which quantitative
results are difficult to obtain. The technique developed in
this paper can be generalized to the problems of meson
states without difficulty. The use of the existing wave
functions to calculate various weak decays and transition
rates is planned to be presented in papers to follow.
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APPENDIX A: COVARIANT SPINNERS

The unitary representations of the inhomogeneous
Lorentz group [15] have been extensively developed for
classifying relativistic scattering states. Some of the pop-
ular references that deal with the construction of the heli-
city representation are by Jacob and Wick [16] for gen-
eral helicity formulation, the L-S representation by
Macfarlane [17], and the relationship of these two repre-
sentations by McKerrel [18]. Since it is not quite com-
mon to use these representations as the basis for a
bound-state calculation, it is valuable to collect some of
these materials for classifying the basis of the quark-
antiquark system. We would like to emphasize that the
definition of the phase in the following presentation is
crucial in actual calculations. For simplicity of book-
keeping, we use u ' +—' to represent the positive- and
negative-energy spinors until we start to discuss two-
particle states.

The Dirac spinors in the helicity representation are
defined as

uH (PAM) =EH(p)tU+(P),

uH '(pp)=( —1)'~' "XH(p)w ( —)M),

uH+'( —pp)=( —1)' ' "&H( —p)to+(p),

uH '( pp—) =&H( —p)tU (p),

(A 1)

(A2)

(A3)

(A4)

XH(p)=R (8)L,(p),

XH( p) =R—~(8+rr)L, (p),
where

(AS)

(A6)

L, (p)=Np(1+B a ),
R~(8) =cos8/2 —io. sin8/2 .

(A7)

(A8)

where w+(p, )=(o") and w (p)=(„),with x„being the

Pauli spinor. XH(+p) is constructed by a boost along
the z direction and, for simplicity, only a rotation around
the y axis:

2.0

1.0

-1.0—

3.0

I I I

tlf(441 5),

8 Component

D Component

Here N =[(E +m)/2E ]', B =~p~/(E +m),
rr = —io, and o =o. '. The notation and definitions of
all Dirac matrices follow Bjorken and Drell [24]. The
phase convention in (A2) is introduced subject to the
charge-conjugation relation

Cu H
—+ ' (pp) = uH+ '(pp), (A9)

where C =i y y and T indicates transpose operation.
The phase in (A3) and (A4) has been chosen such that
[16]

uH
—)(P~O, p) = uH(

—'( —P~O, —p) . (A10)

The normalization factor in (A7) is chosen to satisfy the
condition

cu

O
CD

1.0

tie(441 5)~
uH(* (pp)uH~*'(pp )=5

The orthogonality between u'+' and u' ' is

uH+' (pp)uH '( pp') =u—H+'(pp)uH '(p)M')=0 .

(Al 1)

(A12)

O
The projection operator for u '+ ' and u ' ' can be written
as

A+(p) = [E~+H(p)] =uH+'(+p)uH +—'(+p)1 (A13)

0.4
I I I

half(441 5)5

and satisfies

PA +—(p)=A —
( —p)P . (A14)

The index p of spinors is the eigenvalue of the helicity
operator

2
uH+ '(pp, ) =+—puH '(pp), — (A15)

-1.4
0 1.0 2.0

GeV
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where a. /2 is the infinitesimal generator of the space ro-
tation (A8). To prove (A15) we have used

rJ pR (8)=R~(8)cr,

FICi. 9. Wave function of P(4415) for parameter sets (a)1,
(b)2, and (c)5.

and note that o, commutes with L, (p). Therefore p, the
spin projection in the direction of p, is the same as the
projection on the positive and negative z axis in the rest
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frame for u '+ ' and u ' ', respectively.
The characteristic feature of the helicity representation

is that the spinors only rotate the direction of its momen-
tum without changing the spin projection under the rota-
tional transformation

uH
+—'( —pp) =g d '~ (0)u,( —'( —pp') .

P
(A28)

The major difference between the two representations is
their transformation property under space rotation. Be-
cause of the same type of algebra of (A24) and (A25),

R (co)u' —'(pp)=u' —'(p'p) . (A16) R (~)&,(p) =X,(p')R (~), (A29)

puH" (pp) rI,~—H(p)p 'gw'"'(p), (A17)

where r =+1 and il„is given by (Al) and (A2). The
Lorentz transformation under space inversion is equal to
a space rotation around the y axis by an angle ~,

Here p'=A p and A represent the rotation with a solid
angle co in three-dimensional space. The result in Eq.
(A16) is evident from the structure of (A5) and (A6).

The space-inversion operation for the spinors is
presented as

where p'=A p. Applying (A29) and (A26) to (A21) and
(A22), we have

R (co)u,( —'(pp) =g D„'i„(ro)u(+—'(p'p') . (A30)

R (co)=R (co)R (co),

such that

(A31)

Comparing (A30) with (A16), the canonical spinors not
only transform their direction of p, but also the projec-
tion of the spin as D' under the Lorentz rotation. Let
us define

~H(p)g '=Ry( —m. )XH(p)R (n.),
and note that

pw( )(+p) —
y w( )(+p) rw( )(+ )

Substituting (A18) and (A19) into (A17) and using

R (1r)w(")(p)=( —1)' ' "w'"'( —p),
we obtain

pu(")(+pp)=ru(")(+p, —p) .

(A18)

(A19)

(A20)

R (co)u,' —'(pp)=QD', (co)u,' —'(pp'),
P

R (co)u,(*)(pp) =u' +—'(p'p, ) .

(A32)

(A33)

The explicit expressions for R' and R in terms of
Lorentz group elements and the algebra including these
two operators can be found in [17]. However,
(A31)—(A33) have already been given a unique and pre-
cise definition of the orbital and spin rotations. Further-
more, from this definition we can find that R and R'
commute with each other:

u,'+'(+pp) =&,(+p)w(+'(p),

'(+pp)=( —1)' ' "&,(+p)w' '( —p),
where

(A21)

(A22)

In other words, spinors reverse their momentum and spin
projection with an internal parity positive (negative) for
u+ (u ) under space inversion.

In contrast with (A5) and (A6), the definition of the
canonical representation of spinors is based on a direct
boost from the rest frame to the direction of p:

[Rs RL] —() (A34)

XH(pplp2) —X fJM~(~pip2)XH(PJ~Jp)p2) ~

JMJ
(A35)

Now we are ready to turn to the basis states for the
quark-antiquark system. From now on we rename u'
as U. First, let us prove Eq. (33). Assuming that the re-
ducible tensor XH(pp, p2) can be decomposed into tensors
which are irreducible under the rotation group,

X,(+p)=N (I+B p a) . (A23) Taking p in the z direction at first, i.e., 0=0, we have

&H(p) =Ry(&)&, (p) =&,(p)Ry(&),

XH( —p)=R (m. +8)l.,(p)=X, ( —p)R (~+8) .

By using these relations and noting that

Ry(8)w —(p)=g d„'„'(8)w(p'), —

(A24)

(A25)

(A26)

the unitary transformation between the two representa-
tions can be obtained:

uH
—'(pp) =g d '~ (8)u,' —'(pp'),

P
(A27)

Consistent with the previous case, we choose
p =(sin8, 0,cos8). The phase in (A22) is introduced in or-
der to satisfy the charge-conjugation relation (A9).

It can be directly checked that

XH(P'zp) 2) XfJ(plp2)XH(PJpplp2) .
J

(A36)

Since both spinors on the left-hand side of the equation
are in the direction of the z axis, X(p,p,p2) is the eigen-
state of o.3/2 with eigenvalue p =p, +p2. Therefore
there is no summation of MJ on the right-hand side of
(A36). Operating from left and right on both sides of Eq.
(A36) by the rotation operator R (0) and R '(8), respec-
tively, using the definitions (Al), (A4), and (A5) or using
Eq. (A16) and noting that R (8) commutes with the y
matrix, the left-hand side of (A36) becomes XH(ppip2).
For the right-hand side of (A36), XH(PJMJp, p2) is sup-
posed to be irreducible under rotations. However, the
more important point is that we are working in the c.m.
frame of the quark-antiquark system or the rest frame of
the system. It is only in the rest frame of the system that
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the tensor X(pJMJpip2) transforms like (A26) under ro-
tations

R»(8)XH(pJpI2, ,p2)R» '(8) =p dM &(0)XH(pJMzp, p2) .
MJ

(A37)

form according to (A33), which is exactly like the rota-
tional operator acting in the helicity representation. So
we can go through the process as that from (A35) to
(A41) for introducing an irreducible representation under
R as follows. We define

Comparing (A37) with (A35), we have

fJM (~9182) fJ(P11 2)dM (A38)

X,(pSS, )= g fiI (0)X,(pLL, SS,),

with

(A45)

where fJ(p,p2), independent of J and MJ, can be fixed by
the normalization condition. Assuming

Tr [XH(p~V p'lp'2)XH(p~ p pli 2) ]

R (co)X,(pLL, SS, )R (co) =gD, (co)X,(pLL,'SS, ) .
L

=5(cos0—cosO')5(P —P')5 .ti (A39)
(A46)

where we use XH(pope, p2) to indicate the explicit form
of XH(AM, p2). Equation (A39) is a part of the normaliza-
tion condition for the physical bound states; the normali-
zation concerning the l pl will be fixed by the solution of
the equation of motion for bound states. Furthermore, as
an irreducible representation of the rotation group, we
have

Tr [XH(pJMJ pi@2)XH(pJ'M Jp]p2)j'
Taking p in the direction of the z axis,

X,(p, SS,)=g fi (8)X(pLOSS, ) . (A47)

R (8)u, (p, 1M) =u, (p,p)

Again, both spinors on the left-hand side of (A47) are in
the z direction. From (A33) any orbital rotation around
the z axis would not change the spinors which are along
the z direction, i.e.,

6JJ~6 I 6 l 6 I ~

J J l 1~1 12' 2
(A40) or

Substituting (A35) and (A38) into (A39) and (A40), one
can integrate over the angle by using the orthogonality
relation of the rotation functions; the final result is

1/22J+1
fJ(I is 2)= (A41)

Combining (A35), (A38), and (A41), Eq. (33) has been
proved.

Next, in order to prove Eq. (46), we have to go to the
canonical representation. Similar to the case of Eq. (31),
the X tensor for a quark-antiquark system in the c.m.
frame also can be defined in the canonical representation

X,(pv, v2)=u, (pv, )u, (
—pv2) . (A42)

(A43)

Equation (A43) also indicates S, =v, —v2 in the canonical
representation. Using (A32) and (A43), we immediately
obtain

Under the spin rotation, u, and v, transform according
to the rotation matrix D and its Hermitian conjugate, re-
spectively [Eq. (A32)], and so we can introduce an irre-
ducible basis with respect to R'.

X, (pSS, )= g ( —,'v, —,
' —v2lSS, )( —1) 'X, (pv, v2) .

L,u, (p, )1u=0,

1/2

X, (pSS, ) = g 2L +1
dL o(0)X(pLL, SS, )4~

(A48)

and

X(pLL,SS, ) =
1/2

f dQ dL o(8)X,(pSS, ) .

(A49)

Noting that R and R commute with each other [Eq.
(A34)], the irreducible representation of the total rotation
R =R R can be defined as

X(pJMJLS)= g ~LL,SS, lJMJ ~X(pLL,SS, ) (A50)
L S

Using (A44), (A46), and the properties of rotation ma-
trices, we can show that

where L, is the infinitesimal operator of RL in the z
direction. As a result, X,(p,SS, ) is the eigenstate of L,
with eigenvalue L, =O. Now we can use the operator
R» (9) and R» (0) from the left and right on both sides of
Eq. (A47) and use the normalization condition to fix the
constant with the result

R (co)X,(pSS, )R (co) =gD, (co)X,(pSS,') .
S

(A44)
R (co)X(pJMJLS)R (co)=g D, (co)X(pJMJLS) .

J

Still, X, (pSS, ) is not irreducible under the transforma-
tions R . Under the operation of R, the spinors trans- Combining (A50), (A49), and (A48), we have

(A51)
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1/2

X(pJMqLS) = I df), dl 0(0)(LL,SS, i JMJ ) ( —,'v& —,
' —vziSS, )( —1) 'X, (pv&v2) .

1v2L

(A52)

The transformation of X,(pp, ,p2) into the helicity representation is given already by Eqs. (A27) and (A28) to have the
form

X,(pv, v, )= g d'~„' (0)d' '„(&)XH(pp)p2) .
P)Pp

(A53)

Substituting (A53) into (A52) and using expression (34), which relates XH(pp, p2) to XH(pJMzp, p2), it is a straightfor-
ward algebra of 3j symbols and the properties of rotation matrices to get final results given by Eqs. (46) and (47).

APPENDIX B

The potential in the LSJ representation (LS~ VJ(pq)~L'S') is

(00~ Vo(pq)~00)IK~N~ = [ (1+8 8 )r, (1)+(1+8 )(1+8~)[r,(1)—r, (1)]—(8~+8 )r„(1)
+(1+82)(1—8 )r, (1)}+288 [2[r„(2)—r, (2)]—[r, (2) —r (2)]j,

(11 Vo(pq)~11)IN N = 28 8 I 2[r, (1)—r, (1)]—[r, (1)—rz(1)]}

+t(1+8 8 )r, (2)

+(1+8~)(1+8~)[r,(2)—r, (2)]—(8 +B~ )r (2)+(1 B~ )(—1 —Bq )r, (2)j,
(10~ V&(pq)~10)/K~N~= [ (1+8 8 )r, (2)+(1+8 )(1+8 )[r„(2)—r, (2)]—(Bz+Bz )rz(2)

+(1—8 )(1—8 )r, (2)}+288 [2[r,(3)—r, (3)]—[r, (3)—rz(3)]}

(11~V, (pq)~11)IN N =8 8 [ 4[r„(1)+r,(1)]—[r (1)+r,(1)]+6r,(1)j

+ I (1+8&8 )r, (2)

+(1+8 )(1+8 )[r, (2)+r, (2))+(8 +8 )r (2)—(1+8 )(1+8~)r,(2)}

BB [rz(3—)+r, (3)+2r, (3)j,
(01~V&(pq)~01)IN&Nq= &' I (3 B&Bq)r (1)+(3+38 +38q B&Bq)r (1)+(1+8 +Bq+58&B )r (1)

+(8 +8 )r (1) (1+38 +38q+58pBq)rt(1)}

+ ', 8 8 [2r, (2)—r—(2)—3r, (2)+4r, (2)+6r„(2)}+488 [r,(3)—r, (3)+r,(3)+r,(3)j,

(21~ V&(pq)~21)IN N =—'[ (
—3+58 8 )r, (1)—(3—38 38 58 8 )—r, (1)+—(7+8 +8 BB )r, (1)—

+(8 +8 )r (1)—(7+38 +38 BB )r, (1)j-
+ ', 8 8 [ 2r, (2)—+r (2)—3r, (—2)+2r, (2)+6r„(2)j
+—'[ (9+8 8 )r, (3)+(3+8 )(3+Bq)[r„(3)—r, (3)]

+3(B +8 )r (3)+(3—8 )(3 8& )r,(3)}—
(01~V&(pq)~21)IV2N&Nq =

& [ 8 Bqr (1)+(38q+8 8 )r„(1)+(2+28& 28 +B&B )r (1)

+(28 B)r (1)—(2+3—8 +8 8 )r, (l) j+ ,'8 8 [2r, (2)—r—&(2)+r,(2)]

+ '[8 8 r (3)+—(382+8 8 )[r (3) r (3)]—38qr (3) (38& B&B )r&(3)}

(211 V& (pq) I
o1 ) = (o11 V~ (qp)121),

where the definitions of B,B,X, and X are given in Appendix A and

r,.(n) =c,r, (n)+g, r (n),

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

where c,. and g,. are defined in Eq. (27), where the index i represents the labels s, U, a, p, and t. Here r, (n) an«z(n) are
expressions of the confinement potential and cutoff Coulomb potential integrated over the angle:
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a,
rs(n) = R, (n),

2pq

2aI +2pao 8a,p'
R (2, n)+

3
R (3,n),

4p q sp q
r, (n)=—

2

R, (71)= dt
z —t (z t)'+—c'

where a„at,and ao are defined by Eqs. (28) and (29) and

(B10)

(B1 1)

(B12)

1)n
—i

R (m, n)=
n —I!

d" ' +~
dt

dz" ' —
& z —t

(B13)

Here z =(I/pq)(E E —m +p /2), which is a variable with a value always greater than 1 as long as pWO. Therefore
Eqs. (B12) and (B13) are well defined in the infrared region, and the constant c =A&CD/2pq takes account of the ultra-
violet cutoff'in the integration R, (n). The integrals defined in Eqs. (B12) and (B13) have simple expressions in terms of
elementary functions.
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