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Meson mass splittings in the nonrelativistic model
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Mass splittings between isodoublet meson pairs and between 0 and 1 mesons of the same valence
quark content are computed in a detailed nonrelativistic model. The field-theoretic expressions for
such splittings are shown to reduce to kinematic and Breit-Fermi terms in the nonrelativistic limit.
Algebraic results thus obtained are applied to the specific case of the linear-plus-Coulomb potential,
with resultant numbers compared to experiment.

PACS number(s): 13.40.Dk, 11.10.St, 12.40.gq

I. INTRODUCTION

The splitting of the masses of mesons in an isospin
doublet, sometimes called electromagnetic splitting, has
traditionally been attributed primarily to explicit isospin
breaking (i.e., m~ g mg) and difFerences between the
charges of the valence quark-antiquark pairs (Q„g Qg),
with hyper6ne, spin-orbit, and other eKects neglected in
comparison. Such a model serves to explain the observed
splittings Ko —K+ = 4.024 +0.032 MeV and D+ —Do =
4.7760.27 MeV, but has failed in light of the surprisingly
small B —B+ = O. l +0.8 MeV.

It is precisely this mass difference which has led to
the proposal of a variety of models. Some of these [1—4]
are based on the nonrelativistic model of hadron masses
put forth by De Rujula, Georgi, and Glashow [5] soon
after the development of @CD. Such models have the
unfortunate tendency to predict numbers no smaller than
B —B+ 2 MeV, well outside the current experimental
limits. Using more phenomenological models [6, 7], one
can obtain a smaller splitting in closer agreement with
experiment. Nevertheless, it may seem odd that the usual
nonrelativistic model, which works well for the D and
even the K mesons, should fail in the case of the 8, which
boasts an even heavier quark.

The primary conclusions of this work are that it is pos-
sible to explain the mass splittings of heavy mesons (D
and B, but not K) in an ordinary nonrelativistic model,

as long as we take into account all corrections to consis-
tent orders of magnitude, that expectation values of the
mesonic wave functions in general have mass dependence,
and that the running of the strong-coupling constant is
not negligible.

In this spirit, the paper is organized as follows: In
Sec. II we consider the problem of computing mesonic
mass contributions in field theory. Then, in Sec. III,
we demonstrate that the nonrelativistic limit of the Beld-
theoretic result leads to kinematic terms and the Breit-
Fermi interaction, exactly as stated in De Rujula, Georgi,
and Glashow. This is followed in Sec. IV by an exhibition
of the full mass splitting relations for isodoublet 0 and
1 meson pairs, as well as (0, 1 ) pairs with the same
valence quarks. Section V discusses the application of
quantum-mechanical theorems, including a very useful
generalized virial theorem, to the problem of reducing the
number of independent expectation values in the splitting
formulas. These theorems are applied to the popular
choice of a linear-plus-Coulomb potential in Sec. VI, with
numerical results presented in Sec. VII.

II. MASS COMPUTATION IN FIELD THEORY

Typically, the computation of mesonic mass splittings
in a nonrelativistic model is accomplished by starting
with the Breit-Fermi interaction ([8], Secs. 38—42)
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1 —-iK
2S= 1+ 2iK

and expand the Hermitian operator K:

(2)

The purpose of this expansion, rather than expanding S
directly, is to preserve unitarity in each partial sum of S.
The physical efFect of this parametrization is to eliminate
diagrams with real intermediate states from the S-matrix
expansion.

Computing the terms K„, one finds

where r, , p, , m, , s, , and Q, denote the coordinate, mo-
mentum, (constituent) mass, spin, and charge (in units
of the protonic charge) of the ith quark, respectively;
r,~

= r, —r~", o. and n, are the (running) @ED and @CD
coupling constants; and k = —

s (—s) is a color binding
factor for mesons (baryons). This expression includes
an annihilation term if q; = qz are in a relative j = 1
state. From this, one chooses the terms that are con-
sidered significant and then calculates the appropriate
quantum-mechanical expectation values. We will pursue
this course of action in the next section; however, this
author feels that it would be worthwhile to consider first
the derivation of this interaction for the mesonic system
from the more fundamental field theories of @ED and
@CD, since this approach entails greater generality and
may provide impetus for work beyond the scope of this
paper.

We first consider the question of the mass of a com-
posite system from the point of view of the 8 matrix
and interaction-picture perturbation theory. The mass
of a system, defined as the expectation value of the to-
tal Hamiltonian in the center-of-momentum frame of the
constituents, receives contributions from both the nonin-
teracting and interacting pieces of the Hamiltonian; the
former gives rise to the masses and kinetic energies of
the constituents, and the latter produces the interaction
energy. Technically, the matrix element of the noninter-
acting piece in the interaction picture produces terms
which contribute to interactions between renormalized
constituents. Thus one may think of interactions be-
tween "dressed" constituents, a topic to which we return
momentarily,

Let us follow the method of Gupta [9] to derive the
interaction potential from the field-theoretical interaction
Hamjitonian. We begin by writing the S matrix in the
Cayley form

The interaction energy is then

(fI HI (0) &I)
(f'

I
&')

with il) and f I) actually the same state since the sys-
tem is stable.

In our case, in which H,& is composed of the interac-
tion terms of @ED and @CD, the lowest-order contribu-
tion is K2, corresponding to two interaction vertices: the
exchange of one vector boson. It is easily shown that

K2 = iS2 = (2~) 6 (Pf —P;)Mf,

where the superscript (2) indicates second order in the
coupling constant, and M is the usual invariant ampli-
tude for the process. Eliminating the 6 functions that
arise in the rightmost expressions, we find

@(2) (f H, Ir (0) i ) (

Beyond second order the relation between the interaction
energy and invariant amplitude becomes less trivial, but
nevertheless Gupta has shown that it can be done. How-
ever, we do not continue to fourth order in this work, and
henceforth suppress the (2) in the following.

In general, Mf; at any given order is represented by
diagrams of the form indicated in Fig. 1. The composite
state is formed by superposition of the constituent parti-
cle wave functions in such a way that the desired overall
quantum numbers for the composite state are obtained.
For the mesonic system, Mf, is represented by the dia-
gram in Fig. 2, where the lowest-order interaction is the
exchange of a single gauge boson. This class of diagrams
allows for only the valence quark and antiquark (no sea
qq pairs or glue), and thus would be a poor model if we
chose these to be current quarks. Instead, the quarks in
our diagrams will be constituent quarks, and the gauge
couplings will assume their running values. In this way
we can model the hadronic cloud, as well as renormal-
izations of the lines and vertices of our diagram, so that
its particles are "dressed" in two senses. There is also
an annihilation diagram if the quark and antiquark are
of the same flavor. In this work we consider only the ex-
change diagram, since the mesons of greatest interest to
us are those with one heavy and one light quark.

The next step is to obtain the amplitude Mf, , in which

where I indicates the interaction picture. Now observe
that we may invent an efFective Hamiltonian H,& such
that its first-order contribution is equivalent to the con-
tribution from H~„~ to all orders. Thus

dt H,„(t).

I I

I. I

interaction
I I
I I

I I

I I

superposition
composite system

constituents

FIG. 1. Diagrammatical representation of Mf, .
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meson wave function FIG. 3. Free-quark Feynman amplitude M.

FIG. 2. Diagram for Mf; in the mesonic system.

the constituent legs are bound in the composite system,
from the Feynman amplitude ~ (Fig. 3) for the same
interaction with free external constituent legs. To do
this, we need only constrain the free external legs in a way
which reflects the wave function and rotational properties
of the meson state. In general, if the variables z„are the
degrees of freedom of the meson state ]4'), then we may
write

r
l~) = 3.dz-4(z-) &(z.) l0) (9)

J
The function P is an amplitude in the variables z„, i.e. ,

a wave function, and 0 is a collection of Fock-space op-
erators which specifies the rotational properties of lC).
The integral-sum symbol indicates summation over both
continuous and discrete z„. In this notation, we obtain
the result

r
AE = $ dzf dz, P'(zf )P(z, )f(z;, zf )M (z, , zf ), (10)

J
where f (z, , zf) = (Ol Ot(zf)O(z;) l0) is a constraint func-
tion. We have written the energy contribution in this
very general way in order to demonstrate the power of
the technique.

Now we apply this prescription to the usual case of
Feynman rules. Then z„are quark momenta, P is the
mesonic momentum-space wave function, and f speci-
fies the spin of the meson, as we shall see below. The
energy contribution is evaluated in the quark center-of-
momentum frame (i.e. , the meson rest frame), in which
the relative momenta of the quark-antiquark pair, inti-
tially and finally, are denoted by p and p', respectively.
Fourier transformation of the wave functions from mo-
mentum space to position space yields

KE, ~ = d xf d x, @'(xf)K(xf)x,)g(x;),

where

K(xf, x, ) = d p' d p exp[i(p' xf —p x')]

x ) f (spins) M (p ', p, spins),
spins

lowing expression. The kinematic conventions are estab-
lished in Fig. 4. Then the Feynman amplitude for free
external quark legs and a virtual photon is

1

(2x)sf 2

M M m m

Ey E;
ig" 5—

x 8H,. (P;)( i Qeg„)v—H~ (Pr)

2

The above expression remains true in a relativistic pic-
ture if we take the initial and final spin-quantization axes
to coincide with the axes of relative momenta p and p',
respectively, and then take $, $ as helicity eigenstates.
This is nothing more than the simplest nontrivial case of
the Jacob-Wick formalism [10]. It is then a simple mat-
ter to write the constraint function for singlet (triplet)
mes ons:

1f (helicities) = (bh,. T6H,. g + 6h, phd, y). .

1
X (ah~1'bH~ J + 6h~J bH~f),

2
(14)

and so the object of interest is the constrained matri~
element M, ;„sor JHi, „~,which is the Feynman amplitude
multiplied by the constraint function and summed over
spins (or helicities). This is the object that is Fourier
transformed in Eq. (11).

In summary, mass contributions due to a binding in-

& uh, (pf)(-iqe~ )uh, (p*)

with Qqe2 replaced by g, for the gluon-mediated dia-
gram. Note the use of helicity rather than spin eigenstate
spinors, which is done in order to implement a relativistic
description of the mesons. In a nonrelativistic picture in
which the meson spin originates solely from the spin of
the quarks (s waves), spin-0(l) mesons have spin-space
wave functions described by the usual singlet and triplet
quark wave-function Qq combinations:

dsx Q*(x)@(x)= l.

As a technical point of fact, it is necessary to keep track
of the normalization conventions used for wave functions,
Fourier transforms, and Feynman rules in order to ob-
tain the true convention-independent AE. As it stands,
Eq. (11) locks us into a particular set of Feynrnan-rule
normalizations, which should be made clear in the fol-

pi

& & Q, helicity H
f

~ q, helicity h

Pi —
2 +P

P = ——p2
«I

p 0 «I

p;

P,'= Z;

Pf —E,f
Pf0 ——Ef

p' = P' = M'f

FIG. 4. Notation and conventions for the mesonic system.
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teraction in a system of particles may be computed by
writing down the Feynman amplitude induced by the in-
teraction Hamiltonian, constraining the component par-
ticles to satisfy the symmetry properties of the system,
and convolving with the appropriate system wave func-
tion. The specific implementation of this technique to
spin-0 and spin-1 mesons with constituent quarks in a
relative f. = 0 state is described by Eqs. (11), (12), and
(14).

III. THE NONRELATIVISTIC LIMIT

With the method for computing mass contributions in
hand, we find ourselves with two possible courses of ac-
tion. The first is to compute M„„s or Mr, „z in a fully
relativistic manner, and then Fourier transform the result
to obtain AE, . The second is to immediately reduce
the spinor bilinears via Pauli approximants, thus pro-
ducing a nonrelativistic expansion. Let us explore both
directions for the pseudoscalar case; the vector case is

not much difFerent.
The relativistic result is noncovariant, because the en-

ergy contribution is evaluated specifically in the c.m.
frame of the quarks. We see this reflected in the com-
putation of the matrix element. For example, it is conve-
nient to eliminate spinors from the calculation by means
of relations such as

) &h(PA)&h(PB) =
h

(mg + P~)
/2m'(E~ + mg)

(mB +PB)
+2mB(EB + mB)

'

where JV results from the normalization factors, and 'T
is the p-matrix trace. They are given by

and the explicit po is a signal of the noncovariance. Once
the spinor reductions and the resultant trace are per-
formed, we find the expression

1Msing: (Qge + g8 )JV2

—[E,(E, + M)Ef (Ef + M)s, (s, + m)sf(Ef + m)]

and

'T = 8f (p, P, )[2sfEf +3(mEf + Msf +rnM)]

+(pf Pf)[2s,E, + 3(mE, + Ms, + rnM)] + (p, P,)(pf Pf)
—(p, pf ) [2E Ef + M(E, + Ef + M)] —(P, Pf) [2s,sf + m(s; + sf + m)] + (p, pf ) (P; Pf)

(pj ' Pf ) [mE; + Msf + mM] —(P, pf ) [mEf + Ms, + mM] —(p; . Pf )(P pf)'
+[ 2rnM(E, —E—f)(s, —sf) + mM(m(E, + Ef) + M(s, + sf) + mM)

+2m E,Ef + 2M s;sf]).
Also,

A' = (P' —Pf)' = (s' —sf)' —(P —P ')'

It is, in principle, possible to Fourier transform the product M„„s of these unwieldy functions to obtain the full
relativistic result for AE, ; this has not yet been performed. We can also perform the expansion of the energy
factors in powers of ~, where all such momentum-over-mass quotients that occur are taken to be of the same order.

However, this is unnecessary work, for if we require only a nonrelativistic expansion, there is a much faster way,
namely, expansion of the spinor bilinears via the Pauli approximants

~(v')»(r)=(x'lI +~ lx)+o (
—

)

Using these expansions in Eq. (12) and taking ~y), ~y ) in helicity basis, we quickly find

Q~e'+ a.' 1
(P+ p')'

(2rr) (p —p') 4mM
(r —p')'

8 m
4 1 &pl'+, +o

mM M~ (mi )' (20)

The gluon diagram has the additional physical constraint that the initial and final qq pairs are combined into a
color singlet; this introduces an additional factor of —3. Then Fourier transformation of this result produces
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(21)

In comparison, the energy contribution from the Breit-Fermi interaction [Eq. (1)] for a quark-antiquark pair of masses
m, M in the c.m. reduces to

(22)

where g = s (s~ sq), which is —1 (2) for S = 0 (1). Also, S = s~+ sq, and S12 is the AL = 2 tensor oPerator

S12 = 3(~1 'r)(~2'r) ~1 '~2 ~ (23)

For mesons with differently flavored quarks in a relative 8 = 0 state, many of the terms drop out. Let us define

—[p +r'(r'p)p]1

T

D -=(8(.)) .

Then Eq. (22) becomes

(HBF)=inQq ——n, i
8+ C ——

i + + iD
( 4 ) 1 -"/1 1 4g)

(24)

(25)

and this is exactly Eq. (21) where Q = —1.
We have been up to now considering only the contri-

butions to the mass originating from the binding interac-
tion due to one-gluon and one-photon exchanges; there
are, of course, also contributions from the kinetic energy
(K) of the quarks. Were we calculating these quanti-
ties in a relativistic theory, we would simply compute

K = m + p . The square root may e formally

expanded in nonrelativistic quantum mechanics (NREM)
as well, resulting in an alternating series in (p ").How-
ever, for large enough n in NREM, these expectation val-
ues tend to diverge. For example, in the hydrogen atom,
divergence occurs for s waves at n = 3. Furthermore, if
the system is not highly nonrelativistic, the inclusion of
the (p4) may cause us to grossly underestimate the true
value of the kinetic energy. The problem is that there is
no positive (ps) term to balance the large negative (p )
term. For these reasons, we incorporate the alternating
nature of the series in a computationally simple way by
making the Ansatz

equations, we will need to choose a potential. In the
meantime, let us simply denote it with U(r). Then at
last we have the mass formula

M „,„=QM2+(p2)+ Qrn2+(p2)

+(U( ))+ (~-) (27)

The static potential U(r) takes the place of L, the uni-
versal quark binding function, in Eq. (1) of Ref. [5].

IV. MASS SPLITTING FORMULAS

The static potential in which the quarks interact deter-
mines the form of the NREM wave function. The strong
Coulombic term gives the largest energy contribution of
terms within the Breit-Fermi interaction, and therefore
would also be expected to substantially alter the wave
function in perturbation theory. Therefore, we include
the strong Coulombic term in the static potential:

K = Qm2+(p2). (26)

4n,
V(r) = U(r) ———'.3r' (28)

In order to evaluate the expectation values in the above
Then the mass formula [Eq. (27)] becomes, using
Eq. (25),
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M „,„=QM2 + (p z) + Qmz + (p 2) + (V(r)) + o,QqB

+IoQq ——o., I
C ——I,+, + ID .( 4 ) 1 x t'1 1 4g'l

3 ') 2mM 2 (m' M' mM) (29)

Now at last we are in a position to write explicit formu-
las for the mass splittings of interest. Denoting the mass
of a meson of spin 8 and valence quarks Q,q as M (Qq),
we define

b,& = M (Qu) —M (Qd),

Ag =—M (Qu) —M (Qd),

about m. It is also convenient to define

A—:(p '),
1

1+ rn/M'
p—:usual reduced mass,

(31)

6q„=M (Qu) —M (Qu),

Kgb = M (Qd) —M (Qd),

where u and d, the up and down constituent quarks, are
nearly degenerate in mass: Defining Am—:m„—m1i
and m = "+z ', we have (( 1. Therefore, the
difFerences in Eq. (30) are expanded in Taylor series in

, X=A, B,C, D, (V(r)).

Then the expressions for mass splitting are

0, 1 2m +D~ D~ 4m Arn

gm'+A gM'+A 2m ~ l m
+ + D&v)

4 1—-a,,Am (Dc; —C + CD .)2m M

~

1+4g—+
~ (DO+ DD )

—2 (1+2g—
) D

1 x ( m m l 4mb ( 4ml
2mM 2mz ( M Mz) m) q m)' (32)

Note that no derivatives appear in the o., terms because we take both n, and (but not aB) as expansion
parameters. Furthermore, the running of o.B(p) is explicitly taken into account.

For vector-pseudoscalar splittings, we have

8~ (4—o.B
—o;Qq I

Dk o;B —(DD+ DD~, —D)

(~rnid) ' f ~m')
+

I I
+ol o. I, with + forq=u(d).

(, m) q m)' (33)

Let us remind ourselves of the physical significance of the
terms in the previous two equations. Terms containing
A signify kinetic energy contributions, including intrinsic
quark masses. The potential term is identified, of course,
by V; B, C, and D denote static Coulomb, Darwin, and
hyperfine terms, respectively.

V. QUANTUM-MECHANICAL THEOREMS

BZ (BH(2)
)

In the particular case that A = p, ,

(34)

I

[117.
Theorem 1 (Feynman-Hellmann theorem). For nor-

malized eigenstates of a Hamiltonian depending on a pa-
rameter A,

In order to apply the foregoing results, we will need
to evaluate the expectation values A, B, C, D, and
(V(r)) for our potential V(r). There are two quantum-
mechanical theorems which make the evaluation of these
expectation values and their mass derivatives simpler

The other result may be less familiar. For reasons that
will become clear, let us call it the generalized virial the-
orem (GVT).
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Theorem 2 (generalized virial theorem). Consider
bound eigenstates ug(r) in a spherically symmetric po-
tential V(r) such that

lim r U(r) = 0.
r—+0

Then, writing the Schrodinger equation as

2p h E(E + 1)
ur (r) + 2 E —V(r)—

h 2pT
uf(r) = 0,

and defining ag by

ug(r)lim, = a~,„~0 pt+1

then (i) ag is a nonzero constant; (ii) for q ) —2g,

(2E+ 1) a&hq, 2i = —
2

rq
! 2q[E —V(r)] —r2p q —&
~ dV)

dr )
1

+(q —1) 2&(&+1) —-q(q —2)
2

not the case, and we must resort to subterfuge to obtain
the required information.

VI. EXAMPLE: V(r) = ~
The potential V(r) = ~ ——", where v = so.„is in-

teresting because it phenomenologically includes quark
confinement via the linear term. This potential was con-
sidered in greatest detail by Eichten et al. [12] to de-
scribe the mass splitting structure of the charmonium
system (and was later applied to bottomonium). The
Schrodinger equation was solved numerically; currently,
no analytic solution is known. However, it is possible to
extract a great deal of information from their tabulated
results, as we shall see below.

This is possible because of the GVT. If we rescale the
Schrodinger equation with the linear-plus-Coulomb po-
tential to

x (r& ') .

Clearly this theorem will prove most useful for poten-
tials easily expressed as a sum of terms which are powers
in r. But in fact there are some interesting general re-
sults included. For example, the q = 8 = 0 case generates
the well-known result for s waves,

l@(O) I' =
q h, ( d ),

whereas the q = 1 case produces

1 dVE —(V(r)) = - r
2 dr

( d'
!(dp2

where

E(E+ 1) A+ —+( —
fr) rsr(fr) = fi,

P P

p:—! ! r, A = K(2pa)
(2p)

a2 )

then the GVT gives

f2@ 1
(q=0) apbpg =! 1yA

2) 1/6

( —= (2pa4)'f'sE, ufo'(p) = ue(r) !

(40)

(41)

the quantum-mechanical virial theorem.
Using partial integration, the Schrodinger equation,

and the GVT, it is possible to show the following (li = 1):
= 2p [E —(V(r))1

C=4p E -' — " --' " 1+5 ~, (q = 1)

2E(E+1)—
p3

(42)
1

0 =3(p) —2( —A

(39) Also, defining

(v') = d~t(p) l
dp ) (43)

!

" '( )
! d. = ~ - ~(~+1)

dr ) r

In addition, we must also uncover what we can about
the p, dependence of expectation values. For a general
potential this is actually an unsolved problem. However,
unless the potential has very special p, dependence, it can
be shown that only in the case V(r) = Vpr is it possible
to scale away the dimensionful parameters Vo and p, in
the Schrodinger equation. In that case, the p dependence
will be entirely contained in the scaling factors, and com-
puting D~ will be trivial. Unfortunately, in the potential
we consider in the next section, we will see that this is

we find

1 1
(v') = - (p) + q+ A — —~(~+1)

P P
(44)

It is a happy accident of this potential that all of the
quantities in the expectation values we need, for any E,

may be expressed in terms of the three quantities (, (-'x ),
and (v ), which are exactly those values tabulated for
the ls state, as functions of A, in Eichten et al. (Table

1/3I). Defining a = (P) and taking l = 0 (as per our
mesonic model), we find
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B= 3(v') —(,
C=o~ 2B(,"+o

i

—3+A

(45)

DA = sA+ cr D„,

D~= D„— BD— . (AQO),

D~ = —C'+ 2o~ — + Dq B+ D~
3

(52)

So now we can compute all of the necessary expecta-
tion values numerically. The superficial singularity in

B(A = 0) is false; B(0) is computed by extrapolation of
the computed values of B for nonzero A and is found to
be finite.

The mass derivatives must be handled in a difFerent

fashion. We begin by defining

p, c)as
Chs ~P

From the Feynman-Hellmann theorem [Eq. (35)] we may
show

+o —
~
D, +D . —, ~+1

A(- - 1

DD= A —+D, —+D +1

In the exceptional case of D~, we simply note that, for
A = 0, we have perfect scaling of the wave equation, and

we can quickly show that D& = 3B &
. This pro-

O
3 A=O

vides us with everything we need to produce numerical
results.

Before leaving the topic, let us mention that many
complications of p derivatives of expectation values van-
ish if the potential itself has the appropriate p depen-
dence, for then scaling of the wave equation is possible.
For example, one can scale the Schrodinger equation for
the potential

V(r) = cp r ——,K
r'

where c is a pure number.

(47) VII. NUMERICAL RESULTS

Y(A) = Y() + KA"~

Then, using Eq. (41), we find

(48)

D~ —— 3+ D~, ny Y —Yp (49)

Finally, define

Dx —= p
X

for X = A, B,C, D,

so that

Dx =0 Dx

Then we find

As mentioned in the previous section, scaling of
the Schrodinger equation can be accomplished for )u-

independent potentials that are monomials. In the case
A = 0 (a purely linear potential), the scaling would be

perfect, and (, (w), and (v ) would be p independent.

In the A g 0 case, the derivatives must be found numer-
ically. Again, fortunately, we have a table of numerical
values of the desired expectation values, as functions of

h(p). We fit the expectation values i' ( = (rv), (vs))
to the functional form

The method of obtaining results from the theory re-
quires us to choose several numerical inputs, most of
which are believed known to within a few percent. Let
us choose the following inputs to the model:

m = 340 MeV, M, = 540 MeV,

M, = 1850 MeV, Mb = 5200 MeV,

a = 1.95 GeV '.
The light-quark constituent mass is arrived at by as-
suming that nucleons consist of quarks with negligible
anomalous magnetic moments, which can be added non-
relativistically to provide the full nucleonic magnetic mo-
ment. Likewise, the strange-quark mass issues from the
same considerations applied to strange baryons [5]. The
c- and b-quark masses are simply found by dividing the
threshold energy value for charm and bottom mesons by
2 (however, smaller masses have been predicted using
semileptonic decay results in addition to meson masses
[13]).The confinement constant is inferred from charmo-
nium levels [12].

One important input not yet mentioned is Amt the up-
down quark mass difference. Traditionally, this assumes
a value of ——3 to —8 MeV, in order to account for the
electromagnetic mass splittings of the lighter hadrons.
In this model, with the inputs listed in Eq. (54), we find
that the experimental splittings for the D and B mesons
(both vector and pseudoscalar) can be satisfied within
one standard deviation of experimental error for values
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TABLE I. Contributions to mass split tings of heavy

mesons: isospin pairs.

o,'s

Source
Kinetic energy
Potential energy
Strong Darwin
e.m. Darwin
Static Coulomb

D mesons
0.363

(MeV)
—4.109

1.057
—0.834
—0.769
—2.442

B mesons
0.312

(MeV)
—3.523
—1.645
—0.635

0.147
1.252

~0
Strong hyper6ne
e.m. hyperfine
Total

2.148
0.424

—4.525

4.075
—0.561
—0.889

~1
Strong hyper6ne
e.m. hyper6ne
Total

3.683
1.817

—1.596

5.244
—0.825

0.017

of Lm in the narrow range of —4.05 to —4.10 MeV, In
contrast, it is found that for no choice of b,m, can one
simultaneously fit D an-d R'-meson data simultaneously,
as was done in the earlier models.

Before exhibiting the quantitative results, let us de-
scribe the method by which they are obtained. Once
particular inputs for the above variables are chosen, one
can compute the various mass splittings for the values
of A oc a, that occur in Table I of Ref. [12], and in-
between values may be interpolated. We then fit vector-
pseudoscalar splittings [computed via Eq. (33)] to the
corresponding experimental data (since these numbers
have the smallest relative errors of the splittings we con-
sider) and thus obtain a value of a, . For the three
systems K, D, and B, we use the three values of n,
to estimate graphically (and admittedly rather crudely)
its mass derivative. Applying the values of the strong-
coupling constant and its derivative to the splittings in
Eq. (32), we generate all of the other values. If the re-
sultant numbers do not fall within the experimental er-
ror bars for such splittings, we vary the input parame-
ters (most importantly, Am) until a simultaneous fit is
achieved.

Tables I and II display the various contributions to
mass splittings derived in this fashion for B and D
mesons. Although the kinetic term (which includes the
explicit difFerence Am) and the static Coulomb term
are unsurprisingly large, a significant contribution to
the mass splitting arises in the strong hyperfine term.
That strong contributions to the so-called electromag-
netic mass splittings could be important was observed
by Chan [2], and was exploited in the subsequent litera-
ture. It is exactly this term which is most significant in
driving the B splittings toward zero. Note also the de-
crease in the derived value of n, as the reduced mass of
the system increases when we move from the D system
to the B system, consistent with asymptotic freedom in
@CD. It was this running which motivated the inclusion
of mass derivatives of the strong-coupling constant in this

TABLE II. Contributions to mass splittings of heavy
mesons: 1 - 0 pairs,

Source
Strong hyperfine
(leading)
(subleading)

D mesons
0.363

(MeV)

141.30
+ 0.77

B mesons
0.312

(MeV)

46.04
+ 0,58

e.m. hyperfine
Total

0.93
143.00

—0.18
46.45

+Qd
e.m. hyper6ne
Total

—0.46
140.07

0.09
45.54

TABLE III. Meson mass splittings compared to experi-
ment.

Mass splitting
K+ —K'

K + —K*'
K'+ —K+

D' —D+
D*' —D'+
D —D
D'+ —D+
B+ —B

B+ —B'
B'+ —B+
@*0 @0

Notation
~0
~1

~0
~1

~0
Ab

Ab„
&bd

Predicted
(MeV)
—0.98
—0.15
398.6
397.8
—4.53
—1.60
143.0
140.1
—0.89
0.02
46.5
45.5

Expt.
(MeV)

—4.024 + 0.032
—4.51 + 0.37
397.94 6 0.24
398.43 + 0.28
—4.77 + 0.27
—2.9 + 1.3
142.5 + 1.3

140.6 + 1.9
—0.1 + 0.8

NA
46.0 + 0.6
46.0 + 0.6

Obtained as a difference of world averages.
Average of charged and neutral states.

model. If they are not included, one actually obtains a
value of Am ) 0, in contrast with all estimates from both
nonrelativistic and chiral models.

The net result is that one can satisfactorily fit the data
for the D and B systems simultaneously in the most nat-
ural nonrelativistic model with a physically reasonable
potential. The comparison of the results of this calcu-
lation for Arn = —4.10 MeV to experimental data is
presented in Table III.

However, the table also exhibits very bad agreement
for the K system (despite the fact that the fit to vector-
pseudoscalar splittings yields the value n, = 0.424, which
runs in the correct direction). One may view this as a
failure of the nonrelativistic assumptions of the model in
a variety of ways. Most obvious are the Ansatz Eq. (26),
which is certainly not an airtight assumption in even the
best of circumstances, and the crudeness of the estimate
of '. Other possible problems include the assumption

Bp
that the quarks occur only in a relative E = 0 state (rele-
vant for K' mesons), and the assumption that the strong
efFects are dominated by a confining potential and one-
gluon exchange, since at the lower energies associated
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(33 —2ny)ln (+g)
(55)

and assuming the relative momenta of the quarks is small,

(56)

let us consider, for example, the D system. Then a, =
0.363 and p, = 287 MeV, and with three flavors of quark,
we calculate AQCD = 42 MeV and f~ = 342 MeV. How-

ever, one may state the following objections: First, AQ&D
is computed from the full theory of @CD, but the nonrel-
ativistic potential approach includes the confinement in

an ad hoc fashion, by including a confinement constant
a, which is independent of a, . Furthermore, choosing

AQgD as the renormalization point forces an artificial
singularity at p, = AQCD the problem is that little is
known about the low-energy behavior of strong interac-
tions. At low energies the computation and interpreta-
tion of A@cD requires a more careful consideration of
confinement. With respect to the decay constant, the as-
sumption that the quarks are relatively at rest leads to
the evaluation of the wave function at zero separation.
Inclusion of nonzero relative momentum will presumably
result in the necessity of considering separations of up to
a Compton wavelength r —-„, for which the wave func-

tion is smaller in the ls state. Thus decay constants may
be smaller than computed in the naive model.

There is one further qualitative success of this model,
a partial explanation of the experimental facts that D;—
D, = 141.5+1.9 MeV —D' D, and B; B,—= 47.0+—2.6
MeV —B' —B, namely, the approximate independence
of vector-pseudoscalar splitting on the light-quark mass.
In our model, the leading term of the splitting is, using
Eqs. (33) and (45),

16 1
&Qq = znP A —+1

9Ma~ ' p~
(57)

Inasmuch as p, A ~, and n, are slowly varying in the
P

light-quark mass m, the full expression reflects this in-
sensitivity, in accord with experiment. In fact, we may
fit the experimental values above to obtain more running
values of o,,:

with the K system, o(n, ) terms and more complex mod-
els of confinement may be required. The failure of these
assumptions can drastically alter the strong hyper6ne in-
teraction, which determines the size of n„and hence the
other mass splittings.

Some may And the small size of o,, somewhat puzzling.
This is primarily the result of the con6ning term of the
model potential: It causes the wave function to be large
at the origin, and thus a small o., is required to give
the same experimentally measured vector-pseudoscalar
splitting [see Eq. (33)]. Such small values for the strong-
coupling constant might lead to excessively small values
of AQ~D and large values for mesonic decay constants

fqq Ind. eed, given the naive expressions for these quan-
tities,

6;, = 141.5 MeV for rr, = 0.351,

4&, ——47.0 MeV for n, = 0.295,
(58)

and again these decrease as the mass scale increases.
Note, however, one kink in this interpretation: The heavy
strange mesons all have larger reduced masses than their
unflavored counterparts, yet the corresponding values of
n, are nearly the same.

VIII. CONCLUSIONS

In this paper, we have seen how mass contributions to a
bound system of particles are derived from an interaction
Hamiltonian in field theory, and how this calculation is
then reduced to a problem in nonrelativistic quantum me-
chanics. For the system of a quark and antiquark bound
in a meson, the exchange of one mediating vector boson
reduces to the Breit-Fermi interaction in the nonrelativis-
tic limit. It is also important to consider contributions
to the total energy from the kinetic energy and the long-
range potential of the system; in fact, the higher-order
momentum expectation values can be so large that it is
necessary to impose an Ansatz [Eq. (26)] in order to es-
timate their combined effect. Future work may suggest
better estimates.

It is found in the case of a linear-plus-Coulomb po-
tential that the largest contributions to electromagnetic
mass splittings originate in the kinetic energy, static
Coulomb, and strong hyperfine terms. However, it is
likely that similar results hold for other Ansatze and po-
tentials. As in other models, vector-pseudoscalar mass
difFerences are determined by strong hyperfine terms.

With typical values for quark masses, the confinement
constant, and the up-down quark mass difference, we can
obtain agreement for the mass splittings of the D and
B mesons. The failure of the model for K mass split-
tings is attributed to the collapse of the nonrelativistic
assumptions in that case. The model also qualitatively
explains the similarity of heavy-plus-strange to heavy-
plus-unflavored vector-pseudoscalar splittings, although
additional work is needed to explain why these numbers
are nearly equal, despite the expected inequality of a, at
the two different energy scales.

Another interesting problem is the running of c3;, itself
at low energies. As mentioned in Sec. VII, this run-

ning cannot be neglected if we are to obtain sensible re-
sults, and yet our approximation of this running is based
on crude assumptions. The size of n, also enters into
another possible development, namely, whether terms of
o(a, ) are important, particularly for the K system. More
reliable estimates are required.

In addition to the explicit formulas derived in this pa-
per, the techniques employed here may be applied to later
efforts: in particular, the explicit consideration of the
mass dependence of expectation values and the use of
quantum-mechanical theorems to relate various expec-
tation values for certain potentials. The methods and
formulas in this work may prove to be a starting point
for subsequent research.
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