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Isospin baryon mass differences in semibosonized SU(3) Nambu —Jona-Lasinio model
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Hadronic parts of the isospin mass differences for the octet and decuplet of baryons are calculated
within a semibosonized SU(3) Nambu —Jona-Lasinio model. Striking agreement with experimental data
is found.

PACS number(s): 12.70.+q, 12.40.Aa, 14.20.—c

I. INTRODUCTION

The mass splittings of the baryons belonging to the iso-
spin multiplets consist of two parts: hadronic and elec-
tromagnetic [1],namely,

b,M~ =(b,M~ )h+(hM~ ), .

In this paper we will calculate (bM& )h in the framework
of the semibosonized SU(3) Nambu —Jona-Lasinio (NJL)
model. This model was recently proven to reproduce
hyperon splittings both for the octet and decuplet of
baryons [2,3]. Similarly to the hyperon splittings, the
model makes specific predictions not only for the n-p
mass difference but for all isospin splittings both in the
octet and decuplet. We will show that the simple version
of the model with only the octet of pseudoscalar mesons
coupled to constituent quarks reproduces the existing
data with high accuracy.

In spite of tremendous technical difIiculties encoun-
tered in calculating the low-energy properties directly in
quantum chromodynamics (QCD), one is prompted to
use simpler effective models, which, in principle, should
be derivable from the underlying QCD Lagrangian.
Indeed, if one assumes that the QCD vacuum is dominat-
ed by instanton gluon field configurations, then one ar-
rives at the model of the NJL type [4,5].

In chiral models, where baryons are described as soli-
tons, the hadronic part of the isospin mass splittings is re-
lated to the current quark mass difference md —m„.
However, in the Skyrme model and also in the present
model with only two quark flavors and three pseudosca-
lars (the pions) the hadronic part of n pmass diff-erence
vanishes identically. One way to cure this disease is to
enlarge the symmetry group. In Ref. [6] for example the
U(2)IIU(2) extension of the Skyrme model with pseudo-
scalar and vector fields was shown to predict a nonzero
n pmass differen-ce; however, the result was still 35%%uo too
small. Some increase was obtained for the U(3)U(3)
case [6]. Similar results were obtained in the chiral bag
model [7], where quark degrees of freedom are explicitly
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II. PHENOMENOLOGY
OF THE ISOSPIN SPLITTINGS

The origin of the formula (1.1) is theoretically clear:
the electromagnetic part is due to the baryon electromag-
netic self-energy and the hadronic part is due to the mass
difference of the quarks constituting different baryons. It
is, however, a dif5cult task to disentangle the two contri-
butions from the experimental data. Gasser and
Leutwyler [1] quote the following values for experimental
estimates of the electromagnetic parts (in MeV):

(n —p), = —0.76+0.3, (X —X ), =0.17+0.3,
(:- —:-) =0.86+0.3 .

(2.1)

These values have to be subtracted from the measured
mass differences (also in MeV) [9]:

n —p = 1.29, X —X+ =8.07+0.09,
=- —='=6 4+0 6

(2.2)

By subtracting (2.1) from (2.2) we get the hadronic parts

taken into account. Although in general the chiral model
predictions are too small, in the recent paper of Clement
and Stern [8] it is shown that in the linear SU(3) cr model
the n-p mass difference is approximately two times too
large. In contrast to the above examples our calculation
shows surprisingly good accuracy as far as all isospin
mass splittings are concerned —not only the n-p mass
difference.

In Sec. II we will collect the known experimental re-
sults for the octet isospin splittings and present a useful
parametrization, which we will use to estimate the ha-
dronic part of the decuplet isospin splittings. In Sec. III
we will formulate the model and fix its parameters from
the meson sector. Then the mass splitting operator as
well as its matrix elements will be evaluated in Sec. IV. It
is perhaps worthwhile to stress already here that the pat-
tern of the symmetry breaking due to the current quark
mass matrix depends crucially on the SU(3) structure of
the model. In the SU(2) version we would get a zero re-
sult in close analogy to the Skyrme model. Section V
summarizes our results and in Sec. VI we present con-
cluding remarks.
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of the isospin splittings:

( n —p ) h
=2.05+0.30, ( X —X+ )&

=7.89+0.31,
X —X mass difference and d can be calculated from
n -p mass difference. Taking M& =938.59 MeV we get

(:- —:-) =5.5+0.7 . f=12.11+0.14 MeV d=2. 08+0.08 MeV . (2.9)

Unfortunately, the similar estimates do not exist for
the decuplet. Let us therefore propose a simple parame-
trization for both electromagnetic and hadronic splittings
which we will subsequently use to estimate the hadronic
parts of the isospin mass differences in the decuplet.

Let us assume, in analogy with the Gell-Mann —Okubo
mass formula for hyperons [10,11], that the quark mass
operator responsible for isospin breaking transforms like
an octet isovector operator corresponding to I3 =0. This
assumption will be further confirmed within the present
model. If so, the matrix elements of the mass operator
are given in terms of the SU(3) Clebsch-Gordan
coefticients:

for the octet, and

8 10 10
(~MB"')h=V'2/3C 010 B B (2.5)

for the decuplet (normalization factors in front of the f,
d, and c coefficients are chosen for future convenience).
B stands in short for the baryon quantum numbers,
namely, I, I3, and Y. Reduced matrix elements f, d, and
c are here treated as free parameters, however, in Sec. IV
we will calculate them within the present model.

Evaluating the SU(3) Clebsch-Gordan coefficients gives
[12,13]

8 8 8 8 8 8+
(6MB")h= 3f 010 B B +~5i3d 010 B B

(2.4)

With these parameters fixed we get one prediction for the
octet splitting of:- which is displayed in Table I (for
M- = 1317.59 MeV).

Having tested our parametrization for the octet we
shall use it to estimate the hadronic part of the decuplet
isospin splittings. Before that let us, however, check how
well parametrization [Eqs. (2.6) and (2.7)] reproduces the
absolute decuplet isospin splittings. We need to fix only
one parameter, namely, c. Taking for M + = 1383.7
MeV we get from X* —2*+=4.40+0.64 MeV (which
in analogy to X we assume to be purely hadronic):

c=6.6+1.0 MeV . (2.10)

TABLE I. Mass diA'erences in isospin multiplets calculated
with parametrization [Eqs. (2.6) and (2.7)]. Experimental data
from the Particle Data Group [9]. Data on b, masses differ de-
pending on experiment, no trustworthy result for 6 is quoted.

The remaining mass splittings come out as predictions.
The results are presented in Table I where
M + =1532.85 MeV and M& =1231 MeV were assumed.

Although the agreement is striking the calculation of
(b,M&), in the chiral quark model is certainly strongly
needed (see however Refs. [15,16]).

The aim of the above exercise was to show that the ha-
dronic parts of the isospin splittings can be well
parametrized by Eq. (2.6) rather than advocating the par-
ticular parametrization of the electromagnetic part. In
fact, one may convince oneself that, in view of large un-

(EMii ')h = —,
' fI3+dYI3, —

(~M'"') = ,'cI . ——
B h 3 3

(2.6)

(bM~ ), =aQ~MIi (2.7)

As far as the electromagnetic part is concerned we will
assume, in analogy to the Dashen ansatz [14] for mesons,
that (b,M&), is proportional to the baryon mass and
charge squared:

n-p
X- —X+

X +X+—2X

y)fc +

+yg+ 2y+o
~)fc — ~gp

)%I

Parametrization
Eqs. (2.6) and (2.7) (MeV)

input
input
input

7.06+0.12

input
1.97+0.16
3.29+0.33

Experiment
(MeV)

1.29
8 ~ 08+0.09
1.70+0.14
6.4+0.6

4.4+0.7
2.6+ 1.2

3.20+0.68

both for the octet and decuplet. Here Qz is a baryon
charge, M~ denotes an average isospin multiplet mass
and a is a constant. We assume the proportionality to
the baryon mass in order to make (bM& ), vanishing for
massless baryons and also to account for the ratio of n-p
and:- —:- electromagnetic mass differences. This as-
sumption results also in a prediction that electromagnetic
part of X —X+ and X* —X* vanishes identically.

We fit a from the mass difference X +X+ —2X
=1.70+0. 14 MeV which, as can be seen from Eq. (2.6),
is purely electromagnetic (Mz = 1192.55):

go

1231.22+0.56

1230.78+0.18

1232. 10+0.16

1230.9+0.3
1230.6+0.2
1231.1+0.1

1234.9+1.4
1231.6
1231.2
1231.8

1233.6+0.5
1232.5+0.3
1233.8+0.2

a = (7. 13+0.59 ) X 10 (2.8)

Next we fix parameters f and d. f is entirely given by
1235.18+0.49
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certainties of the experimental data for (b,M~)„similar
but Mz independent parametrization will work equally
well.

Now we will extract the values of the reduced matrix
elements independently of the particular form of (bM& ), .
We extract f and d directly from the experimental esti-
mates of hadronic splittings for nucleon and:- [see Eq.
(2.3)]. For c we will use the previous estimate which re-
lies on the assumption that X* —X*+ is purely hadron-
ic. Altogether we get:

we arrive at the generating functional:

WQJL % q q ~ ~' exp ~ d x (3.5)

X~J„=q [ i —y „d"+m +g ( o, A,, +i y 5m, k, .
) ]q,

where we have omitted the sources for simplicity. Going
to Euclidean space according to Ref. [20] one obtains the
semibosonized Lagrangian

f= 11.33+1.14 Me V, d = 1.73+0.38 Me V,
(2.11)

+ (p /2)(o, +m., ) . (3.6)

c =6.6+1.0 MeV .

In Secs. IV and V we will calculate f, d, and c within
the semibosonized SU(3) NJL model.

III. SEMIBOSONIZED SU(3)
NAMBU —JONA-LASINIO MODEL

The generalization of the original SU(2)
Nambu —Jona-Lasinio Lagrangian [17] to SU(3) is
straightforward [2,3]. With the inclusion of the finite
current quark mass matrix m

m„0 0

After that one makes a saddle point expansion and
treats the mesonic fields as the classical ones. We can
then immediately integrate over the quark fluctuations,
which corresponds to a one-fermion and zero-boson-loop
approximation. This yields —after making a well-known
Legendre transformation [21] between the former sources
and some new classical sources, which will play the role
of the fields —the effective Euclidean action

S,s = —Sp ln [ i y "B—~+g ( o, k, + i y 5~, A., ) +m ]

(3.7)

md 0 Pa~0 P3~3 P8~8 &

0 0 m,

where

po = ( I /&6)( m„+mz +m, ),
ps=(1/V 12)(2m, —m„—m&),

@3=—,'(mq —m„),
we consider the four-fermion interaction

(3.1)

(3.2)

The remaining parameters of the theory are p, g, the
cutoff A, because the theory is nonrenormalizable, and
the vacuum expectation values of the bosonic fields. We
fix these parameters along the lines described in [20,3] for
the SU(3) symmetric formulation and we mention here
only the differences.

First we require a stationary vacuum state. From the
effective potential

+g o.,~, +~~~~,~, +m

X~JL=q(iy„B"—m )q —(G/2)[(qk'q) +(qiy, A'q) ], ,

(3.3) +(p /2)(o, +~, ), (3.8)

where the A.„a=1, . . . , 8 are the usual Gell-Mann ma-
trices [10) and Ao=Q —', . In the chiral limit (m =0) X~J„
is invariant under combined SU(3)zSU(3)L transfor-
mations. There is also an additional U(1)vI3U(1)~ sym-
metry, so that the spontaneous symmetry breaking leads
to appearance of nine Goldstone bosons [18]. In nature
the redundant Uz (1) is assumed to be broken by instan-
tons and this gives the g' a larger mass. Here we ignore
this fact, because we are interested mainly in the baryon
sector of the theory.

In the bosonization procedure [19],we choose to retain
the current masses within the quark Lagrangian. After
inserting the following constant in the path integral

which is the local part in the expansion of the effective
action, we obtain 3 nontrivial stationary equations
d V,&/do. , =0; a =0, 3, and 8, which can be summarized
in the so-called gap equations

p m;
p =8N, g I,(M;)+, a=u, d, and g,

I

(3.9)

where the M; are the constituent quark masses, which
consist of current quark masses m, and nonvanishing
vacuum expectation values of o.„a=0, 3, and 8. Then
we determine the pseudoscalar meson masses at zero
momentum from the curvature of the effective potential
viar

J 2)o'2)vr'exp ip /2 Jd x[(o' qA, q)— ,

+(vr' qiy5A, q) ]— ,(3.4)

d V,~
m

&b der dvrI,

and obtain

(3.10)
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m = 4—N, g [I& (M„)+I&(Md ) ]+p,

m2 = 4—N, g [I,(M„)+I,(Md)]

(M—„—Md ) I2(M„,Md )+p
m~~ = 4N—,g [I,(Md)+I, (M, )] (3.11)

the effective action (4.1), and the energy of the valence
level [22—27].

The effective action (4.1) can be rewritten in terms of
the Euclidean spectral representation [2,3]:

S,z= —N, T Tr ln ico+H2'
—(Md —M, ) I2(Md, M, )+p

4N, g—[I,(M„)+I,(M, )]

—(M„—M, ) Iz(M„,M, )+p

X 1+ . ( iy—4A mA+A A)
l co+H

(4.3)

mx =(m„+m~ )ci

mx. =(md+m, )c, ,

(3.12)

where c& is some cutoff dependent constant constructed
from the integrals I&(M, ) and I2(M, , M ). Making use of
the Dashen ansatz [14] for the electromagnetic contribu-
tion to the pseudoscalar mesonic masses

(3.13)

where e is the electric charge, m& is the hadronic part
given by Eqs. (3.12) and cz is some common factor, we
can easily derive the cutoff independent relation

where I&(M;) and I2(M, , M ) are certain divergent in-

tegrals, whose explicit form [3] is not needed here. In the
first order of the perturbation theory for the current
masses we get the following relations:

m =(m„+md )c&,

L„,= ,'I,t, f).,Qb —(N—,/2&3)Qs, (4.4)

where the tensor of inertia I,b is diagonal

I =cduT1g1N

4 2m ico+H ' ico+H

where H is the Hermitian static Hamiltonian:
H= —iy4(iy, B, +MUO). The static soliton solutions for
H reduce to the ones found in the SU(2) case and were ex-
tensively described in the literature [22—27]. Therefore
we will proceed directly to the calculation of the mass
splittings.

Formula (4.3) is already written in a form ready to be
expanded in a power series in m and in generalized veloc-
ities A A =—2'iQ, A, Let us for the moment forget about
the mass matrix m and expand (4.3) in powers of Q. We
get (back in the Minkowski metric):

md

m„+md

(m+ —m 0)—(m+ —mo) = —0.28,
Il~ab for a, b = 1, . . . , 3

tI26 b for a, b =4, . . . , 7

0 for a, b=8 .

(4.S)

(3.14)

with the experimental values for the mesonic masses. In
this way for an average nonstrange current quark mass of
m =6. 1 MeV which is determined by our regularization
[3] we obtain md —m„=3.4 MeV, and therefore the ab-
solute values m„=4.4 MeV and md =7.8 MeV.

IV. MASS SPLITTINGS —THEORY

In this section we will briefly recall how the mass split-
ting operator in the solitonic sector emerges. We will
start from the effective action (3.7) on the chiral circle:

I""=
nerval

and a sea part,

N, (m/A, ./n)(n/A, , /m)
I,'b" = g A I ( E„,E ), (4.7)

4 ~„E+E„
with the regularization function given by

For the baryon number 8 =1 sector I,b splits into two
parts, namely, a valence one,

(n I~. lval)(val~kb ln )

E„—E„i

S,z = —Sp ln( —i 8+m +MU ') .

U is an SU(3) matrix:

(4.1)
—tE2 —tE2

Rt(E„,E )= J —P(t) E„e "+E e
2 vr 0 t

U=A(t)
Uo(x) 0

A (t), (4.2)

2—iEm
—tE„2

+ e "—et(E„E)—
where Uo is the SU(2) hedgehog and M=g(o ) is the
constituent quark mass, which is in fact the only free pa-
rameter of the model.

The energy of the soliton consists of two parts: the en-
ergy of the continuum, i.e., the energy corresponding to

(4.8)

Here ~n ) and E„are the eigenfunctions and eigenvalues
of the Hami1tonian operator H.

The quantization of the rotational Lagrangian (4.4)
proceeds exactly as in the case of the Skyrme [28] model.
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As a result one arrives at the Hamiltonian:

S(S+1) Cq [SU(3)]—S(S+1)—X, /12
H rot +

2I2
(4.9)

whose eigenfunctions are given in terms of Wigner D'
matrices for SU(3) representation R:

+2
Ii

3

[psD ~s, '( A ) +p3D 3,'( A ) ]S,
I2 a=i

Hb, —&3 —o+ [psD'8s'(2 )+p3D3s (A )]
I2

p( A ) =&dim(R )D,'b '( A )

—:&dim(R )( Y,I,I3fD' '(3 ) f Yz, S, —S3 & . (4.10)

2K2 V3
P8 Y+P3I3

2
(4.16)

Here S denotes baryon spin and the right hypercharge
Yz is a subject to a constraint:

N,
Y~ =

3
(4.1 1)

L.= —~ [&6~a—&3(l 8Dss'+l 3D3s')]

2(P8D 8a +P3D 3a )Kab +b

where constant o.

(4.12)

The new part consists in the expansion in powers of the
rotated matrix m:

where index 8 corresponds to Y=O, I=0, and I3 =0 and
index 3 to Y=O, I=1, and I3=0.

In the next section the expectation values of the Hamil-
tonian Hb, are calculated. We adopt the following nu-
merical procedure: first we find the solitonic solution for
a range of constituent masses M, then we find the optimal
value of M which reproduces the octet-decuplet splitting
due to the rotational Hamiltonian H„„(4.9). It turns out
[2,3] that M=390 MeV and the corresponding moments
of inertia take the following values: I, = 1.31 fm,
I2 =0.62 fm, K, =0.45 fm, K2 =0.30 fm, and o. =3.

Next we calculate the mass splittings as functions of
the current quark masses and compare with experiment.

c f dc'
4 2m

&6o. for a =0
1

y~A, , = '&3o for a=8
lQ)+H

0 for a=1, . . . , 7

(4.13)

V. MASS SPLITTINGS —NUMERICAL RESULTS

The expectation values of Hb, between the baryonic
wave functions (4.10) are easily expressed as products of
two SU(3) Clebsch-Gordon (CG) coefficients [12]:

is related to the pion-nucleon sigma term
2=3/2(m„+md)a and the anomalous tensor K,b is
defined as

f

dic
D'„",'"(3 )D ', (A)D ' (A )

vl v) ~2~2

N, de)
Kb —i Tr

4 2m

1 1
F4~a ~ ~bi~+H ' ico+H

1
n( n2 np

dim(n ) „vi v2

n) n2 np
I I

V) V2 V

K15ab for a, b = 1, . . . , 3

K26,b for a, b =4, . . . , 7

0 for a, b=8 .

(4.14)

We call K,b anomalous since it comes from the imaginary
part of the effective action, which is related to the
anomalies, and as such does not require regularization
[2,3,29]. In fact, K,b gets contribution almost entirely
from the valence level. We can rewrite K,b as

K,„=iab 4

(m fA,.fn &(n fy, Xb fm &

I~ I+fE. I

1 —sgn(E„—pF ) sgn(E pz)—
2

(4.15)

Equation (4.15) represents the full (sea + Valence) contri-
bution, provided that the chemical potential p~ is above
the energy of the valence level.

The quantized Hamiltonian gets two new pieces corre-
sponding to L: one which shifts all masses by a con-
stant and another one which splits the spectrum:

(5.1)

Matrix elements of the operator D,'8' are, of course,
straightforward to calculate by means of formula (5.1). It
turns out that diagonal matrix elements of the operator
D,'b'Sb are proportional to

D' S =5D' '
ab b a3 (5.2)

where 5=S(S+1)/S3 for the octet and decuplet repre-
sentations of SU(3) ffavor. One can convince oneself by a
direct computation that these matrix elements do not de-
pend On S3.

It is now easy to see that one of the CG coefficients in
matrix elements in question, namely, the one correspond-
ing to left indices of the wave functions coincides with
the one present in Gell-Mann —Okubo mass formulas
[Eqs. (2.4) and (2.5)]. In Eq. (4.16) there are two addition-
al terms proportional to Y and I3,' however, the same I3
term is present in the CG coefficients of Eqs. (2.4) and
(2.5) and as a result the mass splittings of Eq. (2.6) are
naturally reproduced. The right CG coefficients corre-
spond to the reduced matrix elements which we discussed
in Sec. II.

In order to calculate the reduced matrix elements let us
define the following quantities:
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10 mental errors.
Next we compare our predictions with experimental

data for the reduced matrix elements both for the octet
and decuplet case. In Fig. 2 we plot the splitting con-
stants of (5.4) as functions of md —m„ together with the
error bars corresponding to (2.11). The constants f, d
and c are simultaneously reproduced within experimental
errors for md —m„=3.5 MeV.

VI. CONCLUSIONS

m& — m [MeV]

FIG. 1. Hadronic part of the octet isospin splittings: n-p
(N), :- —:- (:-), X —X (X). Solid lines represent model
predictions as functions of md —m„mass difference. Dashed
lines correspond to the error bars of Eq. (2.3).

I, I, I,y=o+2 +, y=a. +2 +5
2 1 +2 1

I2 I)6=o.+2 —3
2 1

Then we get

f=
—,'y(md —m„), d =

—,', 5(mz —m„),
c =—', 1'( m„—m„)

(5.3)

(5.4)

15

12

m& — m [MeV]

FIG. 2. Constants f, d, and c. Solid lines represent model
predictions as functions of md —m„mass diff'erence. Dashed
lines correspond to the error bars of Eq. (2.11).

Let us first confront the model with experimental data
on hadronic part of isospin splitting in the octet. In Fig.
1 we plot the dependence of our predictions for the iso-
spin splittings as functions of the mass difference
md —m„ for the set of parameters given at the end of Sec.
IV. The dashed 1ines correspond to the error bars of Eq.
(2.3). One can see that for md —m„= 3.43 —3.62 MeV all
three mass differences are reproduced within the experi-

In this paper we have calculated the isospin mass split-
tings within the semibosonized SU(3) Nambu —Jona-
Lasinio model taking into account the linear term in the
current quark mass matrix m. We have found a very
good agreement with the experimental estimates for these
splittings both in the octet case, where the explicit data
exist, and in the decuplet case, where we have used phe-
nomenological parametrization worked out in Sec. II.
Theoretical predictions are functions of the mass
difference between up and down quarks, and we have
found that the required mass difference is about 3.5 MeV
i.n striking agreement with the value needed to reproduce
kaon mass splittings in the meson sector. Altogether the
model offers a satisfactory and consistent description of
the isospin hadronic mass differences both in the mesonic
and baryonic sectors.

A short inspection of Eq. (4.16) reveals that the isospin
and hyperon split tings are related. Indeed, if one
parametrizes the hyperon splittings in terms of Gell-
Mann —Okubo mass formula [10,11]:

EM(8) FY D
1 I2+1Y2

v'5 4
(6.1)

Y,C
2&2

one immediately discovers that the following relation fol-
lows from Eq. (4.16):

—[(2.99+0.30) X 10 ]=&5—[(4.90+2. 15)X 10 ]F D
=v'2 —[(2.25+0.42) X 10 ],C

(6.2)

where the numbers in brackets correspond to the experi-
mental values of Eq. (2.11) and F=379, D =79+17, and
C =415+15 MeV. Certainly the central values are fairly
scattered. We would like to offer the following explana-
tion of this discrepancy. The isospin splittings are pro-
portional to a tiny parameter, namely, md —m„, and
therefore the first order of the perturbation theory is legi-
timate. On the contrary, for the hyperon splittings which
are proportional to the much larger parameter, namely,
strange quark mass, one may expect some corrections
from the higher orders of the perturbative expansion in
m, . Indeed, already the second order brings the split-
tings to their experimental values with an accuracy of a
few MeV [2,3]. A fully consistent incorporation of
higher-order effects would, however, require to abandon
the hedgehog ansatz. Therefore, throughout this paper
we have used the SU(3) symmetric wave functions and we
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have confined our calculations to the first order in m.
It is well known that the chiral models give too large

values as far as the absolute masses are concerned. Let us
only comment that there exist several mechanisms which
may bring them down, namely, gluon corrections [30],
rotational and translational band subtraction [3], and
Casimir energies of quantum fluctuations [31].
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