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We make a numerical study of gauge and Yukawa unification in supersymmetric grand unified
models and examine the quantitative implications of fermion mass Ansatze at the grand unified
scale. Integrating the renormalization group equations with ni(Mz) and n2(Mz) as inputs, we find
os(Mz) 0.111(0.122) for Msusv ——mi and ns(Mz) 0.106(0.116) for MsUsv ——1 TeV at one-
loop (two-loop) order. Including 5 and r Yukawa couplings in the evolution, we find an upper limit
of mi & 200 GeV from Yukawa unification. For given mi & 175 GeV, there are two solutions for P:
one with tan p ) mi/mb, and one with sin p 0.78(mi/150 GeV). Taking a popular Ansatz for the
mass matrices at the unified scale, we obtain a lower limit on the top-quark mass of mi 150(115)
GeV for os(Mz) = 0.11(0.12) and an upper limit on the supersymmetry parameter tan P & 50 if
ns(Mz) = 0.11. The evolution of the quark mixing matrix elements is also evaluated.
PACS number(s): 12.10.Dm, 12.15.Ff

I. INTRODUCTION

There is renewed interest in supersymmetric grand
unified theories (GUT's) [1] to explain gauge couplings,
fermion masses, and quark mixings [2—9]. Recent mea-
surements of the gauge couplings at the CERN e+e col-
lider LEP and in other low-energy experiments [10, ll]
are in reasonably good accord with expectations from
minimal supersymmetric GUT's with the scale of super-
symmetry (SUSY) of order 1 TeV or below [2]. Super-
symmetric GUT's are also consistent with the nonob-
servation to date of proton decay [12]. In addition to
the unification of gauge couplings [13], the unification of
Yukawa couplings has been considered to predict rela-
tions among quark masses [14—16]. With equal b-quark
and r-lepton Yukawa couplings at the GUT scale, the
mb/m mass ratio is explained by SUSY GUT's [4, 15].
With specific Ansatze for the GUT-scale mass matrices
(e.g. , zero elements, mass hierarchy, relations of quark
and lepton elements), other predictions have been ob-
tained from quark masses and mixings that are consistent
with measurements [4, 6, 7, 17, 18). The consideration of
fermion mass relationships has a long history [19—21] and
includes single relations and mass matrices ("textures")
without evolution [22—24], and single relations and mass
matrices with evolution [25].

Our approach is to explore supersymmetric GUT's
first with the most general assumptions, and then pro-
ceed to add additional GUT unification constraints to
obtain more predictions at the electroweak scale. The
renormalization-group equations (RGE's) used here are
for the supersymmetric GUT's [26, 27] with the mini-
mal particle content above the supersymmetry scale and
the standard model RGE's [28] below the supersymmetry
scale. In Sec. II we explore the running of the gauge cou-
plings in the supersymmetric model at the two-loop level
and compare the results to those obtained at the one-loop

level. Rather than try to predict the scale of supersym-
metry (MsUsY) which may be sensitive to unknown and
model-dependent effects such as particle thresholds at the
GUT scale, we choose two values of MsUsY to illustrate
the general trends that occur. We also investigate the ef-
fects of the Yukawa couplings on the gauge coupling run-
ning, which enter at two loops [17] and have often been
neglected in the past. In Sec. III we explore the unifi-
cation of Yukawa coupling constants. First we consider
the one-loop analytic solutions which can be obtained
by neglecting the bottom-quark and r Yukawa couplings
Ab and A relative to Ai in the RGE's. This serves as
a useful standard for comparison with the two-loop re-
sults for smaller values of tan p (« mi/mb), and many
of the general features of the solutions to the RGE's are
already present at this stage. We then investigate the
two-loop RGE evolution of the Yukawa couplings includ-
ing the effects of Ab, Ar, and Ai. Analytic solutions are
not available for the two-loop evolution, so we integrate
the RGE's numerically. In Sec. IV we investigate rela-
tions between Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix elements and the ratios of quark masses. We inves-
tigate two popular Ansatze [6, 7, 16] for Yukawa coupling
matrices at the GUT scale. Both of these Ansatze agree
with all existing experimental data, and this agreement
is preserved at the two-loop level. We also integrate the
two-loop evolution equations for certain CKM matrix el-
ements and quark mass ratios in Sec. IV. The two-loop
RGE's for both the minimal supersymmetric model and
the standard model are given in the appendix.

II. GAUGE COUPLING UNIFICATION

A consistent treatment to two loops in the running
of the gauge couplings involves the gauge couplings g,
and the largest Yukawa couplings Ai, Ab and A . From
general expressions [26, 27] that are summarized in the
Appendix, we obtain the evolution equations

47 1093 1993 The American Physical Society



1094 V. BARGER, M. S. BERGER, AND P. OHMANN 47

dgi gi
dt 16' 2

2 1 ~ ~ z 2
big + ) b,,gi g — ) ai, gi A,

j=l j=t,b, ~

dAt

dt
—) cog, +6A, +Ah

~16~2

+16, l ) (c't'+c, /2) g, +giga+ gigs+8g2g,4
16~'

~

+A,
~

—g, + 6gs + 16g
~

+ —Ai, g, —(22A, + 5A, Ab + 5Ai, + AbA ) (2)

—) c'g, +A, +6A&+A
16vrz

+ 2 ) (c,b, +c, /2) gi +gig2+ —gags +8g2gs+ —A&gi +Ai, l

—gi +6gz+16gs
~
+ —A.g,I2 4 2 2 2 2 2 2 2 2 2 (2

16~'
~

5 5 y 5

—(22A4b + 5A,'A,'+ 3A,'A.'+ 3A'. + 5A,')

dA

dt
—) c,"g, + 3Ai, + 4A

16vr2

+, ( ) (c,"b, + c',"/2) g~4+ —g,'g,'
16vrz (

+Ay ~

——gi+16gs
~

+A
~

—g, +6g2 ~

—(3A, Ab+9Ai, +9Ai, A +10A )

(n, ) =1279+02,
sin 8~ ——0.2326 + 0.0008,

(5a)

(5b)

where 8~ refers to the weak angle in the modified min-

imal subtraction (MS) scheme [30]. These values corre-
spond to electroweak gauge couplings of

o.i(Mz) = 58.89 6 0.11,
c ~(Mz) = 29.75 + 0.11.

(6a)
(6b)

The various coefficients in the above expressions are also
given in the Appendix. The variable is t = ln(p/MG)
where p, is the running mass scale and MG. is the GUT
unification mass. The renormalization-group equations
of dimensionless parameters such as the gauge couplings
and Yukawa couplings are independent of the dimension-
ful soft-supersymmetry-breaking parameters.

We begin with the recent values of n,~ and sin e~ at
scale Mz ——91.17 GeV given by the 1992 Particle Data
Group [ll, 29]

I

For simplicity we initially set the supersymmetric scale
MsUsY equal to the top-quark mass rn, and set all
Yukawa contributions in Eq. (1) to zero. Then evolv-
ing o;q and a~ from scale Mz up to scale mt, we have

53
ni(m, ,) ' = ~i(Mz) + 1n(Mz/m~),

11
oz(mi) '=~z(Mz) ' — ln(Mz/mi) .

6a

We use the value Mz ——91.17 GeV, neglecting its exper-
imental uncertainty.

Next, for a grid of o,G and MG values, we evolve from
the GUT scale down to the chosen mt scale and retain
those GUT scale inputs for which Eqs. (6) and (7) are
satisfied. We use the two-loop SUSY GUT unification
condition a& ——ni(M&) = n2(MG). For the acceptable
GUT inputs we also evolve the strong coupling ns(MG ) =
nG down to scale m, q and then use three-loop @CD to
further evolve it to scale Mz. The three-loop expression

ns(p, ) = ——ln/ 2 /+ —1n/ ln
& /

—2—s ln( ln —
( 2

—1
J

lnbp (P'5 bg ( P') 6', ( P' (bpb2 ( p'5
(8)
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with the b, given in Ref. [31],is iteratively solved to find A
from ns(mq). Equation (8) is then evaluated for y, = Mz
to obtain ns(Mz). The resulting values for A for two
representative values of ns(Mz) are given in Table I.

We also investigate the eKects of taking a supersym-
metry scale higher than mq. Below M&Us&, the RGE's
are similar to the nonsupersymmetric standard model.d i A
linear combination of the Higgs doublets is integrated out
of the theory at MsUsY leaving the orthogonal combina-
tion 4 = C'4cosP+ C„sin P coupled to the fermions(SM)—
in a way that depends on tanP [4, 32, 33]; this combi-
nation results from the assumption that the three soft-
supersymmetry breaking parameters in the Higgs poten-
tial can be equated to MsiisY. We use the two-loop
RGE's [28] for the standard model, matching the cou-
plings at M . Taking a single SUSY scale is an ideal-p 111gs a

rti-ized situation since in general the supersymmetric par i-
cle spectrum is spread over a range of masses [9]. With-
out further assumptions we cannot predict this spectrum.
Given that such uncertainties exist, the predicted range
for ns should be taken to be representative only.

The ranges of n and M& parameters obtained fromQ
~ ~t ]the procedure outlined above are presented in Fig.

for one-loop and two-loop evolution with the choices
M = m and MsusY ——1 TeV. The shaded regionssos' ™~
denote the allowed GUT parameter space. The two-loop
va Qes 0lues obtained for n and MG are higher than the one-Q
loop values and consequently ns(Mz) is higher for t e
two-loop evolution. Note that raising the SUSY scale
from rnid to 1 TeV lowers Mz and nz, hence ns(Mz)
decreases as well.

Figure 2 shows the corresponding results of the two-
loop evolution over the full range of p. We find the ranges
for ns(Mz) with mq ——150 GeV shown in Table II. The
two-loop values of ns(Mz) are about 10' larger than the
one-loop values. The effect of the higher SUSY scale is

TABLE I. The @CD parameter A~"~~ in MeV, where nf
is the number of active flavors.

n3(Mz)
0.11
0.12

129.1
233.4

188.3
320.2

225.0
360.0

to lower ns(Mz) by about 5'.
Inclusion of Yukawa couplings in the two-loop evolu-

tion also lowers the value of ns(Mz) somewhat. For ex-
ample setting Aq ——Ai, = A = 1 at the GUT scale, we
obtain a two-loop value of ns(Mz) = 0.1189+0.0031 for

The eEects on the gauge couplings of including the
Yukawa couplings in the evolution are rather small for
Yukawa couplings in the perturbative regime, justifying
their neglect in most previous analyses; for large values of
tan P the changes in the gauge couplings due to inclusion
of Yukawa couplings can be a few percent.

The experimental situation regarding the determina-
t' f n is presently somewhat clouded [10], with deepion 0 0!3

e of theinelastic scattering determinations in the range o e
one-loop calculations in Table II and LEP determinations
similar to the two-loop results of Table II.

There are other uncertainties not taken into account
here, due to threshold corrections from the unknown par-
ticle content at the heavy scale [34—36], which can also
change the ns values obtained above. These corrections
are model dependent so we have not attempted to include
such contributions. However, recent analysis have shown
that the constraints from nonobservation of proton de-
cay greatly reduce the potential uncertainties from GUT
thresholds [17,37].

26
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FIG. 1. Allowed GUT parameter
space for running top-quark mass m& ——

150 GeV with (a) Msusv = vari~ (one-
loop RGE), (b) Msusv —— m~ (two-
loop RGE), (c) Msusv = 1 TeV (one-
loop RGE), (d) Ms„» ——1 TeV (two-
loop RGE) versus the running mass
scale p. The shaded region denotes the
range of GUT coupling and mass consis-
tent with the 1cr ranges of ni(Mz) and

n2(Mz); the cur~es for n3(p) represent
extrapolations from the GUT parame-
ters. We have omitted the contributions
from Yukawa effects here which depend
on tang.
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FIG. 3. The @CD-@EDscaling factors gf of Eq. (11) are
shown for f = s, c, b versus ns(Mz), assuming running quark
masses mf (mf) of mq ——170 GeV, mb = 4.25 GeV, m, = 1.27
GeV.

~/~ ~/~
dt 16vr2 (25)

is similar to Eq. (22), except that it receives no contri-
bution from the dominant Yukawa couplings Aq, Ab, and
A . When the value R,/&(M~) = 1/3 is assumed at the
GUT scale, the prediction at the electroweak scale is

The numerical value for I from Ref. [18] is 113.79 for
mq ——170 GeV. For large tanP, where the effects of Ab

and A on the running Yukawa couplings can be substan-
tial, an increase in Ab can be compensated in the RGE by
a decrease in Aq. Hence, for increasing tan P, the correct
prediction for mb/m is obtained for decreased values of
the top-quark Yukawa coupling. Thus there is a second
solution to the RGE for Rb/~ with a large value of tan P.
The inclusion of the two-loop effects does not alter these
observations.

The one-loop RGE for R,/„= A, /A„,

where x(p), y(p), ri(p) defined by
ms 1g~/2

3 x 7/p,
(26)

*(p) = (~G/~i (p)) '"[~a/~z(p))"'
Mg

y(p) = exp — A, (p, ')din p,
'

(19)

(20)

~I 5 4 la

i=1)2)3
[~a/~'(p))""' (21)

b/ —& d ' A' 3A' —3A'
dt 16vrz

(22)

For small tan P the bottom-quark and tau Yukawa cou-
plings do not play a significant role in the RGE, and any
particular value for mb/m is obtained for a unique value
of A&(mq), which corresponds to a linear relationship be-
tween mq and sinP:

mq v 2g-
A, (m, ) = harv —1 —yslil

where v = 246 GeV and

(23)

are to be evaluated at p = m& in Eq. (18). Henceforth
x, y, g shall be understood as being evaluated at scale
mq when an argument is not explicitly specified. Typ-
ical values of these quantities obtained in Ref. [18] are
x = 1.52, y = 0.75 —0.81, g = 10,3 for a bottom-quark
mass given by the Gasser-Leutwyler (GL) @CD sum rule
determination mb = 4.25 6 0.1 GeV [41] taken within its
90'Fo confidence range and ns = 0.111. The quantity y
gives the scaling from MG to mq that arises from a heavy
quark, beyond the scaling due to the gauge couplings.
The factor y(m&) is constrained to lie in a narrow range
of values by Eq. (18). The integral in Eq. (20) is crucial
in explaining the mb/m~ ratio. In fact if Aq is neglected
then y = 1 and the mb/m~ ratio is found to be too large.

For a given value of mt, there exist two solutions for
tan P. This fact can be understood qualitatively [42] by
studying the one-loop RGE for Rb/~

—= Ab/A~:

Notice that this equation does not include the scaling
parameter y because the top-quark Yukawa does not
affect the running of the second-generation quarks and
leptons. This relation for rn, /m„ is in good agreement
with the experimental values, but it is not as stringent
as the mb/m~ relation due to the sizable uncertainty in
the strange-quark mass. The result m, /rn„= 1.54 was
obtained in Ref. [18], to be compared with the GL deter-
mination [41] m, /m~ = 1.66 + 0.52.

A popular strategy is to relate the mixing angles in
the CKM matrix to ratios of quark masses, taking into
account the evolution from the GUT scale in non-SUSY
[43] or SUSY [44] models. For example, one popular GUT
scale Ansatz is ~Vcb~

—gm, /mq which requires a GUT
boundary condition on R,/&

—= Ac/Aq of

a,/, (MG. ) = ~v,b(M~)~ .

The one-loop SUSY RGE for R,/& is

(27)

c/'C c/t
[

g A2) (28)

The corresponding one-loop SUSY RGE for the running
CKM matrix element ~V,b) is [44]

16 2I. t+ bJ '

The pure gauge coupling parts of the RGE's are not
present in Eqs. (28) and (29) since R,/& and V,b are ra-
tios of elements from the up-quark Yukawa matrix and
the down-quark Yukawa matrix.

Neglecting the nonleading effects of Ab, the one-loop
results of Ref. [6] at the electroweak scale obtained from
evolution are
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IV.b(m~) I

= IV.b(MG) ly
'

IV.b(m~) I
=

gcmt

R,gg(mg) = R,yg(M~) y s,
or equivalently, using Eq. (27),

(30)

(31)

5.5

4.5

3.5

3

2.5

Since y is already well constrained by the b-mass re-
lation of Eq. (18) [for the one-loop value of as(Mz)
0.111], Eq. (31) requires that mq must be large in or-
der that IV,bl fall in the experimentally allowed range
0.032 —0.054 (and even then IV,bl is found to be at the
upper limit of its allowed range). If, however, we use a
larger value of as(Mz) indicated by the two-loop equa-
tions, say 0.12, then i1, increases by about 14%, as shown
in Fig. 3. Furthermore the increased values of the scaling
parameters q and rib require about a 9% decrease in y to
explain the mb/m ratio in Eq. (18). The resulting IV,bl

is reduced by about 12% and is then closer to its central
experimental value. Of course, a consistent treatment at
the two-loop level requires the two-loop generalization of
Eq. (31) obtained by solving the full set of RGE's. One
of the questions we will address subsequently is for what
values of mq and tan P can the IV,bl and the mb/m con-
straints be realized simultaneously [42].

The predictions above are all based upon the assump-
tion that the couplings remain in the perturbative regime
during the evolution from the GUT scale down to the
electroweak scale. Otherwise it is not valid to use the
RGE's, which are calculated order by order in perturba-
tion theory. One can impose this perturbative unification
condition as a constraint. For mb at the lower end of the
GL @CD sum-rule range 4.1 —4.4 GeV, the top-quark
Yukawa coupling at the GUT scale, Aq(MG), becomes
large, as can be demonstrated from analytic solutions to
the one-loop RGE's in the approximation that Ab and A

are neglected compared to Aq (valid for small to moderate
tan p).

The top-quark Yukawa coupling at the GUT scale is
given by

Ag(MG) =
i2

—1
4''
3I y

(32)

mb 7j / gb

m1- S n1
(33)

Taking [18] as(Mz) = 0.111 and mb = 4.25 GeV and
mi ——170 GeV gives Aq(MG) = 1.5. Larger values of
as(Mz) lead to increased r1b via Eq. (11) giving smaller y
in Eq. (18) and a correspondingly larger value of Aq(MG).
The quantity Aq(MG. ) is plotted versus as(Mz) in Fig. 4.
Larger values of as(Mz) —0.12 can yield Aq(MG) & 3
that cast the perturbative unification in doubt. Keeping
the gauge couplings fixed and varying mb, one sees that
smaller values of mb also yield larger values of Aq(MG).

The scaling parameter y is manifestly less than one by
Eq. (20) since A~s & 0 in the region mq ( p ( M&. This
implies an upper limit on mb in Eq. (18) of

1.5

0.5
0.1

I

0.105
I

0.1 1

I

0.12
I

0.125 0.13

FIG. 4. The top-quark —Yukawa coupling at the GUT
scale determined at the one-loop level is plotted versus
na(Mz) for mq ——170 GeV and mb = 4.25 GeV.

B. Two-loop numerical results

When the two-loop RGE's are considered, analytic
solutions must be abandoned, but the same qualita-
tive behavior is found in the numerical solutions. Fur-
thermore, there is now the possibility that the bottom-
quark Yukawa coupling at the GUT scale becomes non-
perturbative for large values of tan P. In our analysis we
solve the two-loop RGE's of Eqs. (1)—(4) numerically [45],
retaining all Yukawa couplings from the third generation.

First we choose a value of as(Mz) that is consistent
with experimental determinations and the preceding one-
loop or two-loop evolution of the gauge couplings in
the absence of Yukawa couplings. Specifically we take
as(Mz) = 0.11 or as(Mz) = 0.12, to bracket the in-
dicated as(Mz) range. For each particular as(Mz) we
consider a range of values for tan P and mb(mb) . For each
choice of as(Mz), tan P, mb we choose an input value of
mq. The Yukawa couplings at scale mq are then given by

(
v 2m)(mg)

)
v 2mb(mb)

vsinp '
gbvcosp

(34)
+2m~ (m~ )

7/~v cos p

and the a, (mq) are determined by Eqs. (7) and (8) from
the central values in Eq. (6) We take [ll] m = 1.784
GeV. The running of the vacuum expectation value v be-
tween the fermion mass scales is negligible for the range
of fermion masses considered here [5]. Starting at the
scale mt, we integrate the RGE's to the GUT scale, de-
fined to be the scale at which ai(p) and a2(p) intersect.
We then check to see if the equality Ab(M&) = A (MG, )
holds to within 0.01%. If the b and 7 Yukawa couplings
satisfy this condition, the solution is accepted. If not, we
choose another value of mq and repeat the integration.
Since our primary motivation here is to study the influ-
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ence of the a3(Mg) value on the Yukawa couplings, we
do not enforce the requirement that a3(M(") is equal to
a.z(M&) and a2(MG). Nevertheless the equality of n&,
a.2, and o'3 a™(is typically violated by & 4% (2%) for
A3(MQ) = 0.11 (0.12). Such discrepancies could easily

exist from threshold effects at the GUT scale [36, 37].
We also explore the effects of taking the SUSY scale

above mq. We proceed as described above, integrating
the following two-loop standard model RGE's numeri-
cally from the top-quark mass to the SUSY scale:

dgi gi
dt 161('2

b g+ I)bgg)agA(
j=1 j=t,b,~

(35)

dA, A,

dt 16m2
—) c, g, +-A, ——Ab+Y2(S)SM 2 3 2 3 2

1 (1187 4 23 4 4 9 22 19
16 2 600 ~1 4 ~2 ~3 20 ~2 + 15 ~3 + 2

7I

(223 2 135 2 2l 2 (43 2 9+
l gl + g2+16g3 I Ag

—
I

—
g&

——g2+16g3 I Ab

+—Y4(S) —2A (3A + Ab) + —A ——A Ab + —Ab
5 3 4 5 2 2 11 4
2 b 2 ' 4 t b 4 b

+Y,(S) l
Ab —-A,-l —~4(S) + -A(5, 9

q4 4 ') 2 )
(36)

) ISM 2+ A2 A2+ Y (S)16 2 - g gg 2 b

1 ( 127 4 23 4 4 27 2 2 31
+ — S~ ——a2 —108a3 ——

a& O2 + —
a& ~3 + 9a2a3167(2 i 600 4 20 15

2 9 2 2I 2 (187 2 135 2 2 2—
l

—gi ——g2+16g3 l A~ +
I gi + g2+ 16g3 Ab

480 16 ) 4 80 16

+—Y4(S) —2A (A + 3Ab) + —Ab —-A, A + —A,
5 3 4 5 2 2 11
2 t 2 4 4

(5, 9 3
+Y2(S) I

—A~ Ab
l &4(S) + —A

&4
' 4 2 )

(37)

A

16m2

3 2) cg/SMg2 + A2 + Y

1 (1371 4 23 4 27 2 2 t'387 2 135 2l 2 5

3 4 9 3+—A ——Y2(S)A —y4(S) + —A
2 4 2

dA 1 9(3 4 2 22 4l 2

dt 16~2 4 (, 25 ' 5 ' ' ') (,5
—

I

—g, + —g&gg+g, I

—
I

—g, +gg, ) A+4Y2(S)A —4H(S)+ nA )
1 ( 3 (3 2 2) 2 ( 73 4 117 22 1887

+ —78A +18l —gI +3g2 lA + l

——g2+ -g~g2+ g~ lA

305 6 867 2 4 1677 4 2 3411+
8 " 12O"" 2QO

"" 1OQQ"

—64g3(Ag + Ab) ——
gq (2A, —Ab + 3A~) ——g2 Y2(S) + 10AY4(S)



1100 V. BARGER, M. S. BERGER, AND P. OHMANN 47

+-gi
I

——gi+»g2 I
A~+

I -ei+9g2I Ab+
I

——gi+»»2 i 57 2 2~ 2 3 2 2i 2 i 15 2 2 2

5 i 10 I k2 ) 4 2

—24A Y2(S) —AH(S) + 6AA, Ab + 20 3A, + 3Ab + A —12 A, Ab + A, Ab

Here

Y2(S) = 3A, + 3A„+ A (40)

~ (S) 3 ) sM 2A2 + 3) i~sMg~2A2

+) IiSM 2A2 (41)

y4(S) = — 3A, + 3Ab + A ——Ag Ab
4 4 4 ~ 2 2 (42)

~&(MSUSY) ~&(MSUSY) i

Ag (Msvs Y) —Ag (Msvs Y) slil P i

Ab(MsUBY) = Ab(Ms+vsY) cos i9,

& ( BUSY) A~ (MSUSY )

(46)

(47)

(48)

(49)

H(S) = 3A, + 3Ab+ A

and the coefficients asM, bsM, and csM are given in the
Appendix along with the full matrix structure.

The initial values for ns(Mz), mb, and mq are chosen
as before; in addition we are required to specify the initial
value of the quartic Higgs coupling A at scale m~. The
Yukawa couplings at scale m~ are

v 2m) (mg) ~2mb(rnb)
mt mg 7

'U rib V

(44)

~2m. (m. )
g7-'U

and the n, (mq) are given by Eqs. (6)—(8). After inte-
grating to the SUSY scale we require that the matching
condition

A(MSUSY) = 1»(MsvsY) +»(MsvsY)
~

1 3

r4iE
(45)

is satisfied to within O. l%%uo. This condition [4, 33] results
from integrating out the heavy Higgs doublet at MsUsY.
Below this scale only a standard model Higgs boson re-
mains with its quartic coupling given by Eq. (45). We
also apply the matching conditions

tanP = 1.35 or tang = 56. (50)

For mq ( 175 GeV the low solution is well approximated
by

sing =0.78 (
'

) (51)

Such knowledge of tanP would greatly simplify SUSY
Higgs analyses [46]. Without imposing any other con-
straints, the top-quark mass mq can be arbitrarily small.

The plots rise very steeply for the maximal value of
mq. This results because the linear relation exhibited
in Eq. (23) and in the plot in Ref. [18] between mq and
sin P is mapped into a vertical line for sufficiently large
tan P () 10). The deviation of these contours from being
strictly vertical results from the contributions of Ab and
A„ to the Yukawa coupling evolution.

An upper limit on mz is determined entirely by the

TABLE III. Maximum values of mq(mq) in GeV consis-
tent with the 90%%uo confidence levels of the mb(mb) values of
Gi.

fined by the equality ni(Mi ) = a2(MG, ). At the GUT
scale we require Ab(M~) = A~(M~) to within O. l%%uo. If
this condition is not met, we repeat the entire process,
choosing other initial values for m~ and A.

The parameter P also runs in going from the SUSY
scale to the electroweak scale [33]. However, this effect is
small and we neglect it here.

In Fig. 5 the resulting contours of constant mg are
given in the mq-tanP plane [4, 17] for the choices of
ns(Mz) = 0.11 and 0.12 and the supersymmetry scales
Ms&HY

——mq and 1 TeV. The contours shown are mg =
4.1,4.25, 4.4 GeV (corresponding to the central value of
mb and its 90%%uo confidence range from the GL @CD sum-
rule determination) and mb = 5.0 GeV (representing a
typical constituent b-quark mass value; this latter con-
tour is included only for comparison with other work).
For a given mb and mb ( 175 GeV, there is a high so-
lution and a low solution for tan P as anticipated in Sec.
IIIA. Thus, once rnid is experimentally known and the
choice of mb resolved by other considerations (such as
the CKM matrix elements addressed subsequently), the
assumption of Yukawa unification at the GUT scale will
select two possible values for tanP. For example, for
rnid ——150 GeV and mb = 4.25 GeV, the solutions with
as(Mz) = 0.11 are

If Eq. (45) is not satisfied we choose another input value
of A(mq) and repeat the process. We allow tan P to span
a wide grid of values. After obtaining a satisfactory value
of A that meets the boundary condition above, we inte-
grate the two-loop SUSY RGE's to the GUT scale, de-

Ms Usy

mg
1 TeV

as(Mz) 0.11

187
192

0.12

193
199
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a) MsvsY ——m, , oz(Mz) = 0.11
r

b) MsvsY = mt; (x3(Mz) =0.12

50
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c) MsvsY 1 TeV; ~(Mz) =011
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d) Msvs Y V ~ %(Mz) ——0.12

FIG. 5. Contours of constant mb in
the mq-tan P plane obtained from the
RGE's with (a) MsUsv ——mz, na(MZ) =
0.11; (b) MsUsY m& &3(MZ) = 0.12;
(c) Msusv = 1 TeV~ aa(MZ) = 0 ll;
(d) MsUsv = 1 TeV n3(Mz) = 0 12.
The shaded band corresponds to the 90%
confidence level range of mb from Ref.
[41] (mt, = 4.1—4.4 GeV); the dotted
curve corresponds to mb = 5.0 Gev. The
curves shift to higher m~ values for in-
creasing o.a(MZ) or increasing MsUsv.

0 kb

100 120 140 160

m, (Gev)
180

0
120 140 160

m, (GeV)
180

rnb/rn ratio. We find the mt upper limits shown in
Table III for the two choices of o.s(Mz). It is interesting
that the predicted upper limit for rnid coincides with that
allowed by electroweak radiative corrections [11].

Our contours of rnb/mr in Fig. 5 have about a 10%
higher mb than those given in Ref. [17] presumably be-
cause they employed the one-loop @CD results for the
scaling factors gf with the two-loop expression for n3
rather than the three-loop @CD for both ref and as that
we use here.

As o;s(Mz) gets larger, smaller values of y are needed
to obtain the correct mb/rn ratio. In turn larger values
of A&(p) are needed via Eq. (20). For a.s(Mz) & 0.12

6(16rrax)
22

(52)

and rnb & 4.2 GeV, the value of At(p) near the GUT
scale can be driven into the nonperturbative regime. In
Fig. 6 we show the values of At(Mt. ) and Ab(MG) ob-
tained for the solutions in Fig. 5. Fixed points in the
quark Yukawa couplings exist at A = 1, so a Yukawa
coupling only slightly larger than the fixed point at the
scale mq can diverge as it is evolved to the GUT scale.
For large values of the Yukawa couplings the two-loop
contributions to the RGE's contribute a fraction z of the
one-loop contributions when

a) MsvsY ™t,O3(Mz) = 0.11
r. ~

b) MsvsY = mt; ()(3(Mz) ——0.12

fIonpertorbative ~

mb=4. I GeV
W

nonperturbative-

rc 3

mb=
2

0
0 10 20 30

tan P

c) Msvs Y
= 1 TeV; (x (Mz) = 0

'~

4 i.:,'...'%,",. -.'.'."~, '', .?" .';,

3
mb

—4.1 GeV

4.25

50

4.25
rc 3

2

0
0 10 20 30

tan P

40 50

4 nonpert0rbative

3

2

44

d) MsvsY = 1 TeV; ~3(Mz) = 0.12
6 rI =4.I GeV. :, ,

-::-':::::::

5

FIG. 6. The Yukawa cou-
plings Aq(Mo) and Ab(MG) = A~(Ma)
at the GUT scale with (a) Mstisv
mt, Q3(MZ) = 0.11; (b) MBUSY = mt,
n3(MZ) = 0.12; (c) MsUsv = 1 TeV,
o.'a(MZ) = O. ll; (d) Msvsv = 1 TeV,
o.3(MZ) = 0.12. The Yukawa cou-
plings become larger for higher n3(Mz)
or higher Ms&s&. The perturbative con-
dition A & 3.3 from Eq. (52) is satis-
fied except for the lowest b mass value
mt, = 4.1 GeV for n3(MZ) = 0.12. The
solid dots denote A = Ab

——Aq unifica-
tion.

0
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40 50 60
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,
' 4.1

.25
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mb 5.0 GeV

10 12

ln (p/ 1 Gev)

14 16 18

0.36

0.32

4.4,
0.28 -4-2

4.1

. mb 50GeV

0.24

7(16vrzx)
28

as can be deduced from Eqs. (2) and (3). When x—
1 we are clearly in the nonperturbative regime. If we
adopt the criteria that the two-loop effects always be less
than a quarter of the one-loop efFects, then Ai and Ab

are nonperturbative when they remain below 3.3 and 3.1
respectively all the way to the GUT scale. This is true
for all of the curves presented in Fig. 6, except for the
mb = 4.1 GeV contours for as(Mz) = 0.12; hence the
exact position of this contour cannot be predicted with
accuracy.

In Fig. 7 we show the evolution of the Yukawa cou-
plings from the SUSY scale to the GUT scale. The non-
perturbative regime for the case discussed above occurs
only near the GUT scale.

In some SO(10) GUT models the top-quark Yukawa

coupling A~ is unified with the Ag and A at the GUT
scale. Imposing this constraint selects a unique value for
tan P and mi [17,47]. This solution is given by the in-

tersection of Ab(M~) and Ab(MG), which occurs for large
tan P & 50: see Fig. 6.

One could also consider the unification of the Yukawa
couplings at some scale other than that at which the
gauge couplings unify [4, 17]. Since Bb~~ increases as
it evolves from the GUT scale to the electroweak scale,
Yukawa unification at a scale larger than the gauge cou-
pling unification scale gives a larger mb/m ratio.

The authors of Ref. [4] predict the light physical Higgs-
boson mass rather precisely. However, this prediction is
related to their assumption (and the one we use here)
that the heavy Higgs doublet is integrated out at MsUsY.
This means that the heavy physical Higgs bosons have

Ms UsY ~& Mz, which
requires that the light Higgs-boson mass is close to its
upper limit. The relation of sinP to mi then fixes the
one-loop corrections to the light Higgs-boson mass,

IV. FERMION MASS ANSATZ

By assuming an Ansatz for Yukawa matrices at the
GUT scale and evolving these matrices down to the elec-
troweak scale, predictions ean be obtained for the quark
and lepton masses and the CKM matrix elements [4, 6,
7, 16]. Much work has been done on individual rela-
tions such as ~V«g~

—gm, /m~ and ~V,b~
—gm, /mb

which are imposed at the GUT scale as described in
Sec. III. Recently interest has been revived in models
that involve several such relations, leading to a number
of predictions for quark masses and CKM matrix ele-
ments at the electroweak scale [4, 6—8]. The relations
evolve according to RGE's, and the main effects are de-
termined by the largest couplings. For moderate values
of tan P (i.e., tan P & 10), these are the gauge couplings
g; and the top-quark Yukawa coupling Ab. For large val-
ues of tan p(= m&/mb) the efFects of Ab and A can also
be significant. Various individual relations at the GUT
scale such as ~V,b~

—gm, /mi can be satisfied for cer-
tain choices of these Yukawa couplings. The remarkable
aspect of these fermion mass Ansatze is that many rela-
tions can be made to work at one time. We shall concen-
trate in this section on two predictive ways of generating
mixing between the second and third generations which
put those mixing contributions entirely in the up-quark
Yukawa matrix [4, 6, 16] (the U Model) or entirely in the
down-quark Yukawa matrix [7] (the D Model).

0.2
A. The U Model

0.16

10 12

ln (p. /1 GeV)

14 16 18

FIG. 7. Two-loop evolution of the Yukawa couplings (a)
A, (y), (b) Ab(p), A (p,) from low energies to the GUT scale
for the case n3(Mz) = 0.12 and Msusv ——1 TeV. We take
tan P = 20 and the values of mq = 198, 197, 196, 181 GeV
specified by the mb ——4.1, 4.25, 4.4, 5.0 GeV contours in

Fig. 5(d).

Relations between fermion masses and CKM matrix
elements date back at least to 1968 [19], when the
Cabibbo angle was related to the quark masses, tan e~ =
gmg/m, . Subsequently these fiavor symmetries were ex-
tended to the general two generation case by Weinberg
and Wilczek and Zee [20] and to three generations by
Fritzsch [21]. Georgi and Jarlskog [22] then postulated
that such mass matrix Ansatze are valid at the GUT
scale, and determined the zero structure in an SU(5)
theory, obtaining an asymmetric charge —1/3 mass ma-
trix D. Georgi and Nanopoulos [23] then modified this
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(o c 0)
U= C 0 B ( o

o

S'e'd O )
E 0
O Dj

(54)

Ansatz by going to an SO(10) model, obtaining a syrn-
metric form for D. Harvey, Ramond, and Reiss [16] real-
ized the Georgi-Jarlskog-Nanopoulos form in an SO(10)
GUT theory with specific Higgs representations, namely
a (complex) 10 and three 126 multiplets. When all but
one of the arbitrary phases in the GUT matrices are ro-
tated away, the Yukawa matrices at the GUT scale have
the form [6]

(o s" o)
E = r' —3E' 0

( 0 0 D')
(57)

9 md g m
2 g rI m md+ +2

ms gumc gd gums mc

- X/2

cos P

(58)

The quantities A, D, and D' are equivalent to At, Ab,
and A respectively up to subleading corrections in the
mass matrix diagonalization. The one-loop solutions [6]
to leading order in the hierarchy can be obtained analyt-
ically neglecting Ab and A . The one-loop results for the
CKM elements at the scale mt are

(o s' o
E=

l F —3E 0
(0 0 D

(55) Vub

Qmc

gcmt

/emu

fume

(59)

~60&

(o c 0)
U = C b„By

0 Bs A)

o
~~—ip

o

Fe'& o )E bg
0 Dj

(56)

ln a recent landmark paper [6] Dimopoulos, Hall, and
Raby considered the supersymmetric evolution of this
GUT texture down to low energies and showed that the
resulting predictions are in accord with the experimental
data on quark and lepton masses and CKM elements.

Renormaliz ation-group evolution generates nonzero
entries in the above Yukawa matrices and also splits
Bi =—Ups and Bz = Uss to give the matrices at the
electroweak scale of the form

~1/2 ~
mQ 3m+

X

F/ g mpms=
x gp 3

mb =y —m
x nT

(61)

(62)

Using the general expressions for the two-loop ROE's
given in the Appendix and keeping only terms unsup-
pressed by the hierarchy, one obtains Eqs. (1)—(4) as well
as

where rl;(mt) is defined by Eq. (11) and y(mt) by
Eq. (20). The angle P is a priori arbitrary. The down-
type quark masses are related to the corresponding lepton
masses by

dBy
dt

—) cg, +6A, + AtAb~d &

16vrs

+, l ).(c' '+, i ) g, +gigz+ gigs+8gzgs
1 ~ 2 4 2 2 136 2 2 2 2

16vrz
~

+At l -gl+6gg+16gs l+ —
B gi — 22A, +5A, Ab+ (5Ab+A. )

2 ~6 2 2 2 2 AtAb~d z 4 z z AtAb~d
'

q5 5 Bi 1
(64)

dB2
dt

—) cg, +6A, +Ab l

r16vrz

2 4 2 2 136 2 2 2 2+ z ) (ci5i + i/2c) gi + glg2 +
45 glgs + 8g2gs16vrz

~

+At
l

-gi + 6gz + 16gs I
+ Abgi —(22—A, + 5A, Ab + 5Ab + AbA~ j'q5 ) 5

(65)
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lt . z 2 AgB)Bz AbbdBz
c;g; +3A, +3 +

tC

+ z ) (c&b& + c~ /2) g~ + gygz + g] gs + 8g2gs
1 ~ 2 4 2 2 136 2 2 2 2

16~ (
, /4, 2l AgByBz (2, ,l 2 Ab6dBz

+Ay I

—gz + 16gs
I
+

~ I 5gi + 6g2 I
+

5

9A4+ 3AzAzb+ '
(13A, +2Ab) + (5Ab+A ) (66)

dbd bd ~ - I 2 6A2 A2 AtAbB1
c,g, +6A, +A. +

) (c',b, + c', /2) g, + gzgz + —g&gs + 8g2gs16~z (
z(2 z z 2l 6 22 4AgAbB]

+A, I
-g, +6g, + 16g. I+-5A.gi+-5

q5

22Ab+5A, Ab+3AbA i3A + 5A, (67)

Notice that since (1/B2)dB2/dt= (1/Aq)dAq/dt, the ratio
B2/Aq is constant over all scales and is in particular equal
to its value at the GUT scale Bz(MG)/A&(MG).

With these RGE's we can include the additional exper-
imental constraints from the charm-quark mass m, and
the CKM matrix element IV,bI to determine the allowed
region of the U model in the m&- tan P plane. An analysis
at the one-loop level neglecting Ab and A relative to Aq

was presented in Ref. [18].
The Yukavra matrices are diagonalized by unitary ma-

trices V~, VR, V V so that U ' = V UV t and
Dd'~s = VPDV& t. The CKM matrix is then given by

V&KM
——V„V& t. We define a "running" CKM matrix by

diagonalizing the Yukawa matrices U and D at any scale
t We find th.at A, /Aq and IV,bI are described in terms of
the Yukawa matrices by

(68)
Ag ( A2 Ag

v„ 4
A~ Ab

' (69)

with
mQ = ricRcg~(rrbg) . (7O)
mg

To leading order in the mass hierarchy, the ratio R,y& is
given by the ratio of eigenvalues of the 2 x 2 submatrix
of U in the second and third generations while V,b is
given by the difference in the rotation angles needed to
rotate away the upper-right-hand entry in the submatri-
ces of U and D. Given that the mass hierarchies exist,
there is a simple iterative numerical procedure for diag-
onalizing the mass matrices U and D and obtaining the
CKM matrix. We have checked that the corrections to
the above formulas from contributions subleading in the
mass hierarchy are small.

Et is straightforward to derive the resulting renormal-
ization-group equations from Eqs. (64)—(67):

(3Ag +Ab)+ 6 z Ag I 5gs+6g2 I+ 5Abgi —(13A, +2A, Ab+5Ab+AbA~) (71)

(A,
' + A,') +, I

—A,'g', + —A,'g,' —(5A', + 5A', + A,'A')
I

The corresponding evolution equations in the standard model are given by

dRc&p Rc&p f'3
~ 3 zl 1 ~ 2 (223 2 135 ~ 1 2l A2

(43 2 9
I 2A~

—
2Ab I

+ 16, A& I 80 gi+ 16 gz+16gs I

—Ab I 8Og~
—16g2+16gs I

—2A(3A + Ab) —
I

—A + —A Ab — Ab+ —A—A — AbA ~

—
) (73)

(21 4 17 q z 13 4 9 2 2 5
t (4 ' 4 ' 2 4' 4
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dlVbl ]Vobl ~ A2+ A2~l + 1 ~A2 l~
9 2 2+ 16g2

l
+ A2 2 2+ 16g2~l

+2A(A'+ A') —
I

A—
~ + —A~Ah+ A—b+ —A~A~+ —AsA~

l

(13 4 ll 2 2 13 4 5 2 2 5
t b

~ 2 t 2 t 2 4 4
(74)

The evolution equations in Eqs. (73) and (74) are ob-
tained from the two-loop RGE's of the standard model
given in Ref. [28] and in the Appendix.

In the supersymmetric model lV,yl increases with the
running from the GUT scale to the electroweak scale [44];
this is evident at the two-loop level in Eq. (72). The
opposite behavior occurs in Eq. (74) for the nonsuper-
symrnetric standard model where lV,b[ decreases as the
running mass decreases [43]. Figure 8 shows the running
of lV,gl for the cases MsUs&

——mq and 1 TeV. In con-
trast to lVd, l

the ratio R,y& increases monotonically as
the running mass decreases in both the standard model
and supersymmetric model cases.

We stress that Eqs. (71)—(74) are the correct evolu-
tion equations regardless of the fermion mass Ansatz at
the GUT scale. Changing the Ansatz just changes the
boundary conditions at the GUT scale (terms sublead-
ing in the mass hierarchy difFer between models, but this
is a negligible efFect). In a model for which the rela-

tions»p lVobl = gA. /Aq holds (as in the U model), this
boundary condition is gR,y&(MG) = lVo&(MG)l. In the
D model, to be described below, the mixing between the
second and third generations arises in the down-quark
Yukawa matrix alone, and so in his model R,y& and lV,bl

are unrelated at the GUT scale.
In our analysis of the CKM constraints we proceed as

in the discussion of the calculation for Fig. 5. We numer-
ically solve the two-loop RGE's as given by Eqs. (1)—(4),
(71), and (72) for the case MsUsY ——mq. As before, we
consider the representative choices ns(Mz) = 0.11 and
D3 (Mz ) = 0.12. For each ns (Mz ) choice, we consider a
grid of tan P values, holding

l
V,b(mq) l

and m, fixed. We
then choose input values for mq and mb [given ns(Mz),
tanP, lV, bl, m, ] in terms of which all running parame-
ters are uniquely specified at mq.'Aq(mq), Ab(mq), and
A (m&) are given by Eq. (34), a;(mq) are determined by
Eqs. (7) and (8) using the central values in Eq. (6), R,~~

is given by Eq. (70), and lV,bl at scale mq is an input.
After integrating the RGE's from mq to MG we check
the constraints

0.06

g 005

0.04

0.03
10 12

1n {p/ 1 GeV)

14 16

0.06 b) M =1 TeV

0.05

0.04

to within 0.1%. For such solutions we apply the other ap-
propriate boundary conditions [given by Eqs. (46)—(49)]
and integrate the two-loop SUSY RGE's to the GUT
scale, where we require that A&(MG) = A (MG) and
gA, yz(MG. ) = lV,g(M~)l to within 0.2%. In our cal-
culation we require that rn~, m„and ]V,gl be within the
experimentally determined 90% confidence levels of the
quark mass determinations of GL (4.1 ( mb ( 4.4 GeV,
1.19 ( rn, ( 1.35 GeV) and the recent Particle Data
Gro up ~al~e [11]«r

I
V b I (0 032 &

I
Vob

I
« o54).

In Fig. 9 the contours of constant
l
V,~ l

are shown in the

Ab(MG) = A (MG.),
R,(,(M~) = lv, b(MG) l

.

(75a)

(75b)
0.03

10 12 14 16 18
If either of these conditions is not satisfied to within 0.2%,
we choose another input value for mq and mb and repeat
the integration.

We also carry out the RGE calculations with a SUSY
scale at 1 TeV. This is done exactly as described in the
previous section. In addition to the other parameters, we
choose an input value for the quartic Higgs coupling A at
scale mq. We then integrate the two-loop standard model
RGE's to the SUSY scale and require that Eq. (45) hold

1n (p./1 GeV)

FIG. 8. Two-loop evolution of the quark Yukavra ratio
R,gz = A, /Aq and the CKM matrix element lV~ql for (a)
MsUsv ——mq and (b) MsUsv ——1 TeV. We have taken ns =
O. ll, tan P = 5 and have chosen the top and botto-m-quark
masses such that QR,yz(Mo) = lV,q(MG)l and m, = 1.27
GeV: (a) lV,s(mq)l = 0.054, mt, ——180 GeV, mb = 4.33 GeV;
(b) lV,q(m~)l = 0.050, m~ ——189 GeV, mt, = 4.14 GeV.
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mb- tan j9 plane for a fixed m, = 1.27 GeV. In Figs. 10
and 11 we show the contours obtained by applying only
the constraint in Eq. (75a) as in Fig. 5 along with the
contours obtained by applying both Eqs. (75a) and (75b)
for fixed m, as in Fig. 9. In Fig. 10 the value of m, is
fixed at 1.27 GeV and contours of iV,bi are shown. In Fig.
ll iV,bi is fixed at its maximum allowed experimental
value of ]V,bi = 0.054 (at 90% C.L.) and three values of
m, are plotted (corresponding to the central m, value
and the 90% C.L. values from GL).

For large tan p the effects of including Ab and A in the
RGE's increase

i
V,b i. In order to satisfy iV, b i

( 0.054,
the maximum allowed value of tan P for ns(Mz) = 0.11
is about 50(60) for MsUsY = mb(1 TeV); see Fig. 11.
For this value of ns(Mz) the U model predicts that iV,bi

still lies at the upper end of its allowed 90% confidence
level range when the effects of Ab and A at large tan p are
included in the two-loop RGE's; see Fig. 10. Allowing mb
to become larger than the narrow window mg = 4.1 —4.4
GeV requires bigger iV,bi, which is unacceptable. The
higher b mass contour mb = 5 GeV is not consistent with

TABLE IV. Maximum values of mb(mb) in GeV consis-
tent with the 90'%%uo confidence levels of [V,bi and m, (m, ).

Msvsv

fAt

1 TeV

n3(Mz) 0.11

4.56
4.70

0.12

5.28
5.33

B. The D model

Giudice has proposed a different Yukawa mass Ansatz
[7] of the form

the GUT scale Ansatz for ns(Mz) = 0.11. The largest
consistent values of mg are given in Table IV.

With ns(Mz) = 0.12, iV,bi can be much closer to its
central value, enhancing the plausibility of the U model,
with the only caveat being that low mb (( 4.2 GeV)
values produce Ab(M~) values which are close to being
non-perturbative for most values of tan P: see Figs. 6(b),
6(d). Notice that the dominant effect of taking the larger
value of ns(Mz) indicated by two-loop evolution is to in-
crease the /CD-@ED scaling factor Ill„ thereby allowing

~
V,bi to be smaller and in better agreement with experi-

ment.
Imposing the constraints on m b, m„and

i V,b i
also

gives the lower limits on the top-quark mass since the
iV,bi contours in the smaller tan p region are steeper and
eventually cross the mb/m contours [18]. These lower
limits on mb are summarized in Table V.

The constraints on mb/m, iV,bi and m, completely
determine the allowed region in the mb, tan p plane of
the U model. Other constraints such as the e parameter
for CP violation in the neutral kaon system, B mixing or
the lighter quark masses acct only the other parameters
in the model [18].

If the Yukawa unification is assumed to occur at a scale
higher than the gauge couplings, then the predicted value
for iV,bi will be lower [4] and easier to reconcile with the
experimental data.
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TABLE V. Minimum values of mo(mo) (tan P) in GeV
consistent with the 90% confidence levels of mb(mb), iV,bi
and m, (m, ).

FIG. 9. Contours for constant iV,b] at fixed m = 1.27
GeV in the mi-tanP plane obtained from the RGE's with
(a) MsUsY mi n3 (Mz) = 0.11; (b) MsUsY ——1 TeV,
nq(MZ) = 0 12.
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m„= " —""3m,
~

1 —8 ' +
S/2 2

x r», ( m~ 9 m r»~)
(82)

S/2

x r»p3 ( mp

4n' m„g. &

9 m~r»q)

1/2 q~b =y —m~ .
x rl7-

(84)

Notice that at one-loop level to leading order in the mass
heirarchy the running [V,b] is related to the strange- and
bottom-quark Yukawa couplings by

iV,b(»i)i = nR, »b(»i)—:n
A. (» )
Ab»i

(85)

Equations (78)—(84) can be compared to Eqs. (58)—(63)
for the U model, except that we have retained the high-
est non-leading-order corrections only for the D model.
When n = 2 the predicted value of ~V,b] agrees well with
the experimental value. On the other hand ~V,

~

is just
at the lower limit of its 90'Fo confidence level. The overall
situation can be improved somewhat by allowing n to be
slightly larger than 2.

The leading term in Eq. (78) can be recognized as
the' relation [19] between the Cabibbo angle and the
quark masses, tan ec = gmg/m„supplemented by the
Yukawa unification relation mg/m, = 9m, /m~. Notice
that this relation involving the first and second genera-
tions does not run, so the prediction of the Cabibbo angle
is insensitive to the size of the gauge and Yukawa cou-
plings. The two-loop effects for the most part increase
o.s and hence the @CD scaling factors r»q. The infiuence
of two-loop contributions in the running of the Yukawa
couplings is small.

For tan p + 10, Ab and A~ can be neglected in the
RGE's; then the relation for m„ in Eq. (81) implies an
upper limit on mi [7]. However, further solutions for
mb/m are possible with large tan p, as can be seen in
Fig. 5. In the allowed mb/m band at large tan p the
predicted value for m„ from Eq. (81) is still satisfactory,
since mi is in the same range as found for the small tan»3
solutions.

The CP-violating phase is not very well constrained in
the D model since the phase does not enter in the well-
measured CKM elements; in fact the phase can assume
almost any nonzero value within its zero to 2' range.
Correspondingly CP asymmetries to be measured in B
decays are not very constrained in the model [48]. In
contrast, the CP-violating phase in the U model is al-
most uniquely determined by

~
V„,] and the CP-violating

asymmetries are predicted precisely. This remains the
case at the two-loop level. In the U' model scheme the
dependence on a.s(Mz) cancels out in quark mass ra-
tios, and since the constraint on the phase arises from
the 6rst- and second-generation mixing angles, there is
no dependence of the phase on Aq.

V. CONCLUSION

We have investigated uni6cation scenarios in super-
symmetric grand unified theories using the two-loop
renorrnalization-group equations. Our primary conclu-
sions are the following:

(1) Given the experimentally determined values for ni
and o;z at Mz, the RGE's predict a~ 0.111(0.122)
at one-loop (two-loop) for MsiisY

——m& and o'3
0.106(0.116) for MsUs&

——1 TeV. Including the Yukawa
couplings in the two-loop evolution of the gauge couplings
decreases ns(Mz) by only a few percent. Thus the val-
ues of ns(Mz) 0.12 obtained experimentally at LEP II
are also theoretically preferred if GUT-scale thresholds
effects or intermediate scales are not important.

(2) For any fixed value of ns(Mz) and mb there are just
two allowed solutions for tan P for a given top-quark mass
if mi & 180 GeV; the larger solution has tan p ) mi/mb
and the smaller solution is sinP 0.78(mi/150 GeV).
Allowing for some uncertainty in o.s(Mz), mb, and
MsUsY, these unique solutions for tang at given mi be-
come a narrow range of values. For mq = 180 —200 GeV
the value of tan P changes rapidly with mi.

(3) With Ab, A unification we find an upper limit mi
200 GeV on the top-quark mass by requiring the success-
ful prediction of the mb/m„ratio; we also obtain lower
limits mi & 150 GeV (115GeV) for ns(Mz) = 0.11(0.12)
from evolution constraints on mb, m, and ~V,b~. These
lower limits are only mildly sensitive to MsUsv.

(4) The effects of raising Ms&s Y is to decrease both o,G
and MG and to decrease the values of ns(Mz) that yield
successful unification, Also, the allowed band for the
mb/m~ ratio in the mi-tan p plane is shifted towards
slightly higher top-quark masses. This in turn slightly
reduces the prediction for ~V,b~ in models that utilize the
relation QA, (M~)/Ai(M~) = ]V,b(Mt-) ~.

(5) In the U model we find an upper limit on the su-
persymmetry parameter tanP & 50(60) for MsUsY
mi(l TeV) if os(Mz) 0.11; for ns(Mz) = 0.12 the
solutions at large tan P extend into the region for which
Ab(M~) is nonperturbative.

(6) For the value ns(Mz) 0.12 indicated by the
two-loop RGE's, the agreement of the ~V,b~ prediction
of the U Ansotz with experiment is improved. In fact for
as(Mz) = 0.12 and Msiisv ——1 TeV the central values
for ]V,b~ and the mass ratio mb/m almost coincide in the
mi-tan P plane; see Fig. 10(d). This result is more gen-
eral than the U Ansotz, and occurs for any model with
the GUT-scale relation ~V,b~ = gA, /A&.

(7) With as(Mz) 0.12 a large top-quark Yukawa
coupling is needed to achieve the correct mb/m~ ratio,
and the theory is in some jeopardy of having a nonper-
turbative Ai(M&) if mb is smaller than about 4.2 GeV.

(8) GUT unification of A~, Ab, and Ai can be realized
for tan»3 & 50.

(9) The predictions for the CP asymmetries in the U
model are largely unaffected by our two-loop analysis.

(10) We have found new solutions to the D model for
large tan p. These results require the inclusion of Ab and
A in the RGE's, and therefore could not be obtained in
Giudice's analytic treatment at one loop.
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APPENDIX

To consider a specific Ansatz for Yukawa matrices at
the GUT scale at the two-loop level requires knowledge of
the RGE's. These can be derived from formal expressions
that exist in the literature [27). For the supersymmetric
model with two Higgs doublets, the one- [26] and two-
loop RGE's can be written for general Yukawa matrices
as

dg, g'
b 2 + 1

g + ~ g gg g~
j=1 j=U,D,E

a,,g; Tr[Y;Yt]

with V~ = U, etc. ,

dU
dt

—).c'g,' + 3UU' + DDt + T [3UUt]

) (c~b~+c;/2) g, +g&g2+ gags +8gzgs16' 45 1 3

+
~

—g', + 6g,'
~

UUt + —g,'DD' +
~

—g,
' + 16g', ~

Tr[UUt]

—9T [UUtUUt] —3T [UUtDDt] —9UUtT [UUt]

—DDtTr[3DDt + EEt] —4(UUt)' —2(DDt)' —2UUtDDt U, (A2)

—) c',g,. + 3DDt + UUt + Tr[3DDt + EEt]

+ 2 ' ) ( ~ ~+ ~ /2) g~ +g»2+ g»s+ g2»

+
~

—g~ +6g2
~

DD + -g~UUt +
~

——g~ +16gs I
Tr[DD ] + —g~ Tr[EE ]

4 ( 2

5 & 5 ) 5

—9Tr [DDt DDt] —3Tr [DDt UUt] —3Tr [EEtEEt] —3UUt Tr [UUt]

—3DDtTr[3DDt + EEt] 4(DDt) —2(UUt)2 —2DDtUUt D (A3)

dE 1

dt 16+2
—) c,"g, + 3EEt + Tr[3DDt + EEt]

).( ~+ ' / ) g + —gags +6gsEE +
~

——g, +16gs
~

Tr[DDt]+ g, Tr[EEt]
6

—9Tr [DDt DD t] —3Tr [DD tUUt] —3Tr [EEtEEt]

—3EEtTr[3DDt + EEt] —4(EEt) E, (A4)

where
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b, =
/

—,1, —3
i) '

/13 16'
c, =

i
—,3i15' '3y

(7 16'
c', =

i
—,3i15' '3)

c,"=
i

—,3, 0 i,
i —Ci Ci

I I/

199 27 88

(A5)

(A6)

(A7)

(A9)

and

25 24

9 14)

(A10)

4 0)
(A11)

These equations agree with those in the last paper in Ref. [27] for the case where the Yukawa matrices are diagonal,
if the following minor corrections are made: (1) bsi should be decreased by a factor 3; (2) the closing parenthesis in

the second term of pHl should come before the o;z, (3) the first term of p( l should have a factor a~& instead of n22.

The two-loop RGE's for the standard model are [28]

d 1 (:'-
bsM 2+ ASM 2 2

dt 167r2 ' ' 16vr2 j=U, D,E
a'Mg'Tr[V Vt] (A12)

1
16vr2

—) c; g; + —UUt ——DDt + Y2(S)

1 f 1187 4 23 4 4 9 q q 19+
16m2 ( 600 4 20 15g&

——g2 —108g3 gj g2 + g] g3 + 9g2g3

+
I gi+ g2+16gs

~

UU
I gl g2+16gs I

DD(223, 135, ,l t (43, 9

( 80 16 80 16

+—Y4(s) —2A (3UUt + DDt) + —(UU')' —DDtUUt ——UU'DD' + —(DD')'
2

' 2

+Yj(S) i

—DDt ——UUt
i

—y4 (S) + —A U,&5 9 3,&

i4 4 2
(A13)

dD 1
dg 16' 2

—) cP™g,'+ -DDt —-UUt+ Y,(S)

1 i 127 4 23 4 4 27 2 2 31
+ l

—
g&

——g2 —108g3 ——
g& g2 + —

g& g3 + Qg2g3
16m2 ( 600 4 20 15

t'187 2 135
gi g2+16gs iUU +

I gi+ g2+16gs I
DD

i80 16 80 16

Y4(S) —2A (UUt + 3DDt) + —(DDt) —UUtDDt ——DDtUUt + —(UUt)5 3 2 1 ll
2 ' 2 4 4

+Y,(s) l

-UUt —-DDt
i

—g4(s)+-x' D,(5 9 & 3,i
(4 4 ) 2

(A14)
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dz 1

dh 16' 2

3) ciisM 2 + Ezt + Y (S)

+ 16 2 200 gl 4 g2 + 20glg2 +
I 80 g1 + 16 g2 I

Ez' + -Y4(s) —6&zz'

+—(ZE~)2 ——Y2(S)ZZt —~4(S) + —X2 Z,3 2 9 3,)
2 4 2 )

(A15)

dA 1 9(3 4 2 22 4i (9
4 I 25g1+ 5g1g2+g2 I

—
I 5g1+9g2 I &+4Y2(s)A —4a(S)+ 12A'

( 73 , 117 , , 1SS7 ,i+ , —78&' + »
I 5g1 + 3g2 I

&' +
I

——g,' + g,'g,' + g,' I
w16~2 ( (5 ) ( 8 20 2pp 1)

+ g2 — g1g2 — g1g2 — g, —64g3Tr[(UU ) + (DD ) ]
305 6 867 2 4 1677 4 2 3411

——g1 Tr[2(UUt) —(DDt) + 3(zzt) ]
——g2 Y2(S) + 10AY4(s)

+—g1 I

——g1+2lg2 I
Tr[UU ]+ I

—g1+9g2 I
Tr[DD ]

32 ( 572 2& t (35(ip)
+

I

——g1+ llg2 I
Tr[EE~] —24% Y2(S) —AH(S) y 6ATr[UUtDDt]

where

+20Tr 3(UUt) + 3(DDt) + (Ezt) —12Tr UUt (UU" + DDt)DDt (A16)

(41 19
10' 6 ' )

(17 9
20' 4' ) '

ISM

IISM
4'4'

Y2(s) = Tr[3UVt + 3DDt + Ezt],

Y (S) = — 3) c, ; Tr[U'Ut] + 3) c'; g, Tr[DD~]+ ) c", g; Tr[zzt]
M

X4(S) = -Tr 3(UU )'+ 3(DDt)'+ (Ez~)' —-UUtDDt
3

~(s) = T [3(UUt)'+ 3(DDt)'+ (ZZt)'],
199 27 44

(A17)

(Als)

(A19)

(A20)

(A21)

(A23)

(A24)

5SM
U

and

9 35
10 6 12

-26)

(A25)

3 3 1
2 2 2

(2 2 0)



1112 V. BARGER, M. S. BERGER, AND P. OHMANN 47

These renormalization-group equations are those given in the classic papers of Machacek and Vaughn after replacing
H ~ Ut, FD ~ Dt, FL, —+ Et, and making the following corrections to Eq. (A16) mentioned in the paper of Ford,
Jack, and Jones [28]: (1) The Ag&2 term in the one-loop P function has a coefffcient 9 instead of 1. (2) The Ag2&g2~ term
in the two-loop P function has a coefficient +117/20 instead of —117/20. (3) The Agz in the two-loop P function has
a coefficient +1887/200 instead of —1119/200.
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