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Tensor-meson dominance: Phenomenology of the f2 meson
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The f2 meson interaction is studied with the tensor-meson-dominance hypothesis of the energy-
momentum tensor. A single parameter that determines the f2 meson interactions is fixed by the decay
f2 +rrv—r Th.en the hypothesis not only gives the right final photon helicities in the decay f2 —+yy, but
also reproduces its decay rate correctly. Further tests are suggested in other decay modes and two-
photon production of the f2 meson.

PACS number(s): 12.40.Vv, 13.25.+m, 13.40.Hq, 14.40.Cs

I. INTRODUCTION II. TENSOR MESON DOMINANCE

The vector-meson-dominance (VMD) hypothesis has
been successful in low-energy phenomenology [1]. It ap-
pears that the p meson not only couples effectively to the
isospin current, but also dominates in the isospin current
at low energies. It often works with surprisingly good ac-
curacy. One way to incorporate VMD in field theory was
to postulate the field-current identity [2], which asserts
that the currents be actually proportional to the vector
fields themselves. In quantum chromodynamics, howev-
er, there is no doubt that the isospin current consists of
quarks and that the ground-state vector mesons are the
5, states of quark-antiquark. The other explanation was

the kinematical argument which attributes the high accu-
racy of VDM to the lightness of the p meson. But the p
meson is not so light in reality. Though both the field-
current identity and the p meson pole saturation work as
a computational tool, it is doubtful whether a satisfactory
explanation has been really given as to why VMD works
so well.

We can stretch our imagination and extend the VMD
hypothesis to the tensor mesons of J =2+, namely, the
I'z states of light quark-antiquark. We replace the

currents in VMD by operators of right quantum num-
bers. The prime candidates of such operators are of
course the energy-momentum tensor and its flavored
partners. This hypothesis, called the tensor-meson-
dominance (TMD) hypothesis, asserts that the f2 meson
dominates in the energy-momentum tensor 0„.Though
the TMD hypothesis was studied in the past [3,4], its
consequences were not fully explored. Here we will re-
visit the TMD hypothesis in the light of more recent
theoretical and experimental progress. In Sec. II, the
basic facts are discussed. Then the low-energy pion in-
teraction of f2 is viewed from the angle of the eff'ective

chiral Lagrangian in Sec. III. In Sec. IV, the experimen-
tal data on the decay fz~yy are analyzed by TMD.
The decay rate and the photon helicities are in agreement
with TMD if we apply it as a hypothesis on the effective
Lagrangian. We make several suggestions on further
tests of TMD in Sec. V.

(a(p)lJ„(O)~b(p —q)), (2.2)

is saturated by the contribution of a one-vector-meson
state. A continuum contribution to the absorptive part
lowers the precision of VMD. For instance, the high
accuracy of the Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin (KSRF) relation [5] implies that the rr~
continuum contribution from outside the p mass region is
only 6—7%%uo for the spectral function of the isospin-vector
current.

We extend the VMD relation (2.1) to

0„',(x )=gf P„(x ) (2.3)

for the f2 meson field P„. The left-hand side of Eq. (2.3)
is the traceless part of the symmetrized, conserved
energy-momentum tensor O„of quarks and gluons at
the fundamental level or of aO hadrons in phenomenolog-
ical applications. The value of gf can be determined
from the decay rate for f2 +trtr For th—is pur. pose, define
the matrix element of e„by

(,(p)tr (q —p)lO„.(0)lO)

=&,b[(p„—q„/2)(p, q /2)T, (q )—
+( —g .q'+ q„q„)T, (q') ), (2.4)

where (p q ) =q /2 by the pion mass-shell condition.
The f2~vrmdecay amplitude is g. iven by

In the language of the field-current identity, VMD as-
serts that the extrapolated field P„of a vector meson is a
vector current J„:

(2.1)

where g& is the decay constant of the vector meson. In
the language of dispersion theory, the absorptive part in
q of the matrix element
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M(fz~~, ~b)= lim (1/gf)(mf —
q )

q =m f
Xe" (~, (p)ir„(q —p)~O„„(0)i0),

where e" is the polarization tensor of f2 which satisfies
e„=e „,e"„=0,and q "e„=0for q =If. Only the am-
plitude T, contributes to the f2 meson decay. TMD im-

plies

T, (q )=gf„ /(mf —
q ) (2.6)

L,„,= gf„(—B"n"r) n )p„ (2.7)

and requires that this form be valid not only near the pole
at q =m but also away from q =mf, in particular,
even at q =0. The residue gf is equal to the f2'~ cou-
pling constant defined by

the g fields alone of Eq. (3.1). Namely, the elastic nn
scattering due to the p exchange is given by

Lg'= —m tr~ —i(g /m )[ir, B„vr]~ (3.2)

On the pion mass shell, this reduces with the KSRF rela-
tion, g~ =m l2f, to the form

L4 '=(1/4f')(I &„ I' — 'Ii)„ I') . (3.3)

En comparison, the 4~ contribution of the minimal term
(f /4)tr(B„UB" Ut) is

=(1/6f )([~.il„ir] —m. [B„ir] ) .

That is, if we try to fit low-energy m.m scattering by extra-
polating the p meson pole diagrams alone, we would
overshoot by 50% [8].

Let us turn to the f2 meson. The f2 meson interaction
can be introduced by adding to the minimal Lagrangian
the term

Thanks to TMD, we can evaluate the right-hand side of
Eq. (2.5) at q =0 instead of q =mf. Since T, (0)=2 at
q =0 according to the normalization condition of 0„,
gf is related to gf by

Lf =(d i'" B„i'„)/2 (mf /2—)$„$"
—(mf /gf )0„'„' 'p"

where

(3.5)

2 (2.8)

Substituting the observed decay width
I (f2~ir+~ +m m )=156+, 3 MeV [6] in the decay
width formula

I (fz sr+a)=(mf/1. 5')(mf/gf) (Ip.l/mf)'

we obtain the constant gf ..

gf =(0.084+0.001)Xmf .

(2.9)

(2.10)

III. EFFECTIVE CHIRAL LAGRANGIAN

+m tr
/ p„—i (g „ /m ) [7r, i)„m ]+ (3.1)

where p„=p .r/2, v=r-r/2, and (=i/U =exp(im/f )
with f =93 MeV. Here we have used the notation

~
A„~—:A o

—A . At E &&m, we can drop the first term
in the leading-order approximation. When we integrate
out the p field, the entire L is gone and the minimal La-
grangian is recovered. This means that the p-meson pole
diagrams counterbalance the m.m. interaction coming from

The fz meson interaction aFects low-energy pion dy-
namics. One way to describe this efFect is to translate it
into higher derivative terms of the efFective chiral La-
grangian. Since we have some knowledge of the next-to-
leading-order terms of the chiral Lagrangian, we look at
the TMI3 hypothesis from this angle.

Before discussing the f2 meson contribution, we would
like to review the p meson in the chiral Lagrangian. The
p~ interaction can be described by adding to the minimal
Lagrangian the term [7]
L = tr(G„'~'—G" 'i')/2

+m tr
f p„+i (g f2 /m 2

) [B„g't, g ] f
2,

——tr(G'i )G "~(i )
) /2

O„'."=(f'./2)tr[[a„g', gI [&A,g'I

—g„.[a g', g] [a.g', g j/4]

=(f2/2)tr[c}„UB„U —g„(B'UB U )/4] . (3.6)

Lz =0.50X 10 (3.8)

which is about a third of the quark-loop contribution
without gluon corrections [9], L2 =i', /192ir with
N, =3. The estimate of Lz from the low-energy d-wave

phase shifts, combined with the leading infrared
singularity of the pion loops renormalized at m„, was es-
timated as L2=(1.7+0.7)X10 [10]. The positive sign
of Lz implies that the force is attractive in the I=O d-
wave channel, to be more precise, 5zo —

5zz & 0. Ef we take
this estimate of L, z, the low-energy limit of d-wave sr~
scattering is not dominated by the s-channel f2 meson
pole. However, this does not necessarily contradict

For the pmm. interaction, I must be of the squared form
since otherwise integration of the p field would generate a
wrong term of dimension 4. One may advocate such a
form by a hidden local symmetry [7]. In contrast, there
is no reason for putting Lf into a squared form for the f2
meson. At low energies ( «mf), the first term in Eq.
(3.5) can be ignored. In this limit, the Euler-Lagrange
equation for i))„„ is the TMD relation Eq. (2.3) itself. If
the f2 meson field is integrated out, the chiral Lagrang-
ian terms of dimension 6 appear:

fL 2)P =(m /2g )O~' 0"'" '"'

=(mff /8gf )tr(B„U 8 U )tr(B"U 8 U )

(mff l32gf )t—r(i3„U ai'U')' . (3.7)

Numerically, the coefficient of the first term
L2 f mf /8gf is equal to——
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TMD, since TMD demands f2 dominance in the energy-
momentum tensor, not in low-energy am scattering. It is
not surprising at all that the f2 meson poles fall short of
accounting for the entire ~tr(B„UB„U )~ term, because
tails of other pion resonances in the crossed channels and
iteration of the minimal Lagrangian term are certainly
more important in d waves than in p waves. It is very
desirable to find some principle that determines the f2mvr.
coupling in analogy with the pm~ coupling.

We are able to make two tests with our TMD hy-
pothesis, Eqs. (4.3)—(4.5). The first test is on the final
photon helicities. Since only the traceless part is picked
up by the f2 polarization tensor in L;„, of Eq. (4.3), the
photon helicities are determined by the F„F part of
8(~). In the rest frame of f2, the terms proportional to
5;J in 0;J also go away, and the f2yy interaction reduces
to

IV. THE TWO-PHOTON DECAY
(4.7)

We proceed to analyze the decay f2~yy. This decay
was studied through the two-photon annihilation process
y'y*~f2 in e+e collision. In applying the TMD hy-
pothesis, we will relate the process f2 —+yy to the pro-
cess f2~pp (coa)) by VMD.

The effective Lagrangian of the f2 interaction with a
neutral vector meson P„(p or co) under the TMD hy-
pothesis is

where E and 8 are electric and magnetic fields of the two
photons, respectively. This leads us to the ratio of the f2
production cross sections by slightly off-shell photons,

~[y*(+1)y*(+1) fp(0)] qo' —q'
(4.8)o[y*(+1)y*(+1)~fz(+2)] 6(qo +q )

where the photon momenta are chosen to be (qo, q) and
(qo, —q). The entries in the parentheses following y"
denote helicities, and the entries in the parentheses fol-
lowing f2 are the f2 spins along the direction of q. For
the on-shell photons (qo =

~q~ ), this ratio of cross sections
is zero. Therefore,

L/i, i,= (mI/g/)0—„'
' (4.1)

where

Q~& ( v) G v( v)G( v) + m 2
ypv p VK V p V

(GKX( V)G( V) 2yay (4.2) I [f2~y(+1)y(+I)]/I [f2~y(+1)y(+1)]=0 . (4.9)
It should be emphasized that, according to the TMD hy-
pothesis, the constant g& in Eq. (4.1) is the same universal
constant that has also appeared in Eq. (3.5). Using L&i v
as an effective interaction and barring a gauge-
noninvariant term, we obtain with VMD the interaction
for fz~yy of the form

„(y) pv (4.3)

where

8„(r) = F'F, +g„—F„&F' /4 . (4.4)

g& =e (mI/gI)[(g /m ) +(g /3m„) ],
where g is defined by

(p( ) II (0)10)=g„., ~,

(4.5)

(4.6)

where J" is the isospin current for p and the isoscalar
current of the u and d quarks for co. The value of g
can be found from the observed decay rate for
p(a) )~ l l or from the KSRF relation, g

As we can easily see by helicity counting with parity and
gauge invariance, there are two independent amplitudes
for f2 ~y y in general, one for the final yy helicity
h =+2 and the other for h =0. The effective interaction
Eq. (4.3) therefore means a specific relation between the
two amplitudes. This form of the two-photon coupling of
fz is a consequence of treating Lf)'v as a tree-level
effective interaction. We adopt this prescription of TMD
and see how it fares with experiment.

It is straightforward to determine the coupling gfy y
with the standard use of VMD. By use of Eq. (2.8), we
find

This is in agreement with what was observed in experi-
ment. The most stringent experimental upper limit on
this ratio is [11]

I [f,~y(+1)y(+I)]/I [f,~y(+l)y(+ 1)]

&0.15 (95% CL) . (4.10)

When the TMD hypothesis is extended to the other ten-
sor mesons, the same prediction follows for photon helici-
ties in a2(1320)~yy and fz(1525)~yy. Dominance of
the h =+2 states for the final photons has been observed
in yy ~a2~mrt [12] and yy. ~f 2 ~Ks+s [13] as well.
In the past, argument was made in favor of helicity-two-
dominance with resort to the finite-energy sum rule [14]
and to a superconvergence-type sum rule [15]. However,
the origin of helicity-two-dominance in those arguments
was mostly due to the kinematical factor of 6 that also
appears in Eq. (4.8). TMD predicts helicity-two-
dominance aside from this numerical factor. It is in-
teresting to note that the naive quark model would also
favor helicity-two-dominance if we took the static limit
for the quarks inside f2 [16]. They are actually highly
relativistic. In our TMD argument, nowhere does the as-
sumption of static quarks enter.

The other test of TMD is for the decay rate of
f2~yy. With Lg~ of Eq. (4.3),

I'(f2~yy)=(20m/81)(e /4m) (mf/gf) (g /m ) m&

(4.1 1)

which includes both the pp and ~co contributions in the
approximation of m =m and g =g . In terms of the
ratio I (fz~yy)/I (f2~sr+m), TMD predicts.
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I (f2 yy)/I (f m+m.

=(loom /27)(e /4n)(. g /m ) (mf/~p ~)

M[f2 y*(+1)y*(+1)]
=C(qoqo +q') /(m ' —q')(m ' —q'),

M[f2~y*(+1)y*(0)]

=5.1X10

According to the latest high-statistics data [17],

I (f2 ~y y ) =3. 15+0.04+0.39 keV

which translates into

[r(f, yy)lr(f, 7r+~ )],„=(3.0+0.4)X10

(4.12)
=(C/V2)qDV' —q' /(m —

q )(m —q' ),
(4.14)

M[f y "(+1)y*(+1)]
=(C/06)(qoqo q—)/(m~ —

q )(mz q' —),
M[f2 y*(o)y*(o)]

=&2/3C+ —
q + q' —/(m —

q )(m —q' ),
where the photon momenta are (qo, q) and (qo, —q), and
C =2(e g mf /gf ). These matrix elements are applicable
when ~q'~/m, ', q'~/m, '((1.

V. OTHER DECAY MODES

(4.13)

It may appear that agreement of TMD with experiment
is not impressive. However, our TMD prediction in-
volves the assumption of perfect VMD twice. If VMD is
short by 10%, for instance, the right-hand side of Eq.
(4.12) would be lowered by a factor of (0.9) down to
3.3X10, which is in line with the experimental value.
Unlike the helicity property, the decay rate is more sensi-
tive to small deviation from the perfect VMD and TMD,
so closeness of the perfect TMD prediction to experiment
should be taken as a positive evidence for TMD [18].

Our helicity prediction for the on-shell photon final
states can be extended to the off-shell photon final states.
In the rest frame of f2, TMD gives for the matrix ele-
ments of f2~y'y*,

Among other decay modes of f2, the decay f2~py is
interesting from the viewpoint of TMD since the longitu-
dinally polarized state of p can probe further details of
the TMD hypothesis. For the decay rate, TMD gives as
a ratio to I (f2~yy)
r(f py)ll (f, yy)=(81/200m')(4n/e )(m /g )'

XF(m /m 2), (5.1)P f
where F(x)=(1—x) (1+x/2+x /6). The right-hand
»de of Eq. (5.1) is equal to 2X10, which means the
branching ratio B(f2~py) =0.6X 10 . No experimen-
tal value has been available to date.

The decay mode f2 ~~err~ has not been actively stud-
ied for years. As was pointed out by Ascoli et al. [19], iff2~(arm)I &(arm')'I

&
dominates, the decay branching ra-

tios should be

r(f + 0 0)r(f + + )r(f 0 0 0 0)—2.10 (5.2)

The world averages of the currently available data for
these ratios are [6]

2+o.7s . 0.81+0.16:0.09+0.03, (5.3)

r(f, -~+~ ~0~0)=r(f, p+p*

+I (f p*+p sr+sr p ),

which are consistent with (m~)1, dominance. En-
couraged with this observation, we adopt a p-dominance
model, f2~pp~nnnn, for the 4' deca.y. Since at least
one of the two p's must be off shell, we compute the de-
cay rate with the assumption,

I (f2 vr+m ~ m )=(g /480m )(mflgf)

X ( m Imf ) m I f(y )dy,
a

f(y ) =(y —4m'/m')' '&P(y)ly [(y —1)'+I'/m']

X [4(2+ 1/y )P(y )'/3+ 10[mf /m„'+ (1—y )'/y ]

XP(y)/3+ lomf /m ],
P(y) =(m P2/mf2)(mf2/m P2

—y+1)2/4 —1,
(5.5)

where the integral variable y is the invariant mass square
of the nonresonant m.m pair in units of m with the lower

P
and upper limits of the integral being a =4m /m and
b =(mf/mp —1)2. Numerically, the rate computed with
Eq. (5.5) is

where p* denotes an off-shell p. The result is

(5.4) I (f2~~+~ mm)=13. 8 MeV, . .

as compared with

(5 6)
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F(fz~tr+rr rr tr ),„=(12.7+&'t) MeV [6] .

Though the contribution for both p's off shell is a little
more cumbersome, a crude estimate indicates that it is
much smaller than the pm+ contribution. At present,
statistics is not high enough to determine from the mm

invariant-mass plot whether the decay actually occurs
through p~~ or not. For the time being, agreement of
our estimate of I (fz~zr+~ n rr ) with experiment may
be counted as another support for TMD.

VI. CONCLUDING REMARKS

fz meson dominance in the energy-momentum tensor
seems to be a viable hypothesis in light of the current ex-
perimental data on the fz meson decay. At present, we
are unable to clarify the role of the fz meson in low-
energy ~sr scattering in the context of the chiral I.agrang-

ian. It is tempting to constrain the fz meson interaction
by some fundamental principle, e.g., conformal invari-
ance. When the hypothesis is extended in isospin and
SU(3) flavors, we will encounter new problems. For in-
stance, how can one explain the large decay width for
a2~pm. ? We will try to look at these problems in the fu-
ture.
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