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Chiral Lagrangians for radiative decays of heavy hadrons
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The radiative decays of heavy mesons and heavy baryons are studied in a formalism which incorpo-
rates both heavy-quark symmetry and chiral symmetry. The chiral Lagrangians for the electromagnetic
interactions of heavy hadrons consist of two pieces: one from gauging electromagnetically the strong-
interaction chiral Lagrangian, and the other from the anomalous magnetic moment interactions of the
heavy baryons and mesons. Because of the heavy-quark spin symmetry, the latter contains only one in-
dependent coupling constant in the meson sector and two in the baryon sector. These coupling constants
only depend on the light quarks and can be calculated in the nonrelativistic quark model. However, the
charmed quark is not heavy enough and the contribution from its magnetic moment must be included.
Applications to the radiative decays D*~Dy, B*~By, ",'~ ",y, X,~A, y, and X,~A, my are
given. Together with our previous results on the strong decay rates of D*~D~ and X,~A, m, predic-
tions are obtained for the total widths and branching ratios of D* and X, . The decays X,+ ~A,+m y and
X,~A,+~ y are discussed to illustrate the important roles played by both heavy-quark symmetry and
chiral symmetry.

PACS number{s): 13.40.Hq, 11.30.Rd, 14.20.Kp, 14.40.Jz

I. INTRODUCTION

Mass differences are generally small among the
different spin multiplets of the ground-state heavy mesons
and heavy baryons which contain a heavy quark. This is
a consequence of the heavy-quark symmetry [1,2] of
QCD. As a result of the small available phase space, the
dominant decay modes for many of these heavy particles
are strong decays with one soft pion emission and/or ra-
diative decays. Prominent examples are D*, B*,and X,
among the heavy particles already observed. As none of
the absolute widths for these decays has been measured
experimentally, it is important to have a single frame-
work for treating the strong and radiative decays of these
particles. It will be then possible to test the predictions
on branching ratios of various decay modes with avail-
able data. An ideal theoretical framework for studying
these decays is provided by the formalism recently
developed to combine the heavy-quark and chiral sym-
metries of light quarks [3—8]. When supplemented by

*Permanent address: Floyd R. Newman Laboratory of Nu-
clear Studies, Cornell University, Ithaca, NY 14853.

the nonrelativistic quark model, the formalism deter-
mines completely the low-energy dynamics of heavy had-
rons. Among other things, the strong decays are treated
in detail in Ref. [3]. The radiative decays are the subject
of the present work.

The formalism of Ref. [3] is easily extended to incorpo-
rate the electromagnetic field. The electromagnetic in-
teractions of heavy hadrons consist of two distinct contri-
butions: one from gauging electromagnetically the
chirally invariant strong-interaction Lag rangians for
heavy mesons and baryons given in Ref. [3] and the other
from the anomalous magnetic-moment couplings of the
heavy particles. Heavy-quark symmetry reduces the
number of free parameters needed to describe the mag-
netic couplings to the photon. For the ground-state
mesons, there is only one undetermined parameter, and
there are two for the ground-state heavy baryons. All
three parameters are related simply to the magnetic mo-
ments of the light quarks in the nonrelativistic quark
model. However, the charmed quark is not particularly
heavy (m, = 1.6 GeV), and it carries a charge of —,'e. Con-
sequently, the contribution from its magnetic moment
cannot be neglected.

In the nonrelativistic quark model, all the magnetic
moments of hadrons are due to those of the constituent
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II. CHIRAL LAGRANGIANS
FOR ELECTROMAGNETIC INTERACTIONS

OF HEAVY MESONS

To set up our notation, we denote the three light
quarks by q,

Q

q=
S

(2.1)

and the associated charge matrix by
a=diag( —,', —

—,', —
—,
' ). The charge of the heavy quark Q

is interchangeably denoted by e& or 0', depending on the
circumstance of which one is more convenient to use.
Under the electromagnetic gauge transformation for the
vector potential A„

(2.2)

quarks. Thus two of the 1/m& corrections can easily be
taken into account. The first is to remove the magnetic-
moment terms of the heavy hadrons arising from the
minimal coupling s to the electromagnetic field. The
second is to include the contributions from the magnetic
moment of the heavy quark.

In Secs. II and III we present for heavy mesons and
heavy baryons, respectively, the details of the formalism
and related considerations including the SU(3)-Aavor
symmetry breaking due to light-quark mass differences.

In Sec. IV we consider applications to the radiative de-
cays of charmed mesons and charmed baryons. Some ex-
amples are D*~Dy, =,'~ =,y, X,~A, y and
X,~A, ~y. Among these, perhaps the results for the
D' —+Dy decays are the most interesting. Experimental-
ly, the most recent CLEO II data [9] on the branching ra-
tios for D*+ and D* differ significantly from those listed
by the Particle Data Group (PDG) [10]. Theoretically,
when combined with our predictions for the strong de-
cays D *~De given in Ref. [3], we are able to obtain the
branching ratios for D* decays in the same theoretical
framework. Agreement is excellent between theory and
experiment. This is very encouraging. Although our pre-
dicted total width for D"+, I „,(D*+ )=141 keV, is con-
sistent with the upper limit I „,(D *+

) ( 131 keV pub-
lished by the Amsterdam-Bristol-CERN-Cracow-
Munich-Rutherford (ACCMOR) Collaboration [11],
more precision measurements of the quantity are needed.

For the radiative decays X,~A, y and:-,'~:",y, the
two light quarks in the initial states have spin 1, while
they have spin 0 in the final states. Consequently, the di-
quark system must undergo a spin-Aip transition. The
charmed quark is uninvolved in these transitions. There-
fore our predictions for these decays are independent of
the magnetic moment of the charmed quark.

Both chiral and heavy-quark symmetries play a critical
role in radiative decays involving pions. Heavy-quark
symmetry relates the strong coupling constants in the
various pion emission vertices, while chiral symmetry
dictates the structure of those vertices. The specific de-
cays X,~A,+~ y and X, ~A,+m y are discussed in Sec.
IV to expose the essential features of these processes.

where A, is a U(1) gauge parameter, the quark fields trans-
form as

e~e'=e' 'e, Q Q'=e' 'Q. (2.3)

Since the Cioldstone-boson fields M given by

0
+ +

~—+ K

(2.4)

1/2

are constructed from a light quark and an antiquark, they
transform as

M M'=e' Me (2.5)

D„/= a„g+ie A„[6,g],
with the gauge transformation

D„g~D„'g'=e'6 (D„g)e

(2.7)

(2.8)

In the presence of electromagnetic interactions, the
vector and axial-vector fields defined by

v'"=-'(g'a g+ga g') (2.9a)

~ (0)—
P 2 P P

become

V„=—,
'

M D,4+CD„k)']

[A„k PD—„k)'1—

(2.9b)

(2.10a)

(2.10b)

where we have used the script letters V„and
denote the chiral vector and axial-vector fields,
tively. More explicitly, V„and A„are related
and A„' ', respectively, by

V„=VI ' ieaA„+—i ,'eA„(g 6(+$6—$),
~„=~„'"——,"A,(g'ag —gag'),
V„*=V„' "+ieaA„i ,'eA„(g—6—/*+/*6/ ),
W*=W"'*—-"A (g'ay* —g'ag'),

P P 2 P

A.„ to
respec-
to v„'"

(2.11a)

(2.11b)

(2.1 lc)

(2.11d)

where we have given V„* and A.„' since they appear in the
following discussion. The complex conjugate is related to
operation of Hermitian conjugation and transposition,
for example, V„"=(V„).

We next turn to the gauge transformation properties of
heavy mesons. Following the notation of Ref. [3], the
ground-state 1 and 0 heavy mesons are denoted by P*
and P, respectively. Since a heavy meson contains a

The meson field (=exp(iM/&2f„), thus, has a simple
gauge transformation property

gl lai,
g

—!6i. gt g~ t
takeit

—laA. (2 6)

A gauge-covariant derivative of the field g has the form
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P P~ i O'AP —i 6A,
7 (2.12)

and a similar equation for the vector meson P*. An elec-
tromagnetic gauge-covariant derivative can then be con-
structed to be

heavy quark Q and a light antiquark q, it obeys the gauge
transformation law

Note that the radiative transition P *~P y' cannot
arise from the electromagnetic Lagrangian (2.16). The
lowest-order gauge- and chiral-invariant interaction that
coritributes to P*~py is

X' '+=QMpM +e„&U P*~

X [—,'d(gtgg+ggg )+d'g']F" P +H. c.

D„P=B„P+ieA„(g'P—Pg),
which transforms as

D P D'P'=e'6 (D P)eP P P

(2.13)

(2.14)

ieF„—P" [g' —,'(g—gg+ggg )]P*"

+id "M,F„,P* [yg' ,'(g—g—g+(gg )]P*"

(2.19)
When the chiral field is included, the covariant derivative
finally reads (see Ref. [3])

D„P='d„P +V„*P+ie A ( g'P —P g )

= d„P+V„' '*P+ieg'A„P
—i ,' e A „—(g gg*+ g* gg )P,

where use of Eq. (2.11c)has been made. Similarly,

(2.15a)

D„P =d„P +V„P ieA (P—g' gP )—
=a„P'+V„"'P' ie g' A—„P'

+ —'eA (g'gg+ggg')P'.
2

(2.15b)

where Eqs. (2.11) and (2.15) have been used,

pilit D pgf D pgf
pv p v v p (2.17)

and D P* is given by Eq. (2.15b) with P replaced by
P*t. The universal coupling constant f is independent of
heavy-quark masses and species. By expanding the
meson-field matrix g into a power series,

M/=1+ — — +v Zfir 4f2
(2.18)

it is evident that V„(A„) contains only an even (odd)
number of pions interacting electromagnetically. Conse-
quently, the kinematic terms in (2.16) give rise to contact
terms with one photon and even-number pion emissions,
while the interacting terms yield electromagnetic contact
terms with odd-number Goldstone-boson emission.

Equation (2.15) shows that the electromagnetic interac-
tions break the SU(3)-fiavor symmetry. The charge
operator g has an equal mixture of SL and Sz as it
should be since the electromagnetic interactions conserve
parity. The construction of the electromagnetic gauge-
invariant chiral Lagrangian for heavy mesons simply fol-
lows from gauging the chiral-invariant meson Lagrangian
presented in Ref. [3]. The relevant terms are

X"' =D PD&P' M'PP'—
PP P P

+f+MpM ~(PA "P„* +P„*A"P )

——'P*" P*t+M2, P'"P*
2 pv pQ P

+—' fe (P*"A P*' +P*"A P*i' t), (2.16)

In (2.19), U is the four-velocity of the 1 heavy meson
and the second term is to remove the magnetic moment
coupled to the electromagnetic field implied by the
minimal couplings in (2.16), while the last term propor-
tional to d" is to account for the magnetic-moment cou-
plings due to the constituent quarks, both light and
heavy. The universal coupling constant d is independent
of the heavy-quark masses and species. We have also in-
cluded the d' and y terms to account for the corrections
due to the heavy-quark masses when m&W 00.

The Lagrangian (2.19) describe the magnetic transi-
tions P*~py and P*~p*y. In the infinitely heavy-
quark mass limit, only the two parameters d and d" in
Eq. (2.19) survive. The heavy-quark spin symmetry then
relates them. To derive the relation, we will make use of
the interpolating fields introducing in Ref. [3]:

P(v ) =q„y5h, +Mp,
P'(U, e) =q, 8h, +Mp~,

(2.20)

where q, is a light antiquark which combines with a
heavy quark h„of velocity U to form the appropriate
meson. Now let J„and j„be the electromagnetic
currents of the heavy quark and light quarks, respective-
ly. It is easy to show that J„does not contribute to the
magnetic transitions of interest here. Consider

&P( ')I&„IP*(, ))

=+M,M, .{olq,,y,h, ,h, ,y„h, h„gq, lo)

+MpM e tl '
yg y& f'{Ol q„q, I

0 )
g'+1 &+1

2 " 2

(2.21)

Sandwiched between the projection matrices, the matrix
y„can be replaced by

y„=—(U„+U„')—1, i

2m@
(2.22)

which shows that in the limit m& ~~, the heavy quark's
electromagnetic current does not induce a magnetic cou-
pling. We also note that the heavy-quark current is con-
served by itself, and so the light-quark current must be
separately conserved. We are now ready to examine the
electromagnetic vertices associated with the light-quark
current. We have
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(P(u')I j„IP*(u,e) ) = —QMPM, tr y5 pL„
+1
2

stead of using the Lorentz-invariant normalization

( P
I
P ' ) =2E(2m) 5 (P P'—), (2.33)

where

=&oIq.j„q, Io& .

Lorentz covariance implies

L„=c,(v+u')„+c2y„+c~o. k

Taking the trace, we find

(2.23)

(2.24)

(2.25)

(& plp') ) =~„.
Then in the rest frame we get

(2.34)

2+M=~M „((p x p.,rri —g p.,o* p"))H,
q

it is more convenient to use a discrete normalization by
enclosing the system in a large volume V, so that

(P(u')jI„Ip*(u, e) ) = 2c2+—MpM~+e„&k'u e~ .

(2.26)

Similarly, we have

(P*(v', e/)Ij„IP*(v, e;)) = —M +tr 8/ 8;L„
8+1

p* f

(2.35)

where we have chosen the magnetic field along the z
direction and the minus sign for the antiquarks can be
understood simply as having charges opposite to those of
quarks. Next, we need the flavor-spin wave functions of
the heavy mesons in the nonrelativistic quark model:

(2.27)

In taking the trace, the c2 term does not contribute as a
result of e;.v =0 and ef.v =k/M + =0, and while the c&

term contributes, it is not of the magnetic type. Thus

—
I g lq 1+g1q»,v'2

I») = —Ig lq1 —g1q»,
2

(2.36)

(P*(u', e/)I j„IP*(v,e;))
=2ic3M Q(ef ke/p e/ k'Efp), (2.28)

where IP*) ) denotes the vector-meson state with the z
component of its spin being zero. Let us denote the SU(3)
P, as

where the subscript m is a remainder that we keep only
the part dependent on the magnetic moment. By com-
parison with the matrix elements implied by Eq. (2.19) for
P*~Py and P*~P*y, we find

P; =(gu. , gd, gs)=(p ' P' P ) (2.37)

where the superscript indicates the isospin quantum num-
ber I&. We then have

lCg

=2lcg

The relation we are looking for is

(2.29)

(P '/2Iu,
I
p *'")=2+M, M, .(»+&~ ),

(P '/ IX, IP* ' ) =2+M M (p„+pg),
(P IX, IP* ) =2+M M (P, +P(2),

(2.38)

d"= —2d . (2.30)

The SU(3)-breaking effects due to the light-quark mass
differences can be incorporated in the Lagrangian (2.19)
by replacing the charge matrix 6 by (see also Sec. III) F~ v e ~=a" F'~a* = —2m* H .pvaP ijk (2.39)

where we have dropped the magnetic field for conve-
nience.

Note that in the rest frame of P*, v =(1,0), so that

2
3

0 0 Choosing the H field along the z direction as before, we
find from (2.19), (2.31), and (2.39) that

aQ~a= 0
3

0 0
3

(2.31)
(P' I&' ' IP*' ) = —2+M M ——d+e d'

pp )fc p pg Q

( p 1/2I~(2) I pe
—1/2 )pp Q

where a=m„/m& and P=m„/m, .
We now show that the nonrelativistic quark model has

a simple prediction for the couplings d, d', d", and y.
The magnetic interaction of the quarks is

2+MpM ~( d+T2—end'), —

&P'IV,",'.Ip"")= —2+M, M,. ——d+e~d

(2.40)

=pe ger, g H=Q $p, cr, .P H,
i 1

(2.32)

where e,. is the charge of the ith quark in units of e. In-
e d, e

2P1l 2 f11g
(2.41)

Comparing this with Eq. (2.38) gives the desired results
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A similar calculation gives

d"= ', y=
F7' PPZ Q

(2.42)

The quark-model results (2.41) and (2.42) satisfy the
heavy-quark symmetry relation (2.30). This is not
surprising, as SU(3) breakings preserve heavy-quark sym-
metry.

io'A, i 0A.B i 6A, (3.3)

It is then easily shown that the electromagnetic gauge-
covariant derivative has the form

and a matrix for B6 similar to B6. The superscript in

(3.1) and (3.2) refers to the value of the isospin quantum
number I3.

Under the electromagnetic gauge transformation Eq.
(2.2), the heavy-baryon field transforms as

III. CHIRAL LAGRANGIANS
FOR ELECTROMAGNETIC INTERACTIONS

OF HEAVY BARYONS

D„B=(d„+ieg'A„)8+ie A„ I Q, B],
which transforms according to

(3.4)

We consider a heavy baryon containing a heavy quark
and two light quarks. The two light quarks form either a
symmetric sextet 6 or an antisymmetric antitriplet 3 in
fiavor SU(3) space. We will denote these spin- —,

' baryons
as B6 and B3, respectively, and the spin- —,

' baryon by B6.
Explicitly, the baryon matrices read as in Ref. [3]:

ra'i, i ai(D 8 )
&6

P P P

With the chiral fields included, the covariant derivative is
modified to (see Ref. [3])

D„B=d„B+V„B+BV„+ieg'A 8+ieA„I Q, B] .

(3.6)

-i+ 1/2 -I—1/2
Q

—i+ 1/2
Q

&
—1/2

Q (3.1)

It follows from Eq. (2.11a) that

D„B=d„B+ V„' '8 +8V„' ' +ie g' A 8
+i ,'eA„[(—(tg(+egg )8+8(g Qg+ggg") ] .

(3.7)

B-=
3

AQ

0

+ 1/2~
Q

0

(3.2)

As in the meson case discussed in the previous section,
a chiral and electromagnetic gauge-invariant Lagrangian
for heavy baryons can be obtained by gauging the chiral
Lagrangian (3.12) given in Ref. [3]. We write down the
relevant terms

&~+ '=
—,'tr[8-(ig —M3)83]+tr[B (iB6—M6)86]

+trIB6" [ g„(ig ——M , )+i(y„D +y+„) y„(iB+M—6e )y, ]86

+g, tr(86y py s~ 86)+g ztr(B 6y„y sA
"8

3 )+H. c.

+ g, tr(86 ~"86)+H.c. V3gztr(86 "A„8—3)+H.c. ——', g, tr(86 y„ysA "86 ),
2

(3.8)

with D„Band A„given by (3.7) and (2.11), respectively, where 86„ is a Rarita-Schwinger vector-spinor field for a spin-

—, particle, and use of heavy-quark symmetry has been applied to relate various coupling constants. As in the case of
heavy mesons, electromagnetic contact terms with an even (odd) number of pions come from kinematic (interacting)
terms in (3.8).

Since baryons do not behave much like Dirac point particles, they can have large anomalous magnetic moments.
Apart from the nonanomalous electromagnetic interaction described by L~", the most general gauge invariant La-
grangian for anomalous magnetic transitions of heavy baryons is given by (we use the abbreviation cr F=o „g" )

Xz '=aitr(86go FB6)+a', tr(86Q'cr F86)+a~tr(86gcr FB3)+H.c. +a~tr(86Q'o"FB3)+H. c.

+a3tr(e„&+6 "gy'F 86)+H. c. +a3tr(e„&+6"Q'y'F 86)+H. c.

+a~tr(e„ i+6*"Qy F 83)+H.c. +a4tr(e„,i+6*"Q'y F '83)+H. c.

+astr(86" Qo"FB6„)+astr(86"g'o"F86„)+a6tr(83gcr FB3)+a6tr(83Q'cr F83)

+ ,'ps tr(83g„,cr FB—3)+,'ps tr(86g„,cr F86)——
—,'p, tr(86" Q„,cr FB6„),

3 6 6
(3.9)
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y yyys+~ yys N yys+R y ys

(3.11)

we see that

tr(B *"F„y"y 8 ) = tr( e„Q'"—y F "8), (3.12)

for B =B3 or B6. Next, using the fact that the Rarita-
Schwinger vector spinor u& obeys the relations

where 6„,=26+6' and p~ =e/2M&, recalling that 6
is the charge matrix of light quarks, whereas Q' (or e&) is
the charge of the heavy quark. The Lagrangian
X~' is also the most general chiral-invariant one provid-
ed that one makes the replacement

6~—,
' (g Qg+ $6$ ), 6'~6' . (3.10)

Note that we have subtracted out the Dirac magnetic
moments of heavy baryons pz, so that in the quark model
the coeKcients a, are simply related to the Dirac magnet-
ic moments of the light quarks, while a are connected to
those of the heavy quarks. In the heavy-quark limit, both
Dirac magnetic moments pz and the heavy-quark mag-
netic moments a vanish as they are suppressed by the
heavy-quark mass.

At first sight, it appears that other gauge invariants,
e.g., B6 "F„y y 5B6 and B6 "F„B6, can be added to

However, by applying the identity

tion B„is given by

lB„(u,s, x =1)= —u(u, s)y5(v„+y„),p

B„(u,s, 1~=2)=u„(u, s ) .

(3.18a)

(3.18b)

We shall now apply heavy-quark symmetry to the
magnetic-moment coupling constants a;. As in the
meson case, let us denote the electromagnetic current of
light and heavy quarks by j„and J„, respectively. For
the couplings a „.. . , a6, we do not have to consider the
heavy-quark current. For example, it is easily shown that

(83(u', s')~ J„~B3(v,s) ) =e&g(v v')u(u', s')y„u(v, s ),
(3.19)

where g(u u') = (0~$„$,~0) is a universal Isgur-Wise
function. Equation (2.22) is applicable here, and it shows
that the heavy-quark electromagnetic current does not
induce a magnetic-type coupling in the heavy-quark lim-
it. As in the meson case, the heavy-quark current is con-
served by itself, and so the light-quark current must be
separately conserved. We next note that a6=0 because
the spin of the heavy quark cannot be Hipped by a photon
emission and because the radiative transition
0+~0++y in the diquark sector is prohibited by con-
servation of angular momentum. Indeed, the
interpolating-field method gives

~8-, (u' s')j „IB, (u s)}-
Qp —lOp~Q, 9 —lQ O

it is straightforward to show that

u "F„u =i u o~"F„o. u

(3.13)

with

= u (u', s')M„u ( v, s ), (3.20)

=(O~u(v', s')P, h,j „h„g„u(u,s)~0)

=u "F~ u +2u F„u"+iu e~„y5FI' u
(3.21)

and, hence,

iu ~„g—" g~ u (3.14)
Now Lorentz invariance implies that

u (u')o Fu q( v )= 2iu "(u')F„u ( v )
M„=a(v+u')„+bk„. (3.22)

+u (u')ez „,y5F" u (u) . (3.15)

In the heavy-quark limit and u' —u, u (v)y~u (v)=0.
Therefore there are only six independent couplings in the
heavy-quark limit for anomalous magnetic moment radi-
ative baryonic transitions.

We shall see that the heavy-quark spin symmetry
reduces the six couplings a, to two independent ones. To
embark on this task, we will apply the interpolating fields
for the heavy baryons in terms of the diquark fields of the
light quarks (see Ref. [3]):

83(v, s)=u(u, s)g„h, ,

86(v, s, v) =B„(v,s, v)P", h, ,

(3.16)

(3.17)

where P„and P", are the 0 and 1+ diquarks, respective-
ly, which combine with the heavy quark h, of velocity U

to form the appropriate heavy baryon. The argument ~
indicates the spin of the baryon: ~=1 for spin- —,

' baryons
(86) and v=2 for spin- —,

' baryons (86 ). The wave fnnc-

which is nothing but the usual convection current due to
the charge. %"e thus conclude that

a, =o, (3.24)

in the heavy-quark limit.
We now turn to the matrix element of the B6—B6

transition. We have

(86(u', s')~j„~B ( 6, u)s) =8 (u', s')M& &B~(u,s), (3.25)

where

(3.26)

The general expression of M„& linear in k is

Since k~(v+u')„=0, it is clear that conservation of the
electromagnetic current implies b =0. Consequently,

(83 (u', s')
~ j„~83(u,s ) ) =au (u', s')(u+ v')„u (u, s ),

(3.23)
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M„&=f,g is(u+v') +f2g &k„+f3g k&

+f4g„isk +f, u v&(v+v')„, (3.27)

where we do not display form factors proportional to v'

or v& because of B v' =0 and v~B& =0. Conservation of
the electromagnetic vector current then indicates that

and hence

M„&=f,g &(v+u')„+f3(g k& g—„&k )

+f5V up(u+u')„. (3.29)

f2=o f3+fg=o, (3.28) Using the interpolating field (3.17), we find

(B6(u', s')lj~lB6(v, s)) = —
—,'u(u', s')y~(y +v' )M &(ye+up)u(v, s)

= —
—,'u(u', s')(I f, (2+u u') —fr[1—(u v') ]}(v+v')„+f3(y„k —gy„)}u(v,s) . (3.30)

This leads to

(B6(v', s')y(k, e)l j A "lB6(v,s) )

= —
—,'f u3(v', s') oFu(v, s), (3.31)

It follows from Eqs. (3.32), (3.35), and (3.38) that the cou-
pling constants a &, a3, and a& are related via heavy-quark
symmetry.

We next turn to the a2 term and get

with o"F=o„g"",F" =i(k "E ke"),—and

a& = —
—,'f (3.32)

(B6(u', s')l j„lB3(u,s ) ) =B (v', s'}M„u(u,s),
with

M~"= (oly;,q~y', lo) .

(3.39)

(3.40)
where we have dropped a convection current term. Like-
wise, for the magnetic B6 —B6 coupling, we get

(B6 (u', s')lj„lB6(u, s))

—u (u', s')M„&(v~+y~)y, u(u, s),
3

Setting

M ~ l 6&p~~pk v

we obtain

& B6(v', s') lj„lB, (v, s ) )-

(3.41)

—f, u (v', s')(g„k —k y„)y,u(v, s)
3

and, hence,

(B6 (v', s')y(k, e)l j„A"lB6(u,s) )

(3.33) u(u', s')(ky„—y„k)u(v, s) .
2 3

It then follows that

& B6(v', s')y(k, &) Ij„A"IB-,(v, s ) )

(3.42)

i —u "(v', s—')y ysF„„u(u, s),
3

(3.34) —u(v', s')o Fu(u, s) (3.43)
2 3

where only the magnetic-type terms contribute. Compar-
ing this with (3.9) and applying the relation (3.12) yields

(3.35)

and

1a2= —5 .
2 3

(3.44)

Similarly,

(B6 (u', s')lj„lB6 (u, s))
=u (u', s')M„&u~(v, s)

f3u ( v, s )(g ~kp g i3k~ )u (v, s )

Likewise, for the a4 coupling we have

(B6 (v', s')y(k, e)
l j„A"lB3(v,s ) )

=—e„&u ~(v', )ysF ~u(v, s) (3.45)
6

(3.36) and

and

(B6 (v', )ys(k, )ljeA "lB6 (u, s))
a 4 2

~ (3.46)

=if3u (u', s')F pu~(u, s) . (3.37)

This together with Eq. (3.15) leads to

Equations (3.24), (3.32), (3.35), (3.38), (3.44), and (3.46) to-
gether give

&3 3
a&, a&= ——a&, a4=&3a2, a6=0 .

3

2
(3.38)

(3.47)
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Consequently, only two of the six couplings ai, . . . , a6
are independent. Furthermore, these two couplings are
independent of the heavy masses.

There are two corrections which we would like to in-
corporate in the Lagrangian (3.9). First, when the
heavy-quark mass is not infinite, i.e., mgW~, we may
take into account the effects of the couplings a induced
by heavy quarks and of the Dirac magnetic moments pz
of heavy baryons. Second, as in the meson case, SU(3)-
breaking effects due to light-quark mass differences can
be incorporated by replacing the charge matrix 6 by

with

=p.H, (3.56)

P XPq~q &

q

(3.57)

where we have dropped the magnetic field H for conve-
nience. The number in parentheses after a 86 state indi-
cates the value of s, .

In the quark model, the spin-Hip magnetic interaction
has the form

2
3

0 0

0 0

where

{X6~6= 0
3

3

(3.48)

(3.49)

where p =e e/2m is the magnetic moment of the
q q q

quark q with its electric charge e~ in units of e. Next, the
flavor-spin wave functions of heavy baryons needed are

I &g
'

T &
= ~- [2I Q & & I

—IQT&(lu Tu1&+lu&u T &)],

[2IQ J, &(Iu Td T &+ ld Tu T &)
&12

—IQT&(lu Tdl&+Id Tul&
We now use the nonrelativistic quark model to calcu-

late the coupling constants a; and a . We choose the
magnetic field along the z direction so that

+ lu ld T &+ Idlu T & )],
IAg T & =-,'IQ T &(Iu Td l &

—Iu Ld T &

o. g" = —2o H= —2o. 8 .p z

Note that in the rest frame of the heavy baryon

e„,~pB6*"6y F ~B6=2(B6 ),6B6H &

B6"6F„B6"=—(B66XB6),H,
and the wave function of the B6 is given by

B6 ( —
32 ) =e,u t for s, =—,',

B6 ( —,
'

) = —e, u l + ( —,
' )

'~ e3u t for s, =
—,',

3

where

(3.50)

(3.51)

(3.52)

(3.53)

—Id Tu g &+ Idlu T &),

I

&"*(-,' ) &
= —[ I Q l & lu Tu T &

+ IQT &(Iu Tu 1, &+ lulu T &)],
*(-, )&=IQT&I. T. T&,

—[IQ»(lu Td T&+Id Tu T&)
6

+IQT&(lu Tdl&+luldT&

+Id Tug&+Idgu T&)] .

(3.58)

—(l,i, 0), e3=(0,0, 1) .
1

2
(3.54)

(rg T I/is" IAg T &
= —&2a, —+—

(&"+'(-')I&"'Ir+'T &=2(—')'"(-'a +e a')
(3.55)

By working out the trace terms tr(B '6B) for B =B„B6, -
and 86, we obtain

(Xg 'TIP~" Irg'T &
= —2( —,'a, +ega', ),

It is then straightforward to show that

&&g+'Tl&, I&g'T &=-',p„——,'pg,

—JM„(2+a),1

2 3

(AgTIZ, IAgT&=pg,

&&g "(—,')I&, l&g'T &= (p„—pg),

&rg*(-,')IZ. Iwg T &= —p. (2+a),1

6

(y+le(3 )I~ Iy+le( 3
) &

—2

(3.59)

(y' (
l )y' 'I/ T &=2(')'~ 1 2 a+ av'2 3 3

where we have dropped the magnetic field as before.
Comparing this with Eq. (3.55) leads to

& &g+'( —3) I~"'ling '( —,') & =2( —,'a5+ega5),

2 cx a +2e a'
6 Q 6

4 ~" 2

3
a4 = . p„, a5 =

—,'p„, a6 =0,
2~2

(3.60)
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and

1 Pga&=—
6 e~'

1 Pgaz=—
2 eg

az=a4=0, a3=— ~Q

e&

pga'= ——
6 4 eg

(3.61)

It is evident that the relations (3.47) for the couplings
a „.. . , a6 predicted by heavy-quark symmetry are
satisfied in the quark-model calculation, as they should
be.

IV. APPLICATIONS

In this section we apply our results obtained so far to
the electromagnetic decays of heavy hadrons. As we re-
call, there are eight unknown coupling constants in the
meson and baryon sectors, but they are reduced to three
via the use of heavy-quark symmetry. The nonrelativistic
quark model is then applied to compute them. Conse-
quently, the dynamics of the radiative transitions for
emission of soft photons and pions is completely deter-
mined by heavy-quark and chiral symmetries, supple-
mented by the quark model.

As an application, we erst focus on the two-body radia-
tive decays such as P*—+Py, X&~A&y, and:-~~-=~@.
Since the heavy hadrons, e.g. , B*,:",', :-b, are dominated
by electromagnetic decays, the decay widths of these
heavy particles can be directly calculated. When combin-
ing with our previous results [3] on the strong decays of
D* and X„we can also predict the total widths and
branching ratios of these particles. We shaH also consid-
er the radiative decays involving one-pion emission.
Some examples of kinematically allowed modes are
X,~A, my, =,*~=,m.y, etc. We shaH see later that the
decay X,+ —+A,+~ y provides a nice test on the chiral
structure of the electromagnetic gauge-invariant La-
grangian X~ ', whereas the four-particle contact interac-
tion dictated by X~" can be tested by the other channel
X,~A,+m y.

We begin with the P*~Py decays. The decay width
corresponding to the general amplitude

given by the Particle Data Group [10], and m, =1.6
GeV. To determine the D branching ratios, we have in-
cluded the partial widths of D*~D~ predicted in Ref.
[3] with the axial quark coupling g„""=0.75. It is evident
that the agreement between theory and the most recent
experimental measurement of CLEO II [9] is excellent.
In particular, the observed small branching ratio of
D'+~D+y by CLEO II is consistent with our theoreti-
cal expectation, contrary to the large PDG [10] average
value. This also means that it is not necessary to invoke a
large anomalous magnetic moment for the charmed
quark as previously conjectured. The total widths of the
D * [12] are

I „,(D*+)=141keV,

I „,(D* )=102 keV,

I „,(D,* )=0.3 keV,

(4.5)

which are also listed in Table I. The 1 „,(D *+
) predicted

here is very close to the upper limit I „,(D*+ ) ( 131 keV
(90% C.L.) published by the ACCMOR Collaboration
[11]. We urge the experimentalists to perform more pre-
cision measurements of I „,(D*).

Before proceeding, we should stress that it is important
to include the corrections due to the magnetic moment of
the charmed quark as its mass is not too large compared
to the light quarks, m, /m, = —,', and its charge is —', e. It is

clear from Eq. (4.3) that the charmed quark contribution
is largely destructive in the radiative decays of D* and

D, . Had we worked in the heavy-quark limit, we

would have obtained

I (D* D y)=23 keV,

I (D*+~D+y)=6 keV,

I (D,* ~D,+y) =2.4 keV,

(4.6)

As an example, the computed results for D' —+D+y are
exhibited in Table I for the constituent quark masses

m„=338 MeV, md =322 MeV, m, =510 MeV,

(4.4)

A [P*(v,e")~Py(k, e)]= ipe„p—k~e'v e*~ (4.1)

2
r(P* 12'* (4.2)

where k is the photon momentum in the c.m. system.
From Eqs. (2.19), (2.41), and (2.42), we obtain the cou-
plings

TABLE I. Predicted branching ratios of the D* mesons.
The predicted partial widths of D*~D+~ are taken from Ref.
[3] for g„" =0.75. For comparison, the experimental results of
CLEO II [9] and PDG [10] average values are given in the last
two columns.

Decay mode I (keV) B (%)t]„~,~ B (%)cr Eo B (%)pDG

p(P*' )=2+MpM, —— +e
3 2md 2m@

[

p(P* '
) =2+MpM, — +e

3 2m„'~2m~

p(P* )=2+M M —— +e
3 2m, ~2m@

(4.3)

D*+~D n+
D*+ D+m
D afc+ D+
D*+ all

D *0~all

95
44

2
141
68
34

102
0.3

67.3
31.2
1.5

66.7
33.3

—100

63.6+2.3+3.3
36.4+2.3+3.3

55+6
45+6

68.1+1.0+ 1.3 55+4
30.8+0.4+0.8 27.2+2. 5

1.1+1.4+1.6 18+4
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which are significantly different from those presented in
Table I. Finally, for completeness we also give the results
for the radiative decays of B*:

The electromagnetic decay of a sextet baryon B6 into a
B3 plus a photon is described by the amplitude

I (B„*+~B„y) =0.84 keV,

I (Bd Bd y ) =0.28 keV,

M[B6~B3+y(k)]=i iltu3o„k "E"u6 .

(4.7) Its decay rate is simply given by

(4.9)

where we have used the mass values m +=5324.6 MeV8
and m& =5 GeV.

We next turn to the baryon sector and consider the fol-
lowing two-body radiative decays with some specific ex-
amples:

B6~B3+y: XQ~AQ+y, =Q —+=Q+y,

I (B6~B3+y)=—i)tkZ 3

where k is the photon momentum in the
For completeness, we give here the results
tive decay of a spin- —,

' heavy baryon, though
heavy baryons have been found yet. The
the transition B6 ~B3+y reads

(4.10)

c.m. system.
of the radia-
none of these
amplitude of

B6 83+y: XQ +AQ +yp ~Q +~Q+y
(4.8) M(B6 ~B3+y)=iri2e„&uy k e~u" . (4.1 1)

B,* B,+y: xQ xQ+y, =Q =Q+y,

QQ —+QQ+y .
The evaluation of the corresponding decay width involves
the use of the projection operator

PR (v)—:X u (p, s )ti (p, s ) = gf + m

2'
1 1 2—g„.+—y„y.+ (y~. yx„—)+,p„p.3 3' 3'

1 1 2 P+mg„.+—3 y„y. (—y~. yZ—„)+
3pal 3m 2m

(4.12)

The final result is

2 2

I (B6 ~B3+y)= 'gq 1
2 (3m; +mI )

48m' pyg,
z

given by

ii (= —:- )=v'2 —+ —a
2 /3

3 3

(4.13)

where m; (mI ) is the mass of the initial (final) baryon in
the decay. Except for a different coupling constant, a
similar formula holds for the decay B6 ~B6+y.

We are ready to elaborate on the above results by some
examples. The erst example is X,+ ~A,++y. From Eqs.
(3.9), (3.48), (3.49), and (3.60), we find

1 e 2 ~u—+u'3 2m„3 3m,

e 1

6V3 m,
L

md

i) (=' —:-)=v'2 ——+—a
3 3

(4.18)

il (X —A )=&2 —+—a
2 A'

3 3
for =,'+ —=,+ and:-,' —:",transitions, respectively. %'e

get
r

1 e 2 1 nu—+-
v'3 2m„ 3 3 md

which in turn implies that

(4.14) I (:-,'+ ~:-,+ +y ) = 16 keV,

I (:-',0~:-o+y)=0.3 keV .
(4.19)

I (&,+ A,++y)=93 keV . (4.15)

I „,( X,+ ) =2. 54 MeV, (4.16)

This together with the partial rate I"(X,+ ~A,+rr ) =2.43
MeV (for gz"=0.75) obtained in Ref. [3] yields the total
decay width of X, ,

In the above we have used the mass m- =2470 MeV
C

from PDG [10] and the mass difFerence m, —m- = 100
C

MeV from a theoretical estimate [13]. We also assume no
mixing between ",' and:-, . If the mass difference turns
out to be this small, there will be no strong decays for =,'.
We thus have a prediction for the total width of:-,':

and the branching ratio of X,+ ~A,++y, I „,(:-',+)=16 keV, I „„(:-',) =0.3 keV . (4.20)

B(X,+~A, +y)=3. 8%%uo . (4.17)

The second example is ",'~=, +y. The coupling q& is

So far, the examples of radiative decays considered do
not test critically heavy-quark or chiral symmetry. The
results follow simply from the quark model. We now
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offer examples in which both heavy-quark and chiral
symmetries enter in a crucial way. These are the radia-
tive decays of heavy baryons involving an emitted pion.
Some examples which are kinematically allowed are

x,* x

&c hc hc
(a)

77

I

I

I

Xc Zc hc

7r Y

I

I

I

I

~c Zc hc
(c)

7T
I

I

I

I

I

I

c

To be specific, we focus on the decay X,—+A, my. The
Feynman diagrams for the decay follow from the La-
grangian Xz" and Xz' given in the last section. There
are a total of eight possible diagrams as depicted in Fig.
1: Six of them arise from baryon poles, one from the
meson pole, and one from the four-point contact term.
For the present discussion, we will limit ourselves to the
situation in the heavy-quark limit as to bring out the
simplifications that occur in the symmetry limit. Thus
the pion and photon are both soft, and we will neglect
terms of order q/m& and/or k/en& with q and k being
the pion and photon momenta, respectively. It turns out
that the contact interaction dictated by the Lagrangian
X~" can be nicely tested by the decay X, ~A,+m. y,
whereas a test on the chiral structure of X~ ' is provided
by the process X,+~A,+m y. Let us discuss the latter
first.

It is interesting to see that only Figs. 1(d) and 1(f) sur-
vive in the heavy-quark limit. Figures 1(b) and 1(c) van-
ish because of isospin conservation. Figures 1(g) and 1(h)

I

Zc hc hc
(e)

7T
I

I

I

I

I

I

+
Zc hc

FIG. 1. Possible Feynman diagrams for the decays
X,+~A,+m y and X, A,+m y.

do not exist for a neutral pion. Figure 1(e) is prohibited
owing to the absence of the B3B3m coupling. The A, A, y
coupling of Fig. 1(a) is of the convection current type
only [cf. Eq. (3.24)], and in the heavy-quark limit it is
canceled out by a similar convection current X,X,y cou-
pling of Fig. 1(d). (This cancellation is also required by
gauge invariance. ) Consequently, we only have to consid-
er Fig. 1(fl and the magnetic coupling of Fig. 1(d). The
amplitudes are

A(r+ ~+~'y)= A, + Af,
4&2a Ig,

Ad =i uA (U', s')(f —
q U )a.„k"e"ux (U, s ),

3 v k c
(4.21)

Q3g4

c c

where P (u') is the projection operator given by (4.12).
Recall that

with

g~ = —&3g2, g2 = —0.75( —', )'~ (4.22) eg2 1
Aa = — up v Ellfl''5uy

2f c U k c

+ p + 0A„A, y"yam. X, .
P (4.23)

The amplitudes are given by

A(X, A,+m y)=A, +A +A„, (4.24)

for g~"=0.75. Beyond the heavy-quark limit, obvious
1/rn& corrections arise from the magnetic moment p, of
the charmed quark and p~ of the charmed baryons.

We now come back to the decay X,~A,+~ y. The
main contribution comes from the convection current
coupling of Figs. 1(a), 1(g), and 1(h). Other diagrams due
to the magnetic-type couplings are suppressed by factors
of k /m „, which should be small since
m &

—m z —m —30 MeV and m„—330 MeV. The
contact-term Lagrangian for Fig. 1(g) can be read off
from Eqs. (3.8) and (2.11b),

eg2
Ag uA ~Y5ux

c c
(4.25)

q c
Aq = — u A (g+ k')you ~2f qk C

It is easily seen that gauge invariance is respected. It will
be interesting to work out the energy and angular distri-
butions of the pion and A, . A detailed analysis of this is
planned to be presented in a future publication.

Aside from the decay rates for 8 *~By given by (4.7),
we have not calculated any of the radiative decay rates
for baryons containing a b quark. This is only because
there is scarcely any data on the masses and mass
differences of these baryons. Once they are known, the
same equations (3.59)—(3.61) and (4.9)—(4.13) can be ap-
plied to obtain the decay rates.
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V. CONCLUSIONS

Heavy-quark and chiral symmetries together provide
an ideal framework for studying the low-energy dynamics
of heavy mesons and heavy baryons. Symmetry con-
siderations reduce to a minimum the number of free pa-
rameters in the theory, and symmetry-breaking correc-
tions can be estimated in principle. Yet few if any quanti-
tative predictions can be made in strong and electromag-
netic interactions without further assumptions. It is here
that the nonrelativistic quark model comes to the rescue.
All the free parameters needed for the low-energy dy-
namics of ground-state heavy hadrons are calculable in
the nonrelativistic quark model. Moreover, these calcu-
lations depend only on the spin-Aavor wave functions of
the quarks and are independent of the details of the spa-
tial wave functions. Therefore simplicity and (almost)
uniqueness characterize these quark-model predictions.
We regard them as a theoretical benchmark to be com-
pared with experiments as well as other theoretical mod-
els.

In Refs. [3] and [7] and the present work, we have ex-
plored in detail the predictions of this theoretical formal-
ism on strong decays, heavy-flavor-conserving nonlepton-
ic decays, and radiative decays of heavy hadrons. These
results may now be combined to obtain predictions for
the total widths and branching ratios of certain heavy
particles. In particular, the branching ratios obtained for
D*+ and D* agree very well with the most recent mea-
surements of CLEO II. This excellent agreement be-
tween theory and experiment makes it ever more urgent
to study and understand the various symmetry-breaking
corrections to the strong and radiative decays. This is
particularly so should the upper limit for I „,(D*+ ) [11]
be confirmed by future experiments. We would like to
know if it is possible to incorporate these corrections to
improve the quark-model calculations. We have begun
an investigation to answer these questions. The 1/m&
corrections due to the heavy-quark magnetic moment
that we have included in Secs. II and III are exact as a re-
sult of the normalization conditions of the Isgur-Wise
functions at v =v'. Other 1/m& corrections including
those to the light-quark electromagnetic currents and
axial-vector currents require a more careful discussion.

We plan to communicate these results in a future publica-
tion.

There are many other weak-radiative-decay modes of
great interest such as

a D(D)r, &b &), =b

Unfortunately, the effective heavy-quark theory
developed thus far cannot be applied to these processes.
The intermediate states in the relevant pole diagrams are
very far from their mass shell. For example, the four-
momentum squared of the D pole in the decay 8~D *@
is m~. This means that the residual momentum of the D
meson defined by P„=mDv„+ k„must be of order m~ so
that the approximation k /mD ((1 required by the
effective heavy-quark theory is no longer valid. Never-
theless, there is a special class of weak radiative decays in
which heavy Aavor is conserved that deserves a detailed
study. Some examples are =& —+A&y and Q&~=&y. In
these decays, weak radiative transitions arise from the di-
quark sector of the heavy baryon, whereas the heavy
quark behaves as a "spectator. " However, the dynamics
of these radiative decays is more complicated than their
counterpart in nonleptonic weak decays, e.g., "&~A&m. ,
which have been studied in Ref. [7]. We hope to study in
the future these heavy-flavor-conserving weak radiative
decays.
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