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Factorization and heavy-quark symmetry in hadronic B-meson decays
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We discuss within the context of heavy-quark symmetry a program for performing model-independent
tests of the factorization scenario proposed by Dugan and Grinstein for hadronic B-meson decays. Pre-
liminary, model-dependent results for decays to a D or D* and one, two, or three pions are presented
which indicate that the predictions of factorization are consistent with the present experimental situa-
tion. Our results suggest that such decays may not only provide a precision testing ground for factoriza-
tion, but also an opportunity to study the properties of excited D mesons and to measure many of the
universal form factors of heavy-quark symmetry (including ones not otherwise readily accessible).

PACS number(s): 13.25.+m, 11.30.Hv, 14.40.Jz

I. INTRODUCTION

Though analysis of hadronic weak decays of light had-
rons is complicated, there is a long-standing belief that
the corresponding decays of heavy hadrons may be
simpler. This anticipated simplicity would arise if the
current-current weak interaction were to factorize into a
product of two single-current matrix elements. An early
use of factorization was made by Feynman [1] in 1964,
who showed that AI =

—,
' weak hyperon decays were

roughly consistent with this hypothesis, while those with
AI =

—,
' were not. (See also the pioneering paper by

Schwinger [1].) The use of factorization was pursued for
bI= —,

' decays of strangeness by many authors [2]. After
the discovery of the charm quark, factorization often
formed the basis of attempts to explain D and D, hadron-
ic weak decays [3]. More recently, the phenomenology of
the factorization hypothesis has been extensively
developed for weak hadronic decays of charm and beauty
by Bauer, Stech, and Wirbel [4] and others [5].

In parallel with this work have been several theoretical
developments. Bjorken [6] has discussed a possible
justification of factorization based on color transparency.
Buras, Gerard, and Riickl [7] have noted that factoriza-
tion is valid as 1/X, ~O and have considered leading
1/N, corrections to this limit. More recently, Dugan
and Grinstein [8] have shown that, for B and At, decays,
factorization follows from perturbative QCD in certain
kinematic regions. They find that in the limit where mb
and m, go to infinity, with their ratio r =m, /mb fixed,
matrix elements for processes such as B~D~ and
B~D*m factorize. Their argument depends on the
large momentum (in the B rest frame) of all the light
quarks recoiling against the charmed system (in this case,
those of the ~ ) and is similar in spirit to the application
of perturbative @CD to other exclusive processes. The
major new feature is that in leading order the "hard ex-
change" is made by a four-quark operator rather than by

a gluon. In this approach, hard gluon exchange gives
small corrections of order a, to factorization [9].

In this paper we will explain how the decays
B +D+ n~ —and B~D*+(n —1)~ may be used to make
model-independent tests of Dugan-Czrinstein factorization
assuming the validity of the predictions of heavy-quark
symmetry [10,11] for heavy-meson weak form factors.
We also discuss using such decays to measure some of the
universal form factors of heavy-quark symmetry which
might otherwise be difficult to study. After introducing
the framework for performing such model-independent
tests, we present here, as a prelude to that more ambi-
tious exercise, a preliminary model dependent su-rvey of
the experimental situation, which already indicates that
the predictions of factorization and heavy-quark symme-
try are consistent with available data.

The basic program is a simple one. Roughly speaking,
according to the factorization hypothesis, B~D+n~
proceeds when B~D+(n —m)n via the cy"(1—y5)b
current, while the current dy"(1 —y5)u independently
produces m pions [see Fig. 1(a)]. The former amplitude
can be determined in terms of a few of the universal func-
tions of heavy-quark symmetry, while sufficient informa-
tion about the latter process, up to me masses of m, can
be extracted from ~~v +ma data. As we will indicate
below, it is the region of low m~ mass where factoriza-
tion is most likely to work, so the restriction to the mass
region of the ~ decay data is not a major disadvantage.

We have chosen to make an initial survey of the data in
a model-dependent, resonance dominance framework [see
Figs. 1(b) and 1(c)] for two reasons. First, it is simpler.
At least as important, however, is our expectation that
the B~D+ n~ amplitudes will turn out to be dominated
by resonant mechanisms involving B~D' ' transitions,
where D" represents a charmed meson which can decay
strongly to D+(n —m)rr. Even if such resonances are
not completely dominant, some will undoubtedly be
sufficiently prominent that their production can be stud-
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ied independently. In this case, these calculations will
still be useful since the form factors for transitions to
prominent resonances are themselves very interesting.
As we will discuss below, if factorization holds, then for
D"'s other than the D and D*, these form factors might
be most easily measured in hadronic weak decays of the
B. Heavy-quark symmetry predicts all of the form fac-
tors for 8~D" transitions in terms of a single [12]
"universal function" for each final s&

' [13], e.g. , 8 ~D
and B~D, with st '=

—,', are governed by a single

function g, while transitions to the first s&
'=

—,
'+ and

'lT

s&
'= —', + multiplets depend on functions called ~1/2 and

7 3 /2 respectively [14]. These latter decays to the s&

and sI '=
—,
'+ states, about 500 MeV above the ground

states, are of particular interest: They are the most likely
source of any discrepancy between the inclusive semilep-
tonic rate and the sum over the D and D * exclusive rates,
and in addition the functions ~, /2 and ~3/2 are implicated
in a Bjorken sum rule [15] for the slope near zero recoil
of the function g.

II. FACTORIZATION

A. Background

In the absence of strong interactions and for momen-
tum transfers small with respect to M~, the hadronic
weak interaction responsible for 8 ~D+ n m would have
the naive current-current form

GFH~= U„*,U„[cy(1 y—5)b][dy„(1—y, )u] .
2

Strong interactions significantly modify this form, though
their effect is only known analytically at short distances.
If we renormalize our calculation at some scale p with

AQCD «p « IVI~, then the effective weak interaction due
to graphs such as Fig. 2 at mass scales greater than p is,
in the leading-logarithmic approximation [16],

GF
Hw(p ) = —U„*dU b [ci (p )h i(iu, )+cs(p )hs(p) ],

2

where

D(n-m) K

h, = [cy'(1 —y~)b] [dy, (1—y5)u ], (2&)

hs= cy'(1 —ys) b dy (1—y~) —u . (2c)
2

' 2

(n-m) K

The A,
' are the Gell-Mann SU(3) matrices so that hs is a

singlet made of two currents which individually create
states with octet quantum numbers. As discussed below,
we will here choose p= m&, in which case

6/23
a, (mii, ) 1 a, (mii )

Cl +
3

(
a, (mb) 3

(
a, (mb)

—12/23

(2d)

(b)

6/23a (mph')
C8=

2 a, (mb)

—12/23a, (mii, )
(2e)

2 a, (mb)

(n-m) 7t D
For future reference we note that (2d) and (2e) give
c, =1.03 and c, = —0.26.

While the form of expression (2) is natural (since in the
absence of strong interactions ci = 1 and cs =0), it is in-

FIG. 1. (a) Graphical representation of the "naive" factoriza-
tion hypothesis for 8~D+ n m. , in which 8~D+(n —m)~ via
the cy (1—y5)b current and the dy (1—y&)u current produces
m~. (b) The charm resonance dominance model of (a). Here
D" is any charmed-meson resonance, including the special case
D"=D*. [Note also that the hatched circle includes the possi-
ble decay chain D "~D*+(n —m —1)rr ](c) The same as (b).
with the additional assumption that me production is resonant.
Here R ' ' is a resonance with ~, p, or a, quantum numbers.

FIG. 2. Typical graph giving rise to the low-energy eAective

weak hadronic interaction.
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structive to consider the alternative Fierz-transformed
expression

GF
Hii, (p) — U» U b [c)(p)h i(p)+c&(p)h()(p)),

2

For future reference we note that a1 ——1. 12 and
a, = —0.26. In this form H~(p) contains the interpolat-
ing fields (4a) and (4b) explicitly. BSW then make a fur-
ther transformation to an effective interaction at the ha-
dronic level in which they write

in which

h i
=

I dy (1—y 5)b][cy.(1 —y5)u] (3b)
H(had) Ue U & h(had) +& h (had)

]
GF

W ~ ud cb i i i i (6a)

h() = dy'(1 —y5) —b cy (1—y5) —u, (3c)
2 ' 2

with
6/23a.(mw)

C1=
3 a (mb) 3

6/23
a~(mii )

C8—
2 a, (mb )

1+
2

a (mar)

a, (mb )

a~(mar�

)

a, (mb )

—12/23

—12/23

(3d)

(3e)

Note that c1 ——0. 11 and c8 ——1. 12, and
3c ) + —,'c() =3c, + —,'c() as required by duality (see below).
This form shows that factorization has subtleties: The
same interaction can be "factorized77 in many different
but equivalent ways. In particular, we note that it is im-
possible to simply neglect the contributions of the
"octet-octet" operators: Before any approximation, Eqs.
(2) and (3) are equivalent, but they clearly will not be if
only the contributions of h, and h, are retained (e.g.,
c, ((c„andso duality would be violated).

In fact, the term "factorization77 has been used to de-
scribe many different phenomenological hypotheses. The
most extensively developed and widely discussed is that
of Bauer, Stech, and Wirbel (BSW) [4]. In the general
graph for the strong-interaction-dressed weak decay
B~D+nm, the action of H~(p) not only destroys the b
quark in 8, but also inserts the field operators c, d, and u.
These three operators can be arranged to be proportional
to two different meson local interpolating field operators:

d(x)y„(1—ys)u (x) (4a)

and

c(x)y (1—y5)u (x), (4b)

GF
H)i (p) = —U„*„U„[a,(p)h, (p)+ a, (p)h, (p) ],

2

in which

(Sa)

1e 1

6/23a (m~)
a, (mb )

—12/23a, (m~)+ a (mb)
=c(), (Sb)

1
cz 1

6/23
a~(m)i )

a, (mb )

a, (m)i )

a, (mb )

—12/23

=c, . (5c)

which appear in the forms of H~ given in Eqs. (2) and
(3), respectively. The BSW phenomenology begins by
reexpanding H~(p). Instead of expanding in terms of
the "orthogonal" operator pairs (h„hs)and (h„hs),re-
spectively, as in (2) and (3), they use the nonorthogonal
operator basis (h „h,) to obtain

ai =a, + 3Ct1 C1 7

ai =a1+ 3(X1 C

(6b)

(6c)

since under a (purely kinematical) Fierz rearrangement,
h, contains with a coeKcient 1/X, the same color-singlet
interpolating operators as those appearing in h i. [See
Appendix A for a discussion of the role of the color octet
states in the passage to Eq. (6).] However, fits to the
analogous D-meson decays rule out this simple version of
the factorization hypothesis (if one assumes its validity
for the decay of the c quark). BSW therefore make the
conservative and, as just discussed, well-motivated [17]
generalization of allowing a1 and a1 to be free parame-
ters. This procedure has been remarkably successful. A
very intriguing aspect of the resulting phenomenology,

where h'1"' ' and h 1
' ' are now imagined to contain the

hadronic asymptotic fields created by the interpolating
operators (4a) and (4b), respectively [e.g. , as a result h', "'d'

contains the hadronic m interpolating field correspond-
ing to (4a) produced by both h, and h, of Eq. (5a)]. The
basic factorization assumption of BSW is that these ha-
dronic fields do not interact once they are created by
H)((",'d). In the case of h',"' ', the d(x)y (1—y5)u(x)
current creates an m ~ state with the quantum numbers
of the m. , p, or a, , while the remaining particles re-
quired for the B~D'*'+n'*'m transition (here D'*' is D
or D*, corresponding to n'*'=n or n —1) are made by
the

&
D'*'+(n '*'—m)~Ic(x)y. (1 —ys)b (x) IB &

current matrix element. In the case of h ',
"' ', the

c(x)y (1—y&)u (x) current creates a D'*'+(n'*' —m )vr

he q~a~tnm numbers of the D, D*, Do, or
D 1, while the remaining m m. are made by the
(mm Id(x)y (1 y5)b (x—)IB ) current matrix element.

Clearly, factorization will require very special cir-
cumstances. In general, the interactions in the low-
energy hadronic effective theory will lead to strong in-
teractions of the state produced by the interpolating fields
of Eqs. (4a) and (4b) with the other hadrons created in the
decay. It is also clear that in general these interactions
will obscure the short-distance radiative corrections em-
bodied in the c1 and c1 coeScients: The final states pro-
duced by h, and h, can always scatter into one another
by strong interactions. (For example, h, and h, can
make B ~D+m and D m, respectively, but
D +

m ~D m. is an allowed strong charge-exchange in-
teraction. )

Without considering such complications, one might
have expected based on (5) that



1010 CATHY READER AND NATHAN ISGUR 47

which has been emphasized by BSW and by Shifman [2],
is that it favors a, =ai and ai =ai. From (6b) and (6c)
we see that this is suggestive of a 1/N, expansion, but it
remains unclear how discarding these particular 1/N,
terms can be justified.

The preceding discussion will have made it clear that
factorization, however defined, cannot hold in all cir-
cumstances. However, there are a variety of ways in
which it could be true in certain special cases. As men-
tioned previously, it is possible that factorization could
arise at high energy from color transparency [6]. Color
transparency [18] is based on the observation that a
pointlike color-singlet state has no strong interactions.
Since the interpolating fields (4a) and (4b) produce a vir-
tual pointlike configuration and since at high energy this
state could propagate coherently out of the decay region,
transparency provides a possible mechanism for avoiding
strong interactions that would ruin factorization. The
1/N, limit [19] provides another possible argument for
factorization [7]. In this limit mesons become narrow,
noninteracting hadrons, and factorization follows.

Dugan and Grinstein [8] have used heavy-quark
effective theory [11] to provide a third possible scenario
for factorization. The idea here is similar to that of tran-
sparency, but their approach indicates that factorization
will hold in a much more restrictive kinematic regime
than expected from either transparency or large-N, argu-
ments: In this case factorization is expected only for
heavy~heavy-plus-light transitions in which the light
quarks made by the (factorized) current are collinear and
at high energy. In contrast, one would not expect factori-
zation to hold for processes such as B~~m or B—+DD, .

In Dugan-Grinstein factorization, a process such as
B~D~ proceeds only through h, : h8 decouples in the
kinematic regime considered. Moreover, Dugan and
Grinstein point out that the resulting suppression by
(q )' /E [where q is the squared invariant mass of the
ud hadronic system and E=(mb —m, )/2m&] of hs to
this process is consistent with the expected suppression of
the h, term (as it must be, given that c, = —',c8+ —,'c, ).
The reason for this latter suppression is simple and can
help us to understand the mechanisms underlying the
suppression of hs (as we will see below). The h, interac-
tion makes a B~D"-type transition via a form factor
and the purely light hadronic system by a hard current,
while h, makes the light system via a B~light form fac-
tor. The latter will always be much softer since in the
B~D" transition the heavy c quark obtains most of the
momentum of the D" directly from the hard b ~c
current. Dugan and Grinstein argue, moreover, that as
mb~oo these h, -induced contributions are of the same
order [i.e., suppressed by a power of (q )'~ /E] as not
only the h8 contributions, but also as other nonleading
contributions to the dominant (h, -induced) amplitude.
This observation is not, of course, an argument which
can be used to justify Dugan-Grinstein factorization, nor
can it be applied to all effects associated with h8', it only
shows that this particular factorization hypothesis is
internally consistent. Nevertheless, the argument seems
to us to have applicability outside the framework of Ref.

[8]. Transparency-based arguments, for example, also re-
quire large relative momenta between the hadrons pro-
duced by the two currents which will simultaneously
make the hl form factor small ~ Naively at least one is
led once again to the conclusion that corrections to the
h, amplitude may be of the same order as the h I ampli-
tude. Large-N, arguments do not require large momenta
and accordingly predict a very different pattern of correc-
tions to factorization. They nevertheless seem susceptible
to an analogous objection. As 1/N, ~~, there would be
no corrections to the factorized transition amplitudes
generated by h, and h, . However, in this limit the
short-distance corrections also vanish, i.e., c I

= 1 and

c8 =O. Thus both c8 and corrections to factorization are
1/N, effects (although in the case of c& the coefficient of
1/N, is

ln ln
9

2
Plb
2

AQC+
ln

2
AQCQ

is small. This region covers an increasingly large mass
range as mb, m, ~oo, but in the case at hand, where
(q,„)'=3.4 GeV, we will (as mentioned already) prob-
ably have to restrict ourselves to low-mass states. This
analysis also tells us that, if we restrict ourselves to
q & m, we will be seeing only a small fraction of the rate

in practice this factor is not large compared to N, ). We
are also concerned that 1/N, arguments do not take into
account the Pomeron contribution, which mould be ex-
pected to produce a meson-meson interaction even as
N, —+ ~. Once again, the "factorization limit" appears to
involve only h I, with h, and corrections to h, arising as
"nonleading" contributions. Shifman has recently pro-
posed an intriguing alternative explanation of the "rule of
discarding 1/N, terms" [as defined below Eq. (6)], which
may provide a way to overcome such objections [20].

We conclude that, at the moment at least, Dugan-
Grinstein factorization offers the best hope of a systemat-
ic approach to weak hadronic decays, and we have there-
fore focused our efforts on testing and using this factori-
zation hypothesis. (Other types of factorization can be
tested using the methods we develop here, and we will
comment on such extensions below. ) It should be em-
phasized that Dugan-Grinstein factorization is very limit-
ed in its range of applicability. Imagine the Dalitz plot in
the (Ed, q ) plane for free b~cdu decay based on the
QCD-corrected interaction (2). The h

&
term will generate

a ud system with q from M up to
q,„—= (Ms —Mz&) =12 GeV . In the low-mass region,
the ud pair will be moving approximately collinearly, so
that the conditions for Dugan-Grinstein factorization ap-
ply. Conversely, the high-mass region of the Dalitz plot
corresponds to kinematical configurations in which the u

and d recoil in opposite directions, so that they would not
apply. More generally, Dugan-Grinstein factorization
would hold in the Dalitz plot in those regions where

1/2
Plb q

mb+m~ q
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from the h1 term. In units of the B—+X,ev, rate, the to-
tal rate from the h1 term should be about 3c1, but we will
only pick up roughly m, /(M~ —MD) =—' of the Dalitz
plot and therefore of that rate with our restriction on q .

A similar analysis applied to the h8 term is also in-
teresting. Dugan and Grinstein show that if the u and d
quarks produced by the octet current are collinear and at
large momenta, they will factorize and therefore not con-
tribute to the production of a ud color-singlet state. On
the other hand, we know from duality that h8 will con-
tribute —,cs units of inclusive semileptonic rate within the
same Dalitz plot, even though, according to the decou-
pling arguments of Dugan and Grinstein, it will not con-
tribute to the exclusive channels to which factorization
applies. This apparent contradiction would be resolved if
the ud octet system were to produce a double-jet-like final
state along its direction of motion. In large X„this state
would be equivalent to a state in which the u was in a
color-singlet state with the b, and the d was in a color-
singlet state with the spectator "antiquark" of the origi-
nal B meson. The high-energy u and d would in this limit
each make an independent e e -like jet, while remain-
ing at low relative invariant mass, even though not part of
the same hadron. Such a double-jet-like final state would
be allowed by the Dugan-Grinstein argument since it
would contain low-energy quarks. Of course, it would a
fortiori also not populate the low-mass exclusive channels
to which Dugan-Grinstein factorization applies.

Given this understanding, we will in the first place
focus on predictions which follow from h, only. Later
we will discuss h1-induced amplitudes as a way of setting
the scale for expected corrections to Dugan-Grinstein
factorization. (We emphasize that h, -induced amplitudes
can only be expected to indicate the size of such correc-
tions; many other corrections of the same general magni-
tude are also expected. )

B. Implementation

Whether or not factorization requires a large relative
energy between clusters, in this limit the situation is, as

I

we have just discussed, considerably simplified. Consid-
er, as a concrete example, B~am. . The h1 term in Eq.
(2) produces amplitudes for the decays B +D—+m. and
8 +D—~, while the h, term in Eq. (3) produces ampli-
tudes for B ~~ D and B ~m. D . In each case we
have shown the final state with the hadron produced
from the B meson first and that from the currents of Eqs.
(4) second to emphasize the important dynamical
differences between these decays: In the heavy-quark
limit, the latter amplitudes will be of vanishing strength
with respect to the former. As just discussed, this
suppression occurs because the h, amplitudes require
that the d quark combine with the spectator light degrees
of freedom in the B to make the fast-moving pionic sys-
tern, a process that will be strongly suppressed by a form
factor since the momentum transfers to the light degrees
of freedom are in the ratio Q& /Q& -m, /m, ~ ~, where
m& is an effective mass for the light degrees of freedom.
(See Ref. [21] for a discussion of the behavior of these
form factors. ) Even without this dynamical suppression
of the h, term, its effect would still be small in B decays:
The h& term leads in the general case to a negatively
charged m~ system, while h, creates (me. ) . In the kine-
matic region of interest, these two processes do not inter-
fere significantly. Thus the h1 contribution is suppressed
relative to that of h, by a factor of lc, /c, l

=0.01. On
the other hand, in B decays both h1 and h, can lead to
the same final state, and so there will generally be in-
terference. In this case the importance of the h1 term is
only diminished by c, /c, and the above-mentioned form
factor suppression. This latter effect is the [(q )'~ /E]
type suppression required by Dugan-Grinstein factoriza-
tion. Note that with the neglect of h1 some decays will
be forbidden: E.g. , in the example of B~De., B ~D m.

will be forbidden.
In Dugan-Grinstein factorization, the restriction to

high-energy collinear quarks introduces additional anom-
alous scaling in the low-energy effective weak interaction.
For m& E &&m„which is roughly the situation in na-
ture, they find

a, (mw)+—
3 a (mb)

(D'*'+ (n" m)~+ m ~l~w~'(p ) I& —)
GF a (mb) ' a (mb) ' a (m )U' )fc

v'2 " ' a, (E) a, (m, ) a, (p)6/23, —3/25a, (mw) a, (mb )
X

3 a, (mb ) a, (E)

X (D'*'+(n'*' —m)farl J lB ) (m77lj l0),

—12/25a, (mb)

a, (E)

(7a)

where J is the heavy-quark current in the low-energy heavy-quark effective-field theory [10,11],j is the light-quark
current in the Dugan-Grinstein "large energy effective theory, "

QI 6

8
QL =

27
w ln[w+(w —1)' ]

(w2 1)1/2 (7c)

and where a, is the coupling appropriate to the theory with the number of active Aavors in the interval over which the
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indicated leading logarithms are being summed. We have written (7a) in this peculiar form because in this kinematic
situation E = —,mb so that a, (mb )la, (E)=1. If we make this approximation, then (7a) reduces to the scale-independent
result

GF(D'*'+(n"' —m)vr+mvrIHg(p)IB &
= —Ud U bc, (D'"'+(n"' —m)n jI"IB& (mm Ij, l0&,

where the currents are now in the full theory since

a, (mb) ' a, (m, )

a, (m, ) a, (p)

is the result of heavy-quark effective-field theory for the B~D'*'+(n'*' —m)m matrix element. [The role of the vari-
ous scales in (7a) deserves further study. With our approximation, the amplitudes of the "factorization limit" are scale
independent since, as is clear from Eq. (8), p dependence in (7a) cancels against that of the "universal functions" of the
low-energy effective theory. ] Since the D and D" play a special role both experimentally and as members of the

sI
' =

—,
' heavy-quark-symmetry multiplet, we define

N (p p', {k,'],l)=(D'"'(p', X), (n'*' —m)vr([k ] )Ij IB(p) &,

M'(q, [k;])=(m~([k;])Ij Io& .

(9a)

(9b)

Then, assuming factorization and neglecting interference between processes with different m (see Ref. [22]), the contri-
bution to the differential decay rate is

dI
ds

(M2 +M2 s)2 4M2M2 1l2 „~d 3k '

f ~ ', yN~N""fdic ~„M,",
64m. M~ 2E„,(2m )

t

(10)

where s =q, N is the m-pion phase space for a fixed
q", and C =

I GF U„*dU,bc ) I'.
The decoupling of the heavy-quark spin and flavor

from the light degrees of freedom in interactions involv-
ing a single heavy quark generates relationships [10]
among groups of current matrix elements, N . In partic-
ular, all of the form factors for B~D and B~D* are
determined in the heavy-quark limit in terms of a single
function g(w) of the scalar product w =v v' of the four-
velocities of the b and c quarks; moreover, g(1)= l. Oth-
er matrix elements involving a b ~c transition can like-
wise be related using a small number of universal form
factors. Here we will obtain the needed form factors
from an empirical fit to the universal function g(w) based
on semileptonic decay data (see Fig. 3) along with the
previously mentioned Bjorken sum rule. Ul'ti mately,
these matrix elements N can all be extracted directly
from semileptonic decays to provide a model-independent

input to tests of factorization. Alternatively, if factoriza-
tion is established in decays involving g(w), it may prove
to be more valuable to use hadronic weak B decays to
find excited D mesons and extract their universal form
factors (e.g., the functions r, &z and r3/p mentioned previ-
ously) from nonleptonic data.

The m-pion phase-space integral must have the form

fd@ ~"M *=(q"q sg" )t (s)+q—"q 1 (s),

where the densities t (s) and l (s) can be extracted from
~~v, +m m angular distributions to provide the remain-
ing model-independent input required to test factoriza-
tion. Appendix 8 contains the formulas for m &3. In
fact, for m =3 this relationship holds at the level of the
three-pion Dalitz plot since the only available tensors
that are rotationally invariant in their center of mass are
g" and q"q, i.e.,

dr
ds ds, ds2

C[(~'+M' s)' 4M'M' ]'"— —
64~ M

d k,
'

gN"N' f(q q
—sg „)t3(s,s„s2)+q q„13(s,s„s2)],2E„,(2m )

l

(12)
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FIG. 3. Plot of Ag(w) vs w extracted from the combined
CLEO and ARGUS B ~D *+I v data [24] where
A =(rz/1. 18ps)'~'~ Vb ~. The solid curve represents the best fit

(w —1)of Ae ~ ' ". The dashed curve is constrained to p'=0. 7,
from the model of Ref. [23].

approximation. Then the decays are all of the two-body
type BD "R'J) [see Fig. 1(c)]. The rate formulas for
what should, in this limit, be an essentially exhaustive set
of final states are given in Table I. (The decay constants
and form factors appearing in the table are defined
below. )

General considerations suggest that the narrow-
resonance approximation will give a reasonably accurate
picture of the rates to the channels of Table I in all cases
except where R' ' is the a„'in the numerical results
shown in Table II, we have accordingly taken the full
three-pion spectrum arising from the a, into account.
On the other hand, we estimate that neglecting interfer-
ence effects as in the narrow-resonance approximation is
reasonably accurate.

The results of Table II are thus based on formulas such

„(*)
l.-,.. .,

= V V(rB~D +n( 7I. ~ ~ B~D(' +mal.
m =1 D(i)

where s;=(q —k;), and integrating t3($ si sp) and
l&(s, s), s2) over the Dalitz-plot region gives t3(s) and
l3(s), respectively.

C. Resonance model for B~D' '+n'*'m

As a prelude to the model-independent tests of factori-
zation outlined above, we present here an initial calcula-
tion in which we assume resonance dominance of both
current matrix elements. In the extreme and simplest
version of this approximation, we assume that
B~D'*'+n'*'~ proceeds via B~D" and vacuum
—+R ' ', where D" and R ' ' are, respectively, charmed
and uncharmed resonances treated in the narrow-width

X(B )j) )IIC) )g) ) ) (13)

where 8 (;] (+], (+], is the indicated branching
fraction, deduced from heavy-quark symmetry [13]. In
this framework, the factorization criteria of Ref. [8] are
met by all diagrams. In Table II we consider contribu-
tions from transitions of the B via the cy"(I —y5)b
current to the ground-state si '=

—,
' multiplet [consisting

of the D(1870) and D*(2010)], the si '=
—,
'+ multiplet

[consisting of D2 (2460) and D (,2)420)], and the hy-

pothetical sl
' =

—,
' + multiplet expected at about 2400

MeV [consisting of Di(-2400) and Do (-2400)]. We
parametrize the three universal functions appearing in
the 20 form factors of the 12 matrix elements

TABLE I. Partial widths from h1 only in the narrow-width approximation. %'e have defined
K(r, w)=(1/16~)V„'dV,'bGF'C,'bc1M&r'(w' —1)' ', r =M (, , /M~, r'=M „,/M&, and w =E „]/M (;]. Formulas for decays to any

state with the quantum numbers of the n, p, or a) may. be obtained by substitution of the appropriate coupling constant f ),). Simi-

larly, formulas for decays to any state with the sI ' quantum numbers of the (D,D*), (D1,D2 ), or (D0,D1 ) multiplets may be ob-
tained by substitution of the appropriate universal form factors.

Decay

B~Dn
B~D*~
B D*( -2400)
B~D1( -2400)~
B~D1(2420)~
B~D~ (2460)n
B~Dp

D )fc

B D*( -2400)p
B~D, ( -2400)p
B~D, (2420)p
B~Dz (2460)p
B~Da1
B~D a1

Partial width in units of E(r, w)

f' [g( w) ]'(1—«)'( w + 1)'
f' [g( w) ]'( I+ r)'( w' —1)
4f' [~)~,(w)]'(I+r)'(w —1)'
4f' [~)~,(w)]'(1 —r)'(w' —1)
2f ' [~,~, ( w) ]'(1—r)'( w + 1)'(w' —I)
2f [~,z2( w) ] (1+r) '( w —1)
f [g'(w)]'(1+«)'(w' —1)
f [g( )] (w+1)[(l —

) (w+1)+4wr']
4f'[~ ),)( )w]'(1 r)'(w' 1)— —
4f2[~)~2(w)] (w —1)[(1+r) (w —1)+4wr ]
2f 2 [~3~q(w)] (w' —l)(w + 1)[(1+r)'(w —1)+wr']
2f 2 [~3 ~(w)]2( w —1)(w + 1) [(1—r) ( w + 1)+3wr' ]
f2 [g(w)] (1+r) (w' —1)

f,' [g(w)]'(w+1)[(1 —r)'(w +1)+4wr']

Partial width in units of K(r, w)
neglecting the m, p, and a1 masses

f' [g(w)] (1—r) (1+r) /4«
f2 [g(w)] (1—r) (I+r) /4r
f„[rq ()w2)] (1—r) (1+r) /r
f [r)q2(w)] (1—r) (1+r) /r
f2 [r3&2(w)]2(1 —r) (1+r) /8r
f [g (w)] (1—r) (1+r) /8r
f~ [g( w)]~(1 —r) (1+r) /4r
f [g(w)] (1 —r) (1+r) /4r
f' [~„2(w) ]'(1—r)"(1+r) '/r '
f [r)~,(w)] (1—r) (1+r) /r
f~ [~3&2(w)]~(1—r) (1+r) /8r
f [~3&&(w)] (1—r) (1+r) /8r
f2 [g(w)] (1—r) (1+r) /4r
f~ [g( w)] (1—r) (1+r) /4«
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TABLE II. Predictions of Dugan-Grinstein factorization expressed as a percentage of the
B~D*ev, branching fraction. The upper entries in the theoretical columns use p =1.18 and

w(1) =0.56, from a fit to Fig. 4, and the lower entries use p =0.7 and w(1) =0.4, from the model of Ref.
[23] and Bjorken's sum rule. The experimental results are, . from top to bottom, CLEO 87, CLEO 85,
and ARCHEUS [26]. lFor the 8~D*ev, branching fraction, we use the weighted average of the values

quoted in Ref. [24], namely, 4.4+0.6%.) Note that the D+nvr results do not include contributions

from D*+(n —1)m. Here D l and D l represent the Dl( -2400) and Dl(2420), respectively.

Decay Expt. Decay Ex.pt.

Bo~D

B

5.0 6.1 + 2.0
11.8 + 7.1
109 +39

Bo —+ D'+sr
5.6

7.2

9.1 6 3.1
6.6 6 3.8
6.4 + 2.6

B'~ Do~o Bo~D"xo

5.0

7.0

11.4 + 2.7
12.5 6 4.9
4.5 + 2.4

B —+D' 7r
5.6

7.2

16.4 + 5.9

9.1 + 4.4

Decay

B —+D+x vr

10.7

Expt.
via

Dp

0.7

Expt. i Expt.
Via ~ Via

D2 (2460) '
DO (-2400)

B

0.4

Total Expt.

11.8

B' Do~-~+
1.3

0.7

14.5 20 ~ 14 0.3

0 ( 1.4 & 0.9

0.2

0.4

( 0.2

15.0

0 (16.0

10.7B- Do~-~o
0.7 0.4 11.8

B-~D+~-~-

14.5 3p y 14 0.3

1.3

0.7

0.2

0.7

0.4

15.0

2 0 &16.0

Decay
Expt.
via
D'p

D' ~ D' ~ D

~~ Total

8

Expt.

14 0 43 + 32
p 3B'~D'+~-~o

17o4 16 + 10 po 1

1.0 0.4 15.7

0.5 0.2 18.2 41 g 15

B' D"~-~+ 0.5 1.9 0.7

0.3 1.1 0.4

3.1

1.8

14.0
B —+D' m

0.3 1.0 0.4 15.7

17.4 23 g 16 0.1 0.5 0.2 18.2

0.5 1.9 0.7

0.3 1.1 0.4

(9
5.5 6 4.0

1.8 59g37
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(D"j~"~B ) according to

w)=e —P (W —1)

r, &2(w) =r3&2(w) =r(1)g(w),

(14a)

(14b)

since g(1)=l is known from heavy-quark symmetry
alone, and the model of Ref. [23] suggests that r, &2 and

r3&z are equal and proportional to g. If the Bjorken sum

rule is approximately saturated by the lowest s&
'=

—,
'+

TABLE II. (Continued).

Decay
Expt.
via
Day

~~~D ~~~D
Expt.
via

Dpx
I

nonres.

Expt.
Total Expt.

nonres.

3.7B' D+~-~0~0
4.9

1.5 0.8

0.8 0.4

6.0

6.8+3.8 0
Bo —+D+~ ~ m+

2.5+2.3 8.9+7.1 3 7 18.2+6.3

4.9

B' Do~'~-~+

3.7
B ~De ex

4.9

0 0

3.0 1.5

1.6 0.8

1.5 0.8

0.8 0.4

5.9

2.4

6.0

6.1

3 7 5.1+4.2 0a- Do~-~-~+
9.5+7.1 11.6+9.5 3 7 26.1+8.9

B-~D+~o~-~-

4.9 0 0

3.0 1.5

1.6 0.8

5.9

4.5

Decay

B' D +x x'x'
6.0

7.1

Expt.
via
D'ag

Dq D~»

8

0.6 1.9 0.8

0.3 1.0 0.4

~~~D' ~~~D' ~~~D Expt. Expt.
via via Total Expt.

nonres. nonres.

8.8

6 0 20.5+10.0 0 0 0 15.5+9.0 0.0+0.2 ~ ~ 36.1+11.7
LJ ~ 'lJ

B~D"~'m x+

B D"a ~'x'

B D"~ x x+

B D+~ ~ ~'

7.1

0

6.0

7.1

6.0

7.1

0

0 0 0

1.2 3.8 1.7

0.6 2.0 0.9

0.6 1.9 0.8

0.3 1.0 0.4

0 0 0

0 0 0

1.2 3.8 1.7

0.6 2.0 0.9

70 1

3.5

9.3

8.8

6.0

7.1

6.7

41+21



47&0&6

I = 3+ states, thenand &I

NATHAN ISGUCATHY RFADER AN

p.04

I 1

t

+3[r(1 l'
4d~ w=&

(14c) IZ

a
IfQ

p.03

p.p2f [24]) g'(taken from
1 0 56+0

to
(14c) then give

ld be to
~=1.18+0 5

ther reasonable c
Ref [23]

hoice ~ou
p

the errors anot er r
the model of

Given
2 —

O 7 predicted by
the Bjor

value p =
1)=0.4 «om

use the
nding value of &

bo th parameter
an d the correspon

h results of boW present t e ren sum rule. e

ix . We use theix elements.
sets.

to the mm. matrixWe next turn to
definitions

a
IIXI

C
O

0.01

0.00
0.

0.06

2
s (GeV )

II I I I t t l I

~

I

&~(q)lj"(0)lo&=f q",

e*"(q,A, ),p q, A, )~j"(0) 0& =M f e

(15a)

(15b)

IQ
QJra
t

I03

0.04

e*"(q,A, ),(,(q, j~)l "(0)lo&=M. f. ~ (15c)
0.02

=0.132 GeV and
05 GeV from vr p

„

p
decay. ) For

Q2

) tjctral densi yp

1300) and nonresonanas only the m(13was ignored as on
ntribute to it.

gives

P
to the m, also goi noredt era

and a as well as t p-h lk
d differential decay ra ews the expecte iure 4 shows

ures from
contnbu i

he contribut o
II due to the h, -' d d

h
the pattern

t e d„ocna
h strictly

the form factor a
rule (thoug, s

i
'

) The slopes
p yb the jor

ransitions .it is not va i
in fact di er

speaking,
b these w

More i po
cillator-induced exPo

le tic form ac
e seen y

i actor wlectromagne i
ar e recoi m'1 omenta.

the pion ele
i nificant at a g

po e ' f hrm factors di erThus our form ac

0.00
0 2

s (GeV )

for the al contribu-t rn predicted for t ee- ion spectrumFIG. 4. Thre -p
~a+3m. and B~tion to B~

ntthe replacemen

exp
m&

2 28(m, +m, )~ P'

1mI

8mbm8(mb+ m& )P
(t,„r)—

(16)

onl in-p

h 11

at infinite recoi .
atrix elements, t e rto incorporarate, in

in in
is

This

n are baseTh t hoerimentally. e
Table III in ica=150 MeV [2'7]. ic

'
al value fD=nomina

p o

es
rocesses w'ly that these proc



47 FACTORIZATION AND HEAVY-QUARK SYMMETRY IN. . . 1017

D'*'+R ~D'*' R rescattering, i.e, via a direct break-
down of the factorization hypothesis. A measurement (or
limit) on them will therefore provide a good test of the
validity of factorization. (In the BSW model, these pro-
cesses would appear with rates proportional to a

&
)&c I.

They are therefore especially good places to look for a
breakdown of the BSW model. We reiterate that these
rates are not quantitatively predicted by Dugan-Grinstein
factorization; they are only predicted to be sma11 with
respect to h, -induced decays. Thus their observation at a
small rate cannot be used to test Dugan-Grinstein factori-
zation, but only to "calibrate" its accuracy. It should
also be noted that our h, corrections tend to be much
smaller and to have the opposite sign from those of the
BSW model. This is because a&/a& is substantial and
negative, while c, /c, is small and positive. )

III. RESULTS

We now examine, in detail, the results displayed in
Table II.

A. B~De and B—+D m

The decay B ~D'*'+~ is a pure h& decay, while
B ~D ' ' m. could have a factorization-violating h,
amplitude, which has been neglected in constructing
Table I. In the absence of h

„

these pairs of rates would
be identical and experimental is so far consistent with

this simple picture. (Note that the BSW model predicts
that B ~D '*n7r will be about 40% smaller than
Bo~D'"'+sr .) This agreement provides support for
both the factorization hypothesis and the predictions of
heavy-quark symmetry for the B—+D and B—+D* matrix
elements. It would obviously be desirable to measure the
rates for B —+D' ' m, which can proceed only via0

factorization-violating effects such as h, and so are zero
in the leading approximation (see Table III).

B. B—+Dern. and B~D

The rates for B—+D'*'m.~ are dominated by the pro-
cess B~D'*'p and provide potential new tests of fac-
torization (the present data are not very stringent). In
addition, the channels B ~D m ~+ and
B ~D m. ~ could be interesting since these events
are predicted to be due to decays of the D2 (2460) and
the hypothetical Do ( -2400). Such decays would, of
course, be easily distinguished from the dominant
B~D *m mode.

The B ~D *
m m. + and B ~D *+

m m channels
are even simpler: They are each predicted to occur only
via the excited charmed D z (2460), D

&
(2420), and

D, (-2400) states. In addition, as already mentioned,
the D'*'p channels may be especially revealing.

TABLE III. Estimate of the size of the factorization-violating effects via h
&

~ As explained in the text,
these are not predictions for the rates, but rather indications of the departures from Dugan Grinstein fa-c
torization. We have ignored channels, other than 8 ~D'*' ~, 8 ~D'*' p, and 8 ~D'*' a&, with
rates proportional to ~c, ~'=0.01; apart from these ignored channels, decays not listed here are un-

changed from Table II.

Decay

I /I (%%u') itho t h,
e

p =1.18 p —0.7

I /I" (%) with h,
e

p =1.18

8~D~

8 D*p
8 ~Dalo o

8 ~D al
8 D m

8 ~D* m.

8 ~D m m.

8 ~Dp
8 ~D+~
8 D*n
8 ~D* p
8 ~D*+n. m

8 D m m. m.

8 ~D a+a vr

8 ~D al
8 ~D+m m m

8 D*m mm'
D*0 +

8 ~D* al
8 D m m vr

0
0
0
0
0
0
5.0
5.6

11.8
10.7
2.0

15.7
14.0
3.1

6.0
3.7
7.4
45
9.3
6.0

12.0
6.7

0
0
0
0
0
0
7.0
7.2

15.0
14.5

1.1
18.2
17.4
1.8
6.1

4.9
9.8
2.4
8.8
7.1

14.2
3.5

0.04
0.04
0.01
0.04
0.10
0.17
6.4
7.1

14.0
12.0
3.3

17.5
15.9
3.3
5.3
2.5
5.0
5.4

10.3
6.7

13.3
6.8

0.03
0.03
0.01
0.03
0.09
0.13
8.4
8.6

16.7
15.8
2.0

20. 1

19.2
1.8
5.6
3.7
7.4
3.0
9.5
7.6

15.2
3.5
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C. B~D mew and B~D *~~+

These decays provide, in the first place, quantitatively
new tests of factorization via B—+D'*'a

&
. The channels

B ~D+~ m m+ and B ~D m ~ ~+ are particular-
ly useful in this regard since they are free of the D*p
channel. As mentioned earlier, the broad a& has some
tactical advantages for testing Dugan-Grinstein factori-
zation: It allows a test of factorization as a function of
recoil momentum within a given channel since the 3m

spectrum has significant strength from 0.5 up to nearly 2
GeV. Four of the B—+D*m~m channels provide such
tests.

The B~D"'m m.vr decays are also potentially rich
sources of information on the excited D mesons, with

significant contributions from both the sl
' =

—,
'+ multiplet

(Dz (2460), D&(2420)) and from the as yet unobserved

sI '=
—,
'+ multiplet (D, (-2400), Do (-2400)) expected

nearby. The B—+D'*'~~~ data also provide the strong-
est indication of significant departures from our calcula-
tion: The total rates for B—+D'*'m~~ are predicted to be
much smaller than the central values quoted by experi-
ments (although the discrepancies are never much more
than two standard deviations). Although it is possible,
we would be surprised (see below) if the theoretical values
were to change by factors of 2 as the result of the more
rigorous, model-independent analysis we have outlined
above. Moreover, since one of these decays is dominated
by D *a

&
and free of contributions from excited D

mesons, the difficulty cannot be with our model for ~, &2

and ~3&2. Thus, if these discrepancies persist, it is likely
to signal a violation of the factorization hypothesis. It
will also be interesting to see improved measurements of
non-a, components to the decay B~D'*'p m . These
processes are forbidden in the picture of Table II. Final-
ly, we note that the graphs of Fig. 4, showing the s depen-
dence of B—+D'*'+3~, could provide a further test of
factorization. Any significant nonfactorizing contribu-
tions obscured in the total width might be visible here.
The shape of the experimental distribution could also
provide clues regarding the source of the dominant
corrections to the factorization approximation.

IV. DISCUSSION

One of the least dependable elements of the calcula-
tions leading to Table II is our estimate of r(1). For-
tunately, at this stage the imprecision of our knowledge
of r(1) is not significant given the error limits of the
present experimental data and the fact that most of the
decays considered here are likely dominated by B~D'*'
transitions.

Another concern is the possibility that we are neglect-
ing important contributions to these decays with our as-
sumption of resonance dominance. The historical success
of this approach in similar situations makes it unlikely
that such contributions are very strong, but it will be in-
teresting to check the data for such effects. [Note that
B +D*+(3n.)„,„„„„,„,—is already determined to be quite
small. ] The narrow-resonance approximation itself
should be satisfactory: Most of the possible intermediate

states are in fact narrow, while those that are broad do
not seem capable of dramatically changing the results.

Both of the above reservations will be mitigated by im-
proved semileptonic data. Given ~ decay data, they are
also the only significant sources of model dependence in
our calculation that are relevant to the factorization issue
since all that is required of the models for the amplitudes
M" is that they give the correct spectral densities, regard-
less of the veracity of the underlying physical picture.

In Table III we showed how the results of Table II
would be modified by the simple addition of the h

&
ampli-

tudes for decays of particular interest. We note that even
the h, effects cannot be given with precision because of
the large uncertainties that exist in the B~light-hadron
current matrix elements. We should also reemphasize
that h, effects by no means exhaust possible corrections
to factorization; at best, they may typify the size of
corrections to be expected.

V. CONCLUSIONS

The preliminary results presented here are generally
consistent with the factorization hypothesis. Taking the
slightly preferred p =0.7 predictions as our benchmark,
we find that all exclusive resonant rates are predicted
correctly to within about 1.5 standard deviations. For
the total rates to the channels D' '+n'*'~, this calcula-
tion fares less well: The central values predicted for
n'*'~ 2 are all low by typically two standard deviations
compared to the measurements which exist. Given this
somewhat ominous indication, it is more important than
ever to obtain completely model-independent predictions
against which to test factorization, more precise experi-
mental information on important modes, and stringent
limits on (or observations of) modes forbidden in the
"factorization limit. "
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APPENDIX A: hs AND hs INTERACTIONS

In passing to the hadronic level in Eq. (6), the role of
h 8 and h 8 is obscure; here, we will try to clarify the role
of "octet states. " In taking matrix elements of H~(p),
we are making a transition from a quark-gluon basis for
QCD at distances smaller than p

' to a hadronic basis
for distances above this scale. This (nonrenormalizable)
low-energy effective theory contains all the meson states
as "elementary" fields and includes all possible couplings
between these fields. When the local operator H~(p)
acts, it produces (relative to the cutoff p, ) a pointlike
configuration of c, d, and u quarks coupled to a color
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triplet (the state of the original b quark). As indicated by
Eq. (2), such a state may be viewed as consisting of a
linear combination of, e.g., a singlet n with a singlet D
meson and an "octet vr

"with an "octet D meson. " [The
c(x)y (1 ys

—)b (x) current creates from the B a singlet D
meson if it is a color-singlet current and an "octet D
meson" if it is an octet current. ] However, this does not
mean that H~(p) produces new degrees of freedom, the
so-called "hidden color states. "

That the local cdu state is produced in a color-triplet
state simply means that it is produced in a fixed (gauge-
invariant) linear combination of quark color states with
respect to the color state of the annihilated b quark. The
local qq bilinears in this linear combination then have
amplitudes to produce mesons of the low-energy effective
theory out of the vacuum. Configurations such as ~8D~
do not correspond to new degrees of freedom, as evi-
denced by Eqs. (3c) and (3d) (see Fig. 5). Such states may,
however, play a role in determining the properties (as op-
posed to the degrees of freedom) of the low-energy
effective theory. A local color-singlet four-quark opera-
tor such as H~ contains only two linearly independent
color configurations. These may be taken (in a self-
explanatory notation) to be one of the orthogonal

[II13124& ~813824&] [~lj4123& I8i48»&],
[~3,23~4), ~6,~634) ]; alternatively, this two-dimensional
space could be spanned by the nonorthogonal basis
[I li3lz&) ~1, 1») ] [see Eqs. (5b) and (5c)]. Thus
configurations such as ~8D8 have no dynamical
significance locally. However, the nonlocal operator
its(x4)gii(x2 )Pr(x3)g (x, ) is only locally color gauge in-
variant with the gluonic fields "excited" and these excita-
tions can produce dynamical effects. This classification is
easily seen in the lattice Hamiltonian strong-coupling
basis (see the discussion in Ref. [28]) where a complete
g ] g2 $3/4 basis can be obtained from the (gauge-invariant)
nonlocal ~1»124) and ~1,41&3) states by coupling quarks
to antiquarks, as indicated by the notation, with triplet-
link operators along arbitrary paths in the lattice. "Exot-
ic" color states correspond in this basis to states where
the link operators overlap (with each other or internally)
(see Fig. 5). When they overlap it can be convenient to
reexpand the complete [ ~ 1»124), ~1,41z3) ]-type basis
states on the multiply excited links in terms of eigenstates
of the SU(3) Casimir. In Figs. 5(c) and 5(d) the 8 in 3 X 3
and 6 in 3 X 3 are shown.

APPENDIX B: SPECTRAL DENSITIES t AND I

For m ~ 3 the transverse and longitudinal densities of
Sec. II 8 can be extracted from ~ decay data using the fol-

(a)

(b)

(c)

FIG. S. Illustration, in the fiux-tube model [28], of the coni-
pleteness of the asymptotic meson states and the dynamical role
of "exotic" color states: (a) the ~1»lz„) state, (b) the ~1~412, )
state, (c) a state corresponding roughly to ~8&&823), and (d) a
state corresponding roughly to ~6, 2634).

lowing expressions.
The case m = 1. This case is trivial as only 1,(x) exists:

dI
=C,l, (s)(m, —M )

ds

where C, =6~~ U„d~
/32m, ir and i, (s)=i, (M2 )g(s—M ).

The case m =2. The decay distribution with respect to
x&, the cosine of the polar angle of the vr momentum
where the z axis is chosen along the direction of q in the ~
rest frame, can be used to find l2(s) and t2(s):

dI,
ds dx)

(m, —s) lz(s)+ [(m, —s)x i+s]t2(s)+2&3x, cosg+l2(s)t~(s)
fPl

where the phase P does not enter the calculation of B decay rates.
The case m =3. In this case we use the distribution with respect to x~, the cosine of the polar angle of the normal to
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the 3n. decay plane in the rest frame of q with the z axis defined as above. At the level of the Dalitz plot, l3(s, s„sz) and
t3 (s, s &, sz ) can be extracted using

dI, ~+3

ds ds, ds~dxz
(m, —s) l3(sysfpsp)+ [(m, —s)(1 —x&)+2s]t3(s,s»sz)
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