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Leptonic decay of light vector mesons in an independent quark model
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Leptonic decay widths of light vector mesons are calculated in a framework based on the independent
quark model with a scalar-vector harmonic potential. Assuming a strong correlation to exist between
the quark-antiquark momenta inside the meson, so as to make their total momentum identically zero in
the center-of-mass frame of the meson, we extract the quark and antiquark momentum distribution am-
plitudes from the bound quark eigenmode. Using the model parameters determined from earlier studies,
we arrive at the leptonic decay widths of (p, to, P) as (6.26 keV, 0.67 keV, 1.58 keV) which are in very
good agreement with the respective experimental data (6.77+0.32 keV, 0.6+0.02 keV, 1.37+0.05 keV).

PACS number(s): 13.30.Ce, 12.40.Qq

I. INTRODUCTION

Though quantum chromodynamics (QCD) is con-
sidered to be the underlying theory of strong interaction
between quarks and gluons at the structural levels of had-
rons, many low-energy phenomena such as spectroscopy,
static electromagnetic properties, as well as weak and
electromagnetic decay, etc. , cannot be explained in a
straightforward manner from first-principles QCD.
Therefore one needs to resort to phenomenological mod-
els. Out of many such successful models developed so
far, a chiral potential model with an equally mixed
scalar-vector harmonic potential [1] of independent
quarks in a relativistic Dirac framework has been used
successfully to study several low-energy phenomena in
the baryonic sector such as octet-baryon masses [2], mag-
netic moments [3], weak electric form factors [4], nucleon
electromagnetic form factors, and charge radii [5]. This
model has also been quite successful in explaining pion
mass, its decay constant [6], (p rr) as well as—(p —co)-
mass splittings [7] and the radiative decay [8] of ordinary
light mesons. In view of this wide ranging application of
the model to both baryons and mesons in the light flavor
sector, it has proved to be rather a simple and successful
alternative to the cloudy bag model (CBM) [9], the
modern hybrid version of the bag model endowed with
chiral symmetry. The purpose of the present work is to
extend its applicability to the study of the leptonic decay
of vector mesons in a light flavor sector such as p, ~, and

The leptonic decay width of heavier vector mesons in
the charm and bottom flavor sector has been extensively
studied in the nonrelativistic approach through the Van
Royen —Weisskopf formula with appropriate radiative
corrections [10]. However the same approach is not suit-
able for ordinary vector mesons in the light flavor sector,
where the constituent quark dynamics is more relativis-

tic. The present model, which is based on the ansatz of
the dominant confining interaction phenomenologically
taken in the form of an equally mixed scalar-vector har-
monic potential, can most suitably be applied to vector
mesons such as p, co, and P where the short-range
Coulomb-like vector interaction can be believed to have a
less prominent role.

Our approach here is quite similar to that of Margolis
and Mendel [11] in the bag model where we follow the
usual method of positronium annihilation [12]. Here we
assume that the constituent quark-antiquark pair inside
the meson annihilates mainly to a single virtual photon
which subsequently gives rise to a lepton pair. We fur-
ther assume that the center-of-mass motion does not play
any important role in the dynamics of the system during
decay. In that case one can consider a strong correlation
to exist between the quark-antiquark momentum so as to
have the total momentum identically zero in the center-
of-mass frame of the vector meson. With such a con-
sideration the ground state of the decaying vector meson
can suitably be represented with the appropriate momen-
tum distribution of the bound quark-antiquark pair in the
corresponding SU(6) spin-fiavor configuration. Then the
transition probability amplitude for the leptonic decay,
calculated from the appropriate Feynman diagram, can
be expressed effectively as the free quark-antiquark pair-
annihilation amplitude integrated over the model
momentum distribution. There is of course an obvious
dif5culty relating to the energy conservation at the
quark-photon vertex since the sum total of the kinetic en-
ergy alone carried by the annihilating quark-antiquark in
this process is not equal to the mass energy of the decay-
ing meson at its rest frame. This is a common feature
with all phenomenological models based on leading-order
ca1culations in the absence of a rigorous field-theoretic
formulation of bound quark-antiquark annihilation inside
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Eq (Eq Vo/2) m =(m + Vo/2)

Aq=(Eq+mq), ro =(aA, )

the meson. Therefore we content ourselves with accept-
ing the usual assumption that the differential amount of
energy is somehow made available to the photon when
quark-antiquark annihilation occurs with the disappear-
ance of the meson bound state. In Sec. II, we brieAy de-
scribe the framework of our model determining the
quark-antiquark momentum distribution amplitude in
the ground state of the vector meson. We obtain the
transition matrix element for the leptonic decay of light
vector mesons in Sec. III, where we derive also the corre-
sponding expression for the decay widths. Finally Sec.
IV provides the results and discussions.

(3)

admits static solutions of positive and negative energy in
zeroth order which for the ground state of the meson can
be obtained in the form

igq(r)/r
q)(+) r

cr rfq(r)/r
q)( —)(r)—

~4 —ig (r)/'r Xx

(4)

II. QUARK-ANTIQUARK
MOMENTUM DISTRIBUTION The two-component spinors g& and g& here stand for

1

0 ~ X$
0The study of leptonic decay of vector mesons using a

field-theoretic calculation requires an appropriate repre-
sentation of the initial state of the decaying vector
mesons in terms of the constituent quark and antiquark
with their respective momenta and spin. But the bound
constituent quark and antiquark inside the meson are in
definite energy states having no definite momenta. Nev-
ertheless one can find out the momentum distribution
amplitude for the constituent quark and antiquark inside
the meson immediately before their annihilation to a lep-
ton pair. This can be done by a suitable momentum
space projection of the corresponding bound quark orbit-
al derivable in a model, for which one may have to rely
on certain simplifying assumptions. In view of this it is
worthwhile to present briefly the outline and certain con-
ventions of the model adopted here for our calculations.
According to this model a light hadron in general is pic-
tured as a color-singlet assembly of a quark and an anti-
quark independently confined by an average Aavor-
independent potential of the form [1]

L

and

0 1

X$ 0

respectively. The reduced radial parts in the upper and
lower component solutions corresponding to a quark
flavor q are

g (r) =JV (r/ro )exp( —r /2roq),

f (r)= —(JV /it. ro )(r/ro ) exp( —r /2ro ),
where the normalization factor JVq is given by the expres-
sion

8A,

Vqrroq
(3E'+m') .

U(r)= —,'(1+y )(ar + Vo) . The quark binding energy of zeroth order in the meson
ground state is derivable from the bound-state condition

Qi,q/a (E' —m')=3 .

Thus knowing the quark-antiquark eigenmodes in the
ground state of the meson, it is possible to obtain their
corresponding momentum distribution amplitude. If
Gq(p, l, , i, ') is the amplitude for finding a bound quark of
flavor q in its eigenmode 4'

& '(r) in a state of definite
momentum p and spin projection A, ', then it can be given
by

N'&'(r)= g Jdp Gq(p, A, , A, ')Qmq/E~Uq(p, V)
1

)
3/2

Xexp(ip r),
where U (p, A. ) is the usual free Dirac spinor which is
normalized according to the relations

Ut(p, A. , )U (p, A.~)=(E~/mq)5g g

=(Qp +m /m )6g gX (x)=g (x)[(i/2)y"8„mq2 U(r—)]1' (x—) . (2)
(9)

Then the ensuing Dirac equation with

This potential form is taken in the model as a phenome-
nological representation of the confining interaction
which is expected to be generated by a nonperturbative
multigluon mechanism. The quark-gluon interaction at
short distance originating from one-gluon exchange and
the quark-pion interaction required in the nonstrange
Aavor sector to preserve chiral symmetry are presumed
here to be residual interactions compared to the dom-
inant confining interaction. Although these residual in-
teractions treated perturbatively in the model are crucial
in determining the mass splittings [2,7] in light hadron
spectroscopy, their role in hadronic decay processes is
considered less significant. Therefore to a first approxi-
mation it is believed that the zeroth-order quark dynam-
ics inside the meson core generated by the confining part
of the interaction phenomenologically represented by
U(r) in Eq. (1) can provide an adequate description of the
leptonic decay of vector mesons.

The quark Lagrangian density in zeroth order in such
a picture is
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Now Eq. (8) can easily be inverted to give

G (P, A, , X')= Qm /E U (P, A, ')1

(2n )
i

X f dr @'+i'(r)exp( ip—r) . (10)

where

le
G~(p)=,~, (Ep+E, )(2~)'~' 2ak,

XQ(1+m /E )exp( —p /4a) . (13)

fdr 4q~ (r)exp( —ip r)

i ~IV

2a
exp( —p /4a)

P q

which when substituted into Eq. (10) leads to

Gq(P ~ ~')=Gq(P)5i. ~ (12)

Taking 4'
&

'(r ) as provided in Eqs. (4) —(7), with
o:=1/2,rz, one can obtain

Now following Margolis and Mendel [11], we make a
crucial assumption regarding the existence of a strong
correlation between momenta of the quark and antiquark
inside the meson so as to have their total momenta identi-
cally zero in the center-of-mass frame of the vector
meson. In that case the momentum distribution ampli-
tude Gv(p„p2) for finding a quark of momentum p, to-
gether with its antiquark of momentum p2= —

p&, must
be equal to the momentum distribution amplitude G~(pi )

of finding a quark of momentum p&. Then one can
represent the ground state of a neutral vector meson such
as (p, co, p) with a particular spin projection Sv as

I VS, &=&3

which reduces to

(q, A, l, k2) E'( V, Sv)
fd»dp25 (Pi+P2)Gv(pi~p2)Ci. ,~, k&bq(pi ~i)b q(P2 ~2)l0&

l
V Sv&=&3 g f dp, G(qp, ) C& i. g b (P„A&)b ~( p&, ~2)I0&

(&, A, A,2)E( v, sv)
(14)

Here b~(p„k) and b ( —P„A.) operating on the vacuum state are quark and antiquark creation operators, respectively.
The summation with the flavor coefficient g and the spin-configuration coefficient Ci i represents the appropriate

2

SU(6) spin-flavor structure of the particular vector meson V with its spin projection Sv. The factor &3 is efFectively due
to the color-singlet configuration. Thus the initial vector-meson state represented in the model by the expression in Eq.
(14) with the momentum distribution amplitude as given in Eq. (13) can enable one to determine the transition probabil-
ity amplitude for the leptonic decay.

III. LKPTOMC DECAY WIDTH

Assuming that the main contribution to the leptonic decay process of neutral vector mesons such as (p, co, P) comes
from single virtual-phonon annihilation of the bound quark-antiquark pair inside the meson, we can illustrate it by the
corresponding Feynman diagram in Fig. 1. Then we can write the S-matrix element in configuration space as

Sf ( e (ki, 5i )e+(k2, 52)l( ie') f—d "x,d'x, y,' '(x, )1 "p,' '(x2 )&„„(x2—xi )p e, p Ii+ '(xi )7 "QIi+ '(xi )

where 2)„,(xz —x, ) is the photon propagator. The quark and lepton field expansions are taken as

g (x)= g f dp'Qm /E .[b (p', A, ')U (p', A, ')exp( ip'x)+b—(p', k') V (p', k')exp(ip'x)]1

(2') ~

and

P, (x)= g fdk'Qm, /E&. [d, (k', 5')U, (k', 5')exp( ik'x)+—d, (k', 5') V, (k', 5')exp(ik'x)] .1

(2') ~

(15)

(16)

(17)

Now simplifying the leptonic and hadronic parts sepa-
rately by a vacuum-insertion technique and using the ini-
tial vector-meson state as per Eq. (14), one can obtain,
with 0—:(1,0,0,0) and (E~ +E~ ) =Mv, v(J =) )

Sf;= —i(2~) 5'"'(k, +k2 —OMv)

XA~ (k„k2,5„52), (18)
FICs. 1. One-photon contribution to the leptonic decay of

vector mesons.
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where At(ki, kz, 5&, 5z) is the transition matrix element
for the decay process. We must mention here that in ex-
tracting the correct 6 function relating to the energy con-
servation at the photon-hadron vertex there is an obvious
difficulty. This is due to the fact that, in a zeroth-order
description such as the present one, the total energy
available to the lepton pair produced comes out to be the
sum total kinetic energies (E +E ) of the annihilating

quark-antiquark pair, which is not equal to the rest ener-
gy of the decaying meson. This being a common feature
with such leading-order calculation one usually assumes
that the diA'erential amount of energy is somehow made
available to the photon when quark-antiquark annihila-
tion occurs with the vanishing of the meson bound state.
With this consideration, (E~ +E~ ) in the argument ofP) P2

the delta function in Eq. (18) has been replaced by the
meson mass Mz. If we write

12a,' (e, ) vI ( V~e+e )= L "H; (Sv=.+1)(2~)'
when

(23)

I J= d k1d k2

4E E
5' '(k +k —OM )1 2 V

kl k2

lepton spins (5„52) and the average over the initial
vector-meson spin. In fact it can be found from the expli-
cit calculations that the contributions of ALs to

v
I (V~e+e ) for Sv=+1,0 separately are all equal in
magnitude. Therefore the initial-state spin averaging
would be equivalent to taking the contribution of
Sv = + 1 (for example) only for which the lone
nonvanishing spin-configuration coefficient C& &sv=+—=C&& =+1. With such a consideration, one can
write

1„(k„k2)5„5~)—m, U, (k„5,)y„V, (k2, 5~)IQEk Ei.. .
(19)

hg = g f dp G (p)(mq/Ez)Ci„ i„
(A, ),A2) CSv

X V (
—p, A~)y"U (p, A, , ),

then the transition matrix element in Eq. (18) can be ex-
pressed as

X Tr[(k', —m, )y'($2+ m, )yj](k, + k~ }~,

H)(Sv =+ 1)= f G, (p)G,*(p')dp dp

P P

X [ V, (
—

p 1 )y, U, (pg)

X Uq(p'1}y, Vq(
—p'1)] .

(24)

(25)

Ats (k, , k2, 5„5~) = v'3e'(e ) vv ' ' '
(2 )3 q

Xl„(k„k2,5„52)hf /(k, +k2)

After some standard algebra in evaluating the trace fol-
lowed by the subsequent integration in Eq. (24), one can
easily find

(20)
I ij

3~v
(26)

where ( e ) v arising out of the specific fiavor
configuration of individual vector mesons stands for
specific values such as

r

( ). = v'2' 3V'2' V3

which leads to

4a,' (e, &v
I (V~e+e )= g H;;(Sv=+1) .

(2m. ) Mv

(27)

In fact the timelike component of hg in Eq. (19) vanishes

identically for all Sv, since Vq(
—p, kz)U (p, l, , )=0. So

the transition matrix element eA'ectively becomes

Ats (k„k2, 5, , 52)

In this form it is easier to calculate the hadronic com-
ponent g; H, ,

.(Sv = + I ) in a straightforward manner to
obtain

3

g H;;(Sv=+1)

e~v'3(e ) vl(k„k2, 5„52) hs /(k, +k~)
(2qr )

q V 17 27 17 2 Sv

2

32 2

f dp p G (p)(2+mq/Ez)
0

(28)

(21)

The leptonic decay width of a vector meson can now be
calculated from the expression

Now using the quark-antiquark momentum distribution
function of the model given in Eq. (13) and then substi-
tuting Eq. (28) into Eq. (27), one can obtain the final form
of the leptonic decay width in the present model as

I (V~e+e )= fdk, dk25 (k, +kz —OMv)
(2qr )

X g ~A4 (k„k2,5, , 52)~
Sv, 6, , 5z

2

I (V~e+e )= 9'~
where

(e, &'vi' (29)

(22)

where gs s s stands for the sum over the final-state
v' 1' 2

Iv= f dpp Q(1+m /E )(2+m /E )
0

X(Eq+E~)exp( —p /4a) . (30)
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Now an explicit evaluation of the left-hand side can en-
able one to express f~ in terms of I ( V~e+e ) as

fy= [3I ( V~e+e )/(4ma My )] (32)

Hence the model predictions regarding the leptonic decay
of ordinary vector rnesons of the light Aavor sector can
either be given in terms of I ( V~e e ) or ft, using ex-
pressions in Eqs. (29) and (32).

IV. RESULTS AND DISCUSSION

In this section we evaluate the leptonic decay widths of
ordinary neutral vector mesons p, cu, and P as well as
their electromagnetic decay constants using the expres-
sions in Eqs. (29), (30), and (32) derived in Sec. III. The
calculations involve primarily the potential parameters of
the model (a, Vo), the quark masses (m„,md, m, ). The
meson masses appearing in the calculations are in fact
taken as the observed ones.

Our purpose here is, in a way, to make a parameter-
free calculation of the decay widths by using the potential
parameters obtained earlier from the applications of the
present model to baryon and meson sectors [1—10]. Thus
we have

(a, Vo)=(0.017166 GeV, —0. 1375 GeV) . (33)

Our choice for the quark masses m„=md and m, are
however somewhat different from those of Ref. [2] used
in the baryon sector. They are

(m„=md, m, ) =(0.01 GeV, 0.024 GeV). (34)

Such a choice of the quark mass parameters and the po-
tential parameters in this model has satisfactorily ex-
plained the partial decay widths of twelve possible M1
transitions such as V~Py and P~ Vy within the tradi-
tional picture of photon emission by a confined quark
and/or antiquark in a "static" calculation [8]. Then the

The integral I~ can be evaluated numerically by the stan-
dard quadrature technique.

We can also derive an expression for the electromag-
netic decay constant ft, of the vector mesons in this mod-
el from the usual defining relation

1 0 pe P' '(0)y"g' '(0) V, S~ = e"ft. .
—+ +

+2M
(31)

model dynamics described in Sec. II provides the
ground-state confined quark energy E, the scale factor
ro, and the normalization constant JV relevant for the
present calculation in the following manner:

(E„=Ed,E, )—:(0.451 GeV, 0.546 GeV),

(ro„=rod, ro, )—= (3.352 GeV ', 2.934 GeV '),

(JV„=JVd,JV;)=(0.643 GeV' 0 775 GeV' )

(35)

Then the integral I& in Eq. (30) is evaluated numerically
with the help of standard Gaussian quadrature technique
to yield

(I =I,I&) =—(0.063 GeV, 0. 165 GeV ) . (36)

(E„=Ed,E, )—= (471 MeV, 591 MeV),

(ro„=rM, ro, )=—(3.208 GeV ', 2. 831 GeV '),
(JV„=JVd,JV, )=—(0.498 GeV, 0.649 GeV),

(38)

(I =I,I&)=—(0.087 GeV, 0.212 GeV ).

The leptonic decay widths I ( V —+e+e ) and the corre-
sponding decay constants calculated with this set of pa-
rameters are provided within parentheses in Table I. We
observe that the decay widths which are 15—40% higher
than the corresponding experimental values are neverthe-
less quite comparable with those obtained by Margolis
and Mendel [11]in the bag model in a similar calculation
with completely correlated quark-antiquark momenta.
Bag model calculations [13]with completely uncorrelated
quark-antiquark momenta provide results 30—40% lower
with respect to experimental values.

Now using the results in Eqs. (35) and (36), we can calcu-
late the leptonic decay widths I ( V~e+e ) and the elec-
tromagnetic decay constants fv for the vector mesons p,
co, and P. The results are provided in Table I in compar-
ison with the corresponding experimental values [15]
showing very good agreement to within 10% or better.

If, however, we take the quark mass parameters along
with the potential parameters entirely according to Ref.
[2] such that

(m„=md, m, )=(78.75 MeV, 315.75 MeV), (37)

then all the relevant quantities necessary for the calcula-
tion of the leptonic decay widths in this model would be-
come

TABLE I. Leptonic decay widths I ( V~e e ) and the decay constant fr in comparison with the
results of Refs. [11]and [14], respectively, together with the experiment.

Physical
quantity

I ( V~e+e )

(keV)

Present
calculation

6.26( 8. 10)
0.67(0.87)
1.58( 1.84)

Ref. [11]/Ref. [14]

7.80
0.84
1.69

Experiment [15]

6.77+0.32
0.60+0.02
1.37+0.05

0.19(0.22)
0.06(0.07)
0.08(0.09)

0.21
0.07
0.07

0.20+0.04
0.06+0.01
0.08+0.01



1006 N. BARIK, P. C. DASH, AND A. R. PANDA 47

Hayne and Isgur [14] had extended the nonrelativistic
quark model calculations beyond the static approxima-
tion developing a formalism based on a quark-antiquark
momentum distribution in Gaussian form chosen in an
ad hoc manner. We find that the electromagnetic decay
constants f~ obtained in our calculations are in good
agreement with those of Ref. [14]. Thus our approach,
which is quite similar to that of Hayne and Isgur, has the
distinction of realizing the quark-antiquark momentum
distribution in Gaussian form directly from our model
dynamics.

Thus within the working approximations adopted here,
the model provides a simple calculational framework to
explain successfully the leptonic decay of vector mesons
in the ordinary light Aavor sector.

ACKNOWLEDGMENTS

One of us (P.C.D.) gratefully acknowledges the support
of the Department of Education, Government of Orissa,
India for providing study leave.

[1]P. Leal Ferreira, Lett. Nuovo Cimento 20, 157 (1977); P.
Leal Ferreira and N. Zagury, ibid. 20, 511 (1977); N.
Barik, B. K. Dash, and M. Das, Phys. Rev. D 31, 1652
(1985); N. Barik and B. K. Dash, Pramana J. Phys. 24, 707
(1985).

[2] N. Barik and B.K. Dash, Phys. Rev. D 33, 1925 (1986).
[3] N. Barik and B.K. Dash, Phys. Rev. D 34, 2803 (1986).
[4] N. Barik, B. K. Dash, and M. Das, Phys. Rev. D 32, 1725

(1985).
[5] N. Barik and B. K. Dash, Phys. Rev. D 34, 2092 (1986).
[6] N. Barik, B. K. Dash, and P. C. Dash, Pramana J. Phys.

29, 543 (1987).
[7] B. E. Palladino and P. Leal Ferreira, IFT Sao Paulo Re-

port No. IFT/P-35/88 {unpublished).
[8] N. Barik, P. C. Dash, and A. R. Panda, Phys. Rev. D 46,

3856 (1992).
[9] A. W. Thomas, Adv. Nucl. Phys. 13, 1 (1983), and refer-

ences cited therein.
[10]R. Van Royen and V. F. Weisskopf, Nuovo Cimento 50A,

617 (1967); R. Barbieri et al. , Nucl. Phys. B105, 125
(1976); W. Celmaster, Report No. SLAC-PUB-2151, 1978
(unpublished); E. C. Poggio and H. J. Schnitzer, Phys.
Rev. D 20, 1179 (1979).

[ll] B. Margolis and R. R. Mendel, Phys. Rev. D 28, 468
(1983).

[12]J. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons (Addison-Wesley, Reading, MA, 1959), Chap.
12.

[13]P. Hays and M. V. K. Ulehla, Phys. Rev. D 13, 1339
(1976); 15, 931{E)(1977).

[14] C. Hayne and N. Isgur, Phys. Rev. D 25, 1944 (1982).
[15]Particle Data Group, K. Hikasa et al. , Phys. Rev. D 45,

S1 (1992).


