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Stability of electroweak strings
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We map the parameter space that leads to stable Z vortices in the electroweak model. For
sin 8~=0.23, we find that the strings are unstable for a Higgs-boson mass larger than 24 GeV. Given
the latest constraints on the Higgs-boson mass from the CERN e+e collider LEP, this shows that, if
the standard electroweak model is realized in nature, the Z vortex (in the bare model) is unstable.

PACS number(s): 12.15.—y, 11.17.+y

The presence of vortices in a physically realized parti-
cle physics model is an exciting prospect. The presence
of such vortices in the electroweak model is even more
exciting since it immediately opens up the possibility of
new signatures in accelerator experiments at accessible
energies. If these signatures are found, it would be the
first time a coherent state would have been detected in
particle physics.

In previous papers [1,2] (see also Refs. [3—5]), one of us
showed the existence of vortex (and/or string) solutions
in the Weinberg-Salam model [6] and also discussed the
stability of the solutions. An existence proof of the sta-
bility was provided and it was clear that the stability cru-
cially depends on the values of the parameters in the
model. In this paper [7], we map the range of parameters
for which the electroweak string solution is stable and, in
particular, we study the physical case in which
sin Hu =0.23, mz=92 GeV, and mH ) 57 GeV (where

mH is the mass of the Higgs particle).
Our approach to the problem is to consider the varia-

tion in the energy up to second order in the perturbations
of the fields about the vortex solution. In principle, there
are four scalar fields and four vector fields each with four
components. This makes a total of twenty fields, each of
which has to be perturbed. However, remarkably, we are
able to reduce the problem down to only one field. For
this perturbation mode, we construct a Schrodinger equa-
tion and numerically find the range of parameters for
which there is no bound state. This gives us the parame-
ter values for which the vortex solution is stable to small
perturbations.

We will use the standard notation defined in Ref. [8].
In addition, we make the usual definitions

where i,j,a =1,2, 3. The integral over the z coordinate
has been shown explicitly since we shall show that it is
sufficient to consider field configurations in the xy plane
alone.

The vortex solution [1,2] that extremizes the above en-

ergy functional is

W~'=0=W~'=A~, Z~=[A~],=

P=fNo(r)e'
0

UNQ(r) „e,
(2)

where the coordinates r and 8 are polar coordinates in
the xy plane. The integer m is the winding number of the
vortex and, here, we shall restrict ourselves to the case
m =1. The subscript NO on the functions f and A"
means that they are identical to the corresponding func-
tions found by Nielsen and Olesen [9] for the usual
Abelian-Higgs string. (We now drop the subscript NO
on the functions f and u for ease of writing. ) These func-
tions are given by the equations of motion:

2

f"+ — 1 ——u ——2A, f — f=0, (3)
f' e f
r r 2 2

Z"=—cosO~ W" —sinB~B", A"=sin8~ W" +cos8~B",
where tan8~—=g'/g. Also, a:—+g g' where g and g'
are the couplings of the W„and B„gauge fields to the
Higgs field.

The energy functional for static field configurations in
the Weinberg-Salam model is

E=fd x dz[ ,'G~G~+ ,'F—@JFp;1—+(Djf)(DIP)

+A((b (()
—
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where primes denote differentiation with respect to r.
The functions f and v also satisfy the boundary condi-
tions f(0)=0=v(0), f(oo)=ri/&2, u(00)=2/a. The
string solutions resulting from these equations have been
studied previously by several authors in much detail. A
sample of these papers may be found in the collection of
Ref. [10].

We shall now study the stability of the vortex solution
given in Eq. (2) by considering infinitesimal perturbations
around it and finding if the variation in the energy is posi-
tive or negative. The perturbations are time independent
and therefore can also set the zero components of the
gauge field to be zero.

Let us write E=ENo[f, u]+5ENo[f, v;$2, 5Z]+E, [f,v;P, ]

+E,[f,v;Pi, W']+Es,[f,u; W', A ], (10)

—,'G('3G 3+ ,'F—sj3Fs;3+(D3$)(D3$) .

This contribution to the energy is strictly non-negative
and is minimized (that is, made to vanish) by setting the z
components of the gauge fields to zero and also consider-
ing the perturbations to be independent of the z coordi-
nate. For this reason, we shall drop all reference to the z
coordinate in the calculations below and it will be under-
stood that the energy is actually the energy per unit
length of the string.

Now we write (1) after discarding terms of cubic and
higher order in the infinitesimal perturbations. We find

and

( No+ 42

Z"=Zoo +5Z",
T'—:diag( —cos28ir, 1 },

d —= (8 I+i—,'aT'ZJ), (8)

where Q = 1 2 ENp is the energy of the Nielsen-Olesen
string, and 5ENo is the energy variation due to the per-
turbations Pz and 5Z". The variation Ei is due to the
perturbation Pi in the upper component of the Higgs
field:

where I is the 2X2 matrix. Now, since we are consider-
ing perturbations on top of the vortex solution, the fields

P, , P2, 5Z", W"' (a = 1,2), and A" are infinitesimal.
The perturbations can depend on the z coordinate and

the z components of the vector fields can also be nonzero.
From (1}the relevant z-dependent terms in the integrand
are

E, =cos8ir Jd x JJ'W~',

J'—=—,'ia[P Pd, P —(d P) r'P],
and the energy in the W ' and A bosons is [11]

(12)

(13)

where d~ ——3 —i(a/2)cos(28ir )Z . The contribution
from the P and W ' interaction is

En =fd x [yW' XW V XZ+ —,
'

~
V XW'+ y W X Z

~
+ —,

'
~
V X W +y Z XW'

~
+—,'g f ( W') + —,

'
( V X A) ], (14)

4i=y (r)e™ (15)

where y—=g cos8ir. It may be noted that the f and Z
fields in Eqs. (11)—(14) are the unperturbed fields of the
string since we are only keeping up to quadratic terms in
the infinitesimal quantities. Also, note that the current
JJ' is first order in the perturbation P& because the r' ma-
trices are off diagonal and mix the upper and lower com-
ponents of the Higgs doublet. That is, (0, 1)v (0, 1) =0.

The perturbations of the fields that make up the string
do not couple to the other available perturbations; i.e.,
the perturbations in the fields f and v only occur inside
the variation 5ENo. However, we know that the
Nielsen-Olesen string with unit winding number is stable
to perturbations for any values of the parameters. There-
fore, necessarily, 5ENo ~0 and the perturbations Pz and
5Z" cannot destabilize the vortex. Then we are justified
in ignoring these perturbations and setting 5ENo =0.

Also note that the variation in the energy vanishes to
linear order in the perturbations. Therefore the vortex
solution given in (2} extremizes the energy and is a solu-
tion of the Weinberg-Salam model regardless of the
values of the parameters in the model.

We now consider the expansion of the remaining per-
turbations in Fourier modes. This gives

I

for the mth mode where m is any integer. For the gauge
fields we have

W'= If ", (r)cos(n8)+f", sin(n8)]e„

+—
[
—h isin(n8)+h«icos(n8)]ee

W =
t
—fz(r)sin(n )8f+zc s(on )8]e„

+—
I h 2 cos( n 8)+h z sin( n 8) ]e er

for the nth mode where n is a non-negative integer. The
functionals E&, E„and E~ may now be expressed in
terms of the modes g", f;", and h;". Our goal is to focus
on 5E=E,+E,+E~ and obtain the parameter space
(P= 8A, /a, 8ir ) for which there are no modes with
5E &0. Here we will only sketch the basic steps of the
calculation. The full calculation will be presented else-
where [12].

It may be shown, by examining the form of 5E, that we
only need to look at the m =0 and n =1 modes to con-
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sider the stability of the electroweak string. This is be-
cause these are the modes with the most negative contri-
bution to the energy variation at the center of the string.
Inserting (15)—(17) in 5E, we find that the stability prob-
lem in the barred functions completely separates from the
stability problem in the unbarred variables. In addition,
it may be shown that if the string is stable to perturba-
tions in the unbarred variables it will also be stable to
perturbations in the barred variables. Therefore, we are
left with five perturbations: y, f'„ f2, h I, and h2. [In
what follows we will drop the mode (upper) indices for
simplicity. ]

We now define

0.4-

0.2-

0.0
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2
+—

h~+h )

2
(19)

(20)

sin (0 „)
FIG. 1. A map of parameter space sho~ing the region of sta-

bility (III) of the vortex solution. The solutions in sector I are
unstable and we have not explored the solutions in sector II
(&P(0.26).

+sum of whole squares (21)

where primes denote differentiation with respect to r,

p —(1 yU)2+ lg2 2f2 (22)

f 2~+ 1 d rf'
p f2 g2r2f2 r jr p f (23)

and

g f yu' d U'1 —yv
2 P+ 8P f P+

(24)

The sum of whole squares in (21) can be made to vanish
by suitably choosing F+ and by setting g =0. This sim-

ply leaves us with a problem in g.
The functional 6E is in a form ready to be treated as an

eigenvalue problem. That is, upon performing an in-
tegration by parts, we can write

5E~(~=2m Jdr r(O(,

where 0 is the differential operator:

1 cg f 6f0= —— + U(r) .
4 dr P+ dr

The question of stability now reduces to asking if the
operator 0 has negative eigenvalues in its spectrum.
Therefore we have to determine if the eigenvalue co of the
Schrodinger equation,

Op=cog, (27)

After a lot of algebra, we find that the energy variation is

r2

5E =2m J dr r + U(r)g
P+ can be negative. The eigenfunction g must also satisfy

the boundary conditions g(r =0)=1 and g—+c (c is some
constant) as r ~ ~.

In this way we have reduced the stability problem to a
single eigenvalue problem given by the differential equa-
tion in (27) and the corresponding boundary condition.
This problem can be solved numerically. But before put-
ting the problem on the computer, we rescale the vari-
ables and the coordinates so that the problem only has
two free parameters: P and 8~. These rescalings are
standard in the literature and may be found in Ref. [2].

The eigenvalue problem in Eq. (27) was solved by using
a fifth-order Runge-Kutta algorithm. We kept P fixed
and found 0~ for which the lowest eigenvalue changes
sign. We repeated this procedure for several value of P
and found the corresponding values of critical parameters
(&P, sin 8~). The above method was used to scan the
range 0.07 (P( 1.0. Lower values of P make the numer-
ical analysis fairly intensive since then there are two
widely different scales in the problem corresponding to
the two widely different masses. Our results are shown in

Fig. 1 where we plot the critical values of &P (the ratio of
the Higgs-boson mass to the Z mass) versus the corre-
sponding values of sin 0~. In sector III, on the right-
hand side of the data line, Eq. (27) had no negative eigen-
values implying string stability. Thus we may distinguish
three sectors in Fig. 1: sector I where the electroweak
strings are unstable, sector III where strings are
stable, and, the presently unexplored region shown as
sector II (P(0.07 or mH (24 GeV). It is evident that
the physically realized values sin 0~=0.23 and
&P= mH/mz )0.62 (see Ref. [13)) lie entirely inside sec-
tor I. This brings us to the main result of this paper: if
the standard electroweak model is the physically realized
model, then the existing vortex solutions in the bare mod-
el are unstable.

Before closing, we would like to point out that even if
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the vortex solutions are unstable, their presence may still
be felt in various scattering experiments since closed
loops and finite string segments could show up as inter-
mediate states. However, it is more exciting to consider
the possibility that nature may have chosen an extension
of the standard electroweak model in which stable vor-
tices are present.
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