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Generic U(1)? four-dimensional (4D) black holes with unbroken N = 1 supersymmetry are shown
to tend to a Robinson-Bertotti-type geometry with a linear dilaton and doubling of unbroken super-
symmetries near the horizon. Purely magnetic dilatonic black holes, which have unbroken N = 2
supersymmetry, behave near the horizon as a 2D linear dilaton vacuum ® S2. This geometry is
invariant under 8 supersymmetries; i.e., half of the original N = 4 supersymmetries are unbroken.
The supersymmetric positivity bound, which requires the mass of the 4D dilaton black holes to be
greater than or equal to the central charge, corresponds to positivity of mass for a class of stringy

2D black holes.

PACS number(s): 04.65+e, 0.4.50.+h, 11.30.Pb, 97.60.Lf

The evaporation of stringy U(1)2 charged black holes
[1,2] may be understood as the process of restoration of
supersymmetry [3]. It is likely that the end points of
the process of evaporation for charged dilatonic black
holes are stable remnants which are zero-temperature
extreme black holes with some unbroken supersymme-
try. Those black holes have the minimum possible mass
M = 715(|Q| + |P|). It was shown in [3] that the ex-
treme solutions saturate the supersymmetry bound of
N = 4,d = 4 supergravity, or dimensionally reduced
superstring theory. When both electric and magnetic
charges are present, only one bound of N = 4 supersym-
metry is saturated and the corresponding solution has
unbroken N = 1 supersymmetry. In the case of only
electric or only magnetic charges, i.e., just U(1) black
holes, both supersymmetry bounds of N = 4 supersym-
metry are saturated and these black holes have unbroken
N = 2 supersymmetry [3].
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Several properties of extreme dilatonic black holes were
investigated in [3]. The purpose of this paper is to inves-
tigate the properties of extreme supersymmetric stringy
black holes in the neighborhood of the horizon, to find
what kind of a geometry they tend to and what hap-
pens with unbroken supersymmetries in those geome-
tries. We would also like to understand the relation to
two-dimensional (2D) dilatonic black holes and whether
the investigations of the supersymmetry and of the ge-
ometry near the horizon of the 4D black hole may be
an important factor for understanding the late stages of
evaporation of 2D black holes.

We will start by describing the behavior of the familiar
extreme Reissner-Nordstrém black hole near the horizon
[4], where the geometry becomes that of the Robinson-
Bertotti solution and has twice as many supersymmetries
as the extreme black hole.

Then we will study properties of electric-magnetic dila-
ton black holes near the horizon. The difference with the
Reissner-Nordstrom black hole near the horizon will show
up in the existence of a nonconstant dilaton, the linear
dependence on the coordinate being proportional to the
dilaton charge. We will find, however, that the essential
properties of the geometry at the horizon are very close
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to those of the Robinson-Bertotti solution and also that
doubling of supersymmetries takes place.

The geometry near the horizon and the supersymme-
try properties of purely magnetic extreme black holes is
the next topic to be studied. The fact that near the hori-
zon these solutions form a geometry which is the direct
product of a 2D linear dilaton vacuum and a two-sphere
of constant curvature has been established before [5]. It
was argued that, at scales where the two-sphere radius,
which is proportional to the magnetic charge P, can be
neglected, the black-hole physics may be described by a
2D effective theory. This is one of the reasons for the
recent interest in two-dimensional black holes. It has
also been established before [3] that the extreme mag-
netic dilaton black hole has 8 unbroken parameters of
N = 2 supersymmetry, i.e., one-half of the original 16
parameters of N = 4. In this paper we analyze what
happens with unbroken supersymmetries of the extreme
black hole at the horizon. We find that the solution (a
direct product of the 2D linear dilaton vacuum and a two-
sphere of constant curvature) has 8 unbroken parameters
of N = 2 supersymmetry, exactly as does the total ge-
ometry of the extreme black hole; there is no doubling
of the supersymmetries to the maximum possible N = 4.
Finally, the relation between the supersymmetric posi-
tivity bound M > 715 |P| in 4D and positivity of mass in
2D is exhibited.

The extreme Reissner-Nordstrém black hole near the
horizon has been investigated before [4]. There are sev-
eral properties of the extreme Reissner-Nordstréom black
hole which make it interesting. One is that it has zero
temperature, and so is stable to emission of Hawking
radiation. The extreme Reissner-Nordstrom configura-
tion also possesses unbroken N = 1 supersymmetry [6, 4]
when viewed as a bosonic configuration of N = 2,d = 4
supergravity. A further property is that near its hori-
zon the extreme Reissner-Nordstrém geometry asymp-
totes to a Robinson-Bertotti geometry, which is a maxi-
mally supersymmetric [4] (and homogeneous) configura-
tion of N = 2,d = 4 supergravity. To see this, consider
the extreme Reissner-Nordstrom (RN) metric in isotropic
coordinates {z'}:

dshn = ViEndt? — Vigdx? | (1)
where |x| = p and

Vik(p) = 1+ M/p . @
The Maxwell field is

Fgpn = +dVan A dt (3)

and M = |Q|. Near the horizon p — 0, the function
Van — & = Vi3, ie., the extreme Reissner-Nordstrém
metric tends to the Robinson-Bertotti (RB) metric there,
and the Maxwell field tends to that of the RB configura-
tion: ) )

dskp = % de? — —APJT dp? — M2 dQ?

(4)
1
FrB = :tﬁdp Adt .
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Since the extreme Reissner-Nordstrom geometry ad-
mits N = 1 supersymmetry and the Robinson-Bertotti
geometry admits N = 2 supersymmetry, one may call
this phenomenon “doubling of supersymmetries near the
black-hole horizon.” To explain this doubling of super-
symmetries, let us consider the supersymmetric transfor-
mation of the gravitino field strength [7):

§%apcr = Cipeper T +Capoper - (5)

In Eq. (5), two-dimensional spinor notation is used. The
supersymmetry parameters eIi,I = 1,2, are defined in
Egs. (37) of Ref. [7], and C* are the following combina-
tions of the Weyl (Capcp) and Maxwell (F¢p) spinors:

Cipop = Cabcp £ Vap Fop VIKE (6)

where KB is the Killing vector. For the extreme
Reissner-Nordstrém black hole, we have either Cgop =
0 or Cigcp = 0 (depending on the sign of the charge
Q), which is a relation between the Weyl spinor and the
derivative of the Maxwell spinor. In the first case the un-
broken N = 1 supersymmetry parameter of the extreme
Reissner-Nordstrom black hole is ef, in the second case
it is €.

Near the horizon, the Reissner-Nordstrom geometry
becomes that of the Robinson-Bertotti solution, which is
conformally flat and has a covariantly constant Mazwell
field:

Capcp =0, Vap Fcp =0. (7)

Thus, both combinations of the Weyl and Maxwell
spinors which enter the supersymmetry variation of the
gravitino field strength (5) are vanishing in this geome-
try. This property ensures that all 8 parameters (e;’ and
€7 ) of the original N = 2 supersymmetry are unbroken
in the Robinson-Bertotti background.

We see that the sign of the charge controls which su-
persymmetries are unbroken in the Reissner-Nordstrom
solution, but that no such phenomenon occurs for the
Robinson-Bertotti solution where all supersymmetries
are unbroken due to the separate vanishing of both terms
making up the generalized Weyl curvatures C* in Eq.
(6).

Notice also that the extreme Reissner-Nordstrém met-
ric is asymptotically Minkowskian, since at infinity only
the constant term in Vij survives. Minkowski space is
also a maximally supersymmetric geometry. Therefore,
in some sense, the extreme RN solution may be thought
of as a soliton; it interpolates between two candidate
vacua for N = 2,d = 4 supergravity [6].

A natural question now arises: how much of this be-
havior carries over to extreme dilaton black holes?

Doubling of supersymmetries near the horizon for ex-
treme electric-magnetic dilaton black holes will be ex-
plained in what follows.

The action we will use is the part of the SO(4) version
of the N = 4,d = 4 supergravity action without an axion,
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I= T;;/d‘*z,/——g[—Rnaw.a,@
- (e'“F’“’FW + 62‘1’@“"@“,)] s
(8)

where G’,,,,, is related to the nondually rotated field G,
as

C:‘MV = % ,_l_g 6—2¢ 6’“»‘6 Gis - (9)

All notation is that of [3]. For extreme supersymmet-
ric dilatonic black holes, the fields are built out of two
functions Hy and Hj [3] :

ds? = e?Vdt? — eV dx?

A=qvydt, B=xdt,

F=dpAdt, G=dxAdt,

e =HH, e*=H/H

V2¢ =+H7!, V2x==+H;!, (10)

where the condition on the functions Hy, Hs is that they
be harmonic,

6,'3,'H1 =0, 0;0;Hy = 0. (11)

We have used isotropic coordinates {z'}, where p? =
riz' and
Hi=e%(1+v2(Q|/p), Hz=e"*(1+V2|P|/p).

(12)
The mass M and dilaton charge X are related to the U(1)
electric Q and magnetic P charges as

[Pl + 19 P — 1@l
M=—— T=r—=.
V2 V2
It was shown in (3] that the bosonic background (10),
(11) admits supercovariant Killing spinors of N = 4,d =

4 supergravity, i.e., that there exist nontrivial solutions
of the equations

U, r(e) =6A1(e) =0,

(13)

I=1,2,3,4, (14)

describing the supersymmetry variation of 4 gravitinos
and 4 dilatinos in the background (10), (11).
Specifically, there is always some unbroken N = 1
supersymmetry for PQ # 0 extreme black holes (one-
quarter of N = 4 supersymmetry). For example, for
P > 0,Q > 0 the unbroken N = 1 supersymmetry for the
solution (10), (11) is one combination of third and fourth
supersymmetry, €3, €},, in the notation of Ref. [3], the
first and the second being broken. The space-time de-
pendence of the Killing spinor in the canonical geometry
(10) is given by € = etU¢y where ¢ is a constant spinor.
Consider the extreme PQ # 0 dilatonic black holes
near the horizon, i.e., in the limit p — 0. The metric in
(10) becomes
2 2 2
ds? = —P gz M X7

2 2 2 2

(15)
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This metric is precisely the Robinson-Bertotti metric (4)
familiar from N = 2 supergravity [6]. The mass param-
eter of the Robinson-Bertotti metric is, in this case,

Mgp = VM2 —%2 = \/2|PQ| . (16)
The dilaton for these solutions behaves as
P V2 E
e2® = 2% | (1- +0 2), 17

so we see that the term linear in p is proportional to the
dilaton charge ¥. The electric and magnetic fields are
given by
~ 1

F=e¢°%dp/\dt, G=e_¢°§—13dp/\dt. (18)

Since the dilaton field has a term linear in p, we will
call this solution a “Robinson-Bertotti type” geometry.

Let us now see if, near the horizon, the extreme dilaton
black holes with PQ # 0 possess any additional super-
symmetry and, if so, how the charges control which ones
are unbroken.

First consider the dilatino transformations rules in the
notation of [3]:

-;-61\1 = —v €100

1 ~
+—\/—§o‘“’ (6_¢FyvaIJ - 3¢G;wﬂ1.l) e’
=0. (19)

The first term in (19), (—y*e40,¢), involves the flat space
derivative of the dilaton, which vanishes near the horizon
p=0:

b~ p—0, (20)

where we used Egs. (17), (15). The second term in Eq.
(19) is proportional to

[ars — sgn(PQ)Brsle’ (21)

so we see that this time it is the sign of PQ that controls
which combinations of supersymmetries are broken (or
unbroken).

For positive PQ, the term in square brackets in front
of €’ in (21) vanishes under the condition that

el=€e?=€¢ =€=0; (22)
i.e., the first and second supersymmetries are broken, and
there are no constraints on the third and fourth super-
symmetries. For negative PQ, the third and fourth su-
persymmetries are broken, and the first and second su-
persymmetries are not:

S=e'=e3=¢€=0. (23)
The next step is to investigate whether there are addi-
tional constraints coming from the supersymmetry trans-
formation of the gravitino field strength. Consider first
positive PQ. The variation of the first and the second
gravitino vanishes because of Egs. (22). The transforma-
tion rules for the third and fourth gravitino field strength
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are similar to those of N = 2 supergravity as given in Eq.
(5). Therefore there are indeed no additional constraints
coming from 6W¥,. There are several remarkable proper-
ties of the dilatonic black hole near the horizon making
this N = 2 supersymmetry possible. The first is that the
scalar curvature vanishes near the horizon,

R=2¢"08,¢-8,¢ =29""(8,;¢)* ~p* >0, (24)

so that the Weyl spinor is identical to the Ricci spinor.
The second is that the geometry is of Robinson-Bertotti
type, as noted above, so that the covariant derivatives
of the vector fields vanish and the Weyl spinor is zero.
Finally, as shown in Eq. (20), the flat space derivative of
the dilaton vanishes.

Therefore, we have the following situation near the
horizon: for positive PQ the unbroken N = 2 supersym-
metry consists of the third and the fourth ones, and for
negative values of PQ) it is reverse: the first and the sec-
ond supersymmetries are unbroken whereas the third and
the fourth are broken. Note that despite the doubling of
unbroken supersymmetries near the horizon the unbro-
ken supersymmetry never becomes equal to the maximal
possible one: only half of the possible N = 4 supersym-
metries are restored. This is different from the classi-
cal extreme Reissner-Nordstrém solution which, near the
horizon, restores maximal supersymmetry of this theory,
namely N = 2.

The differences with the classical extreme Reissner-
Nordstrom solution near the horizon are also that a non-
trivial dilaton dependence on p exists and is proportional
to the dilaton charge X, and that the parameter M2y in
the Robinson-Bertotti type geometry is not the square
of the mass of the extreme black hole but the difference
M? — %2, 1t is exactly this parameter in front of the an-
gular part of the RB metric in Eqs. (4) and (15) which
defines the area of the horizon of RN and dilaton black
holes. It is this parameter which is never zero for the
nontrivial classical extreme black hole, but becomes zero
for dilatonic extreme black holes when M2 = £2. This
happens in the limit when either the electric or magnetic
charge vanishes. Such extreme black holes have unbro-
ken N = 2 supersymmetry [3] and their geometry near
the horizon is very different from the one described above
where the limit to the horizon is taken with both electric
and magnetic charges present.

Here we will consider the purely magnetic U(1) dila-
tonic black holes. The electric case in the canonical met-
ric may be obtained trivially from it by the replacements
P — Q and ¢ — —¢. The magnetic black hole in the
stringy metric turns out to have more interesting prop-
erties than the purely electric one [2,3]. We use again
the construction given in Egs. (10) and (11). As ex-
plained above, this ansatz solves both the N = 4 super-
gravity equation of motion and the supersymmetry equa-
tions (14), leaving N = 2 supersymmetry unbroken. For
purely magnetic extreme black holes we have, in isotropic

coordinates,
Hi=e*%, Hy=e"®1+v2|P|/p). (25)

The mass M and dilaton charge X are related to the
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magnetic charge P as follows:
M=%=|P|/V2. (26)

The metric for the extreme magnetic dilaton black hole
already possesses N = 2 supersymmetry when viewed
as a bosonic solution of N = 4,d = 4 supergravity [3].
However, as can be checked, going to the horizon does not
result in additional supersymmetries. The geometry near
the horizon just keeps all 8 unbroken supersymmetries of
the black hole. To see this, let us consider the limit to
the horizon of the extreme purely magnetic black hole.
This limit has been studied before in [5]. However, we
will investigate this limit by using our construction (10),
(11), which automatically solves the Killing equations for
the unbroken supersymmetry.

The metric has different behavior to that of the black
holes of the previous section due to the fact that now
PQ = 0. The most important difference is the fact that
ove =g,, is linear in p~! rather then quadratic, as was
the case for classical extreme Reissner-Nordstr6m metric
near the horizon and the PQ # 0 dilatonic extreme black
holes considered above. In addition, the dilaton behaves
differently. The metric, dilaton and vector fields near the
horizon are

V2P

ds? = —L—dt? - L(dp? + p2d02? 27
P » (dp” + p*dQ27) (27)
14 2 2P? 2 2 102
= —— | dt* — ——(dp* + p“d2 , 28
2P| 7 (dp” + p“dQ”) (28)
e = e V2|P|/p, (29)
G = Pe*°sinfdf Ado . (30)
Now let us make a change of variables,
w=—v2Plnp, (31)
so that the metric becomes
1
ds* = —w/V2P)|dt? — dw? — 2P%d0?| ,
=75 P|exp( w/ )[ ]
(32)
and the dilaton becomes
¢ = ¢o + 3In(V2|P|) + w/2V2P, (33)
or
€2 = V2| P| e**° exp(w/V/2P) . (34)

Going to the stringy metric via the transformation
ds2,, = e?¢ds?, we obtain

ds%, = dt* — dw? — 2P%dQ? , (35)

which is the direct product of a flat 2D Minkowskian
metric in the coordinates (¢, w) and a transverse space of
constant curvature (1/v2P2). In these coordinates we
see that the dilaton is linear. This is a well-known result
in the context of 2D “dilaton gravity” [5, 8].
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The fact that the direct product of the linear dilaton
vacuum and a sphere of a constant curvature has 8 un-
broken supersymmetries follows simply from the fact that
this is a specific example of the construction (10), (11),
which has been proven [3] to have unbroken N = 2,d =4
supersymmetry. For positive P the unbroken super-
symmetries are given by the 8 specific combinations (3]
€34, e, €12, e, of the original 16 supersymmetries, the
other 8 are broken. For negative P those which were
broken become unbroken and vice versa.

Let us see why there is no doubling of supersymme-
tries near the horizon this time, as different from the
previous cases. Consider again the dilatino transforma-
tion rules (19). Now that the metric behaves differently
at the horizon, there is a contribution from the first term
as well as from the vector field. The sum of those two
contributions vanishes under the condition that half of
the supersymmetries are broken. The unbroken super-
symmetries are listed above: going near the horizon does
not change the number of unbroken supersymmetries of
the extreme purely magnetic (or electric) dilatonic black
hole.

As argued in [5] the evaporation of or scattering by
purely magnetic 4D black holes near extremality is closely
related to the analogous processes for 2D black holes. It
can be shown that the relation between the masses of the
2D and 4D black holes is

Mop ~ Map — |2| , (36)
|z|
where the two central charges of N = 4 supersymmetry
are defined in [3] to be |2;| = |22| = |2| = |P|/v2. The
supersymmetry bound for 4D dilaton black holes derived
in (3],

Myp —|2| 20, (37)

thus ensures that the mass of the 2D black holes is non-
negative:

Mop >0. (38)
The saturation of the bound in 4D takes place when the
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mass reaches the value of the central charge, Myp = |2|,
N = 2 supersymmetry becomes restored and the evapo-
ration stops. In 2D this corresponds to total evaporation
of the black hole Msp = 0, i.e., to the linear dilaton
vacuum.

Thus we conclude that stringy 2D black holes, which
are related to 4D black holes as in Egs. (36)—(38), may
have better control over quantum corrections and sta-
bility of the extreme solution due to the existence of 8
unbroken supersymmetries and the corresponding non-
renormalization theorems [3]. However, the role of an
additional two-sphere of a radius 2|z|, which is required
in the geometry (35), (33) to keep supersymmetry un-
broken, is still to be understood. In particular, a su-
persymmetric embedding of 2D dilaton gravity may be
looked for, which has the linear dilaton vacuum with flat
two-dimensional metric as the solution with unbroken su-
persymmetry [9]. This supersymmetry will take place in
a purely two-dimensional theory without an additional
two-sphere. This kind of supersymmetry may provide
constraints on the quantum theory in d = 2 and be useful
in the context of a two-dimensional toy model of quan-
tum gravity. However, if one considers investigation of
2D black holes as a way to get insight into a more compli-
cated (but more realistic) theory of 4D black holes, one
should remember that physics of the four-dimensional
black holes near the horizon is effectively two-dimensional
and described by 2D effective Lagrangian only in the low
energy limit. It is not clear whether 2D black holes may
have all 8 supersymmetries possessed by 4D black holes
near the horizon. Therefore the problem of stable rem-
nants may have quite different solutions, depending on
whether the geometry is purely two dimensional or four
dimensional.
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