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Quark mass matrices presented by a power series expansion in V„,
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In a general three-family Hermitian quark mass matrix model (M„,Ms), if we take a quark basis on

which M„ takes a diagonal form D„, the structure of M& =—M is almost determined by three down-
quark masses (ms, m„ms) and three Kobayashi Maskawa matrix parameters (~V„,j, ]Vs), ~Vs~), ex-

cept for phases of the matrix elements M,~. By using the experimental facts ]V„,( A, (V,z(

)V„b[ A, and m /sm, m, /ms A, the mass matrices (D„,M) are presented in terms of a
power series in A.

PACS number(s): 12.15.Ff.,11.50.Li

Recent remarkable progress in Z and B decay exper-
iments has provided rich and fruitful data for studying
quark mass matrices, at least, as far as the three families
are concerned. At present, we roughly know the values
of their masses and Kobayashi-Maskawa (KM) matrix
[1] parameters except for the top-quark mass and CP
violation phase parameter. If we can find out more beau-
tiful and simpler relations behind the observed quark
mass spectra and family mixing, they will offer us a fruit-
ful clue to the origin of quark mass generation, to the ori-
gin of families, and so on. At present, the investigation
of the quark mass matrix structure from the phenomeno-
logical point of view is a timely endeavor.

In such a phenomenological study of quark mass matri-
ces, we know that any model (M„', M&) which is related to
a model (M„,Mg) by M„' = Up M„Up and M~ = Up MgUp
with an arbitrary unitary matrix Up provides the same

predictions as the model (M„,Mg), as far as physically
observable quantities are concerned. In general, the num-
ber of independent parameters in up- and down-quark
mass matrices M„and Mg is bigger than that of indepen-
dent observable quantities. For example, the 3x 3 Hermi-
tian quark mass matrices (M„,Mg) have, in general, 18
independent parameters (however, two of 18 can easily
be seen as these are phase parameters with no physical
meaning), while the number of independent observable
quantities is 10. However, the number 18 is the maximal
number in the most general case. If we choose a special
quark basis, we can decrease this number [2].

In this paper, we choose a quark basis where M„ takes
a diagonal form D„Then, we. have seven independent
parameters in Mg whose number is the same as the ob-
servable quantities (for simplicity, we consider a Hermi-
tian quark mass matrix model):
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The seven independent parameters in the down-quark mass matrix M can completely be determined by the values
of the three down-quark masses and four independent parameters of the KM matrix V. At present, of the seven
parameters, we do not yet know the value of the |P-violation phase parameter. Nevertheless, as we show later,
without knowing the value of the CP-violation phase parameter, we can almost determine the structure of the mass
matrix M, (1), except for the phases P;s.

The updated values of running quark masses at the energy scale 1 GeV are

m„= 0.0056 + 0.0011 GeV, mg = 0.0099 + 0.0011 GeV,
m, = 1.45 +0.02 GeV, m, = 0.199+0.033 GeV,
mq ——349+75 GeV, mg ——7.07 + 0.08 GeV.

(2)
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Here, the values of light-quark masses m„, mp, and m,
have been quoted from the estimates of Dominguez and
de Rafael [3]. The present experimental value [4] of AMs

is A = 260+4o MeV, where MS denotes the modified
minimal subtraction scheme. The heavy-quark masses
m, and mb have been evaluated from m, (m, ) = 1.27 6
0.02 GeV and mb(mb) = 4.20 + 0.05 GeV, according to
the prescription of Gasser and Leutwyler [5] and Narison

[6], but by using the new value A~ = 0.26 GeV. The top-

quark mass mq has been obtained from mq(mq) = 124+2&

GeV, by using A = 0.26 GeV and the physical top-

quark mass value [7] m~ ~' = 130+23 GeV, which has
been estimated from the radiative corrections based on
the standard electroweak theory (assuming a Higgs-boson
mass mH mz). [The error values in (2) do not include

the error from A s [8].] Note that these heavy-quark(4)

mass values at p = 1 GeV are highly dependent on the
value of AMs, and, in addition, the value of mq relies on
the validity of the standard minimal Higgs model.

On the other hand, experimental values of the KM
matrix elements are [4]

V„,
l

= 0.2205 + 0.0018,
Vbl = 0 043+ 0007,
V„b/V, bl = 0.10 + 0.03 .

(3)

Note that the values of IV,bl and IV„bl are dependent [9]
on the choices of models and quark mass values.

At present, the values (2) and (3) should not be taken
rigidly. Therefore, although we can numerically evaluate

each matrix element of M, (1), by using the values (2)
and (3), it will not be so useful. Rather, we think that
it is useful to express M in terms of m~, m„mb, IV„,I,
IV,bl, and IV„bl, but not numerically.

In the present paper, by assuming that IV„,I

Iv, bl A2, Ivgbl A3, aIld md, /ma ma/mb A2,

we express the down-quark mass matrix M in terms of a
power series expansion in A. The present data can deter-

mine all matrix elements of M except for the phases P,~ of

M,~, where only the phase parameter p = $12+f23+ $31
can affect CP violation effects. Then, the general form

of the phenomenologically favorable mass matrix form

(M„,Mg) is given by (Uo D„UO, Uo MUD) . With the help

of the resultant mass matrix form (D„,M), we will give
an example of phenomenological study of (M„,Mq).

First, let us express the seven parameters of M in terms
of three down-quark masses (d1, d2, ds) and four KM ma-

trix parameters. We take M11, M22, M33 IM12I IM23I,

IM31[, and

4 = 412+ 423+ 431 (4)

P —= lvbl

(5)

because we can confine present experimentally unknown

quantities on the KM matrix into the only one parameter
u. Then, by putting

~2 ~2 ~2

IV~[2 = cI2+ cu 1 —n2 —P2 —cu

~+a

into the formulas

M' = IVII'd1+ IV~2[ d2+ IV3l'd3 (7)

IM,, I' = Iv, , l'Iv, , l'(d1 —d2)(d1 —ds)

+ l&2 I'1&~2 I'("2 —ds)("2 —"I)
+IV'31'lv&31'(d3 d1)(d3 —d2)—(I 8 ~) (8)

we can completely determine all matrix elements M,~ of

M except for the phases P;~ in terms of the observable
parameters, down-quark masses (d1, d2, ds) and the four

KM matrix parameters o., P, p, and ~:

as the seven mass matrix parameters in (1). Note that
the phase parameter P is observable, but two of the three
phase factors P,~ are not observable quantities; i.e., CP
nonconservation effects appear only through the phase
parameter P. On the other hand, as four independent pa-
rameters of the KM matrix V, it is convenient to choose
[10]

M11 = d1+ n (d2 —d1) + P (d3 —d1),
M22 = d2 —o. (d2 —d1) + p (d3 —d2) —u)(d2 —d1),
M33 —d3 P (d3 d2) 7 (d3 dl) + ~(d2 dl)

IM12I' = ~'(1 —~')(d2 —d1)'+ &'P'(ds —"2)("2—"1)
+P P (d3 —d1)(d3 —d2) + [(1 —P )(d3 —d1)(d2 —d1) —n (d2 dl) ] ~

(9)

P (1 —P )(d3 —d2) +n P (d3 —d2)(d2 —d1) + n P (d3 —d1)(d2 —d1) —P P (d3 —d1)(d3 —d2)

—[(1 —2p )(d3 —d2)(d2 —d1) + o.'(d2 —d1) —p (d3 —d1)(d2 —d1)] cu —(d2 —d1) ~

IM31[ = P (1 —P ) (ds —d1) —a P (d3 —d2) (d2 —d1) —n 7 (d3 —d1) (d2 —d1)

P'~'(d -d )(d --d )-.(1- ')(d -d )(" -")- '(" -")' "
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As suggested from Wolfenstein's parametrization [11]
the present data (3) roughly show a A, P A2, and

p ~ As. Therefore, it is convenient to define the following
parameters with values of the order of one:

vi = a/A, v2 = P/A, v3 = p/A, iU—:ug/A

(10)

On the other hand, the present data (2) roughly show

md/m, m, /m3 A . In fact, the Weinberg-Fritzsch
empirical relation [12,13] lV„, l /md/m, is well satis-
fied with the exprimental values. Therefore, it is conve-
nient to define the following parameters with values of
the order of one:

rid = (di/ds)/A, r2d = (d2/d3)/A . (11)

By using these parameters with the order of one, which

are defined by (10) and (11),we can express M as a power
series expansion with respect to A:

((rid+ r2dvi)A r2dvie'4"'A vse '4'"A )
M = ds r2dvie '4'"A r2dA v2e'4'"A

vse'4'» As v2e '4'~'A2 i.

Here, we have shown only the first leading term of the
A-power series in each matrix element. Each matrix ele-

ment of M up to As is

Mil = (Tld + T2dvi)A + (vs —Tidvi)A + O(A ) )

M22 T2dA + (V2 —T2dVi)A + (TldVi —T2dV2)A

+O(A ),
M33 = 1 —v2A + (r2dv2 —vs)A +O(A ),

viv2 + to a2 2

cos
2viv2vs 2viv2v3

(15)

Then, the rephasing-invariant quantity [15) J, which is a
measure of CP nonconservation, is given by

IM»IIM23[IMsil . s
(ds —di) (ds —d2) (d2 —di)

(16)

From (15), the limit of a = 0 means P = kn/2, so that
the case provides a maximal J for vi, v2, and vs fixed.

On the other hand, correspondingly to (12), we denote
the up-quark mass matrix D„as

(T,„As 0 0'I
D„=u3l 0 r2„A 0

0 0

Here, although the up-quark mass ratio mq . m, : m„
is nearer to 1:a: a rather than 1:a: a, we
have defined the up-quark mass ratio parameters ri„
and r2„by ri„=—(ui/us)/A and r2„=—(u2/us)/A,
because, as seen later, it is convenient to express the
diagonal elements in terms of even powers of A for a
model which requires (M„)ii = (Md)ii ——0 [otherwise
we have half-integer powers of A for the rotation angles
82 and 83 defined in (21)]. Hereafter, in the demonstra-

tive discussion of the usefulness of using (D„,M), we use
the definition ri„=—(ui/us)/A and r2„=—(u2/u3)/A
in consideration of the correspondence between M„and
Md. However, another definition ri„—= (ui/us)/A and
r2„= (u2/us)/A is also attractive because of the empir-
ical relation uiu3

Now, a general quark mass matrix form which is con-
sistent with experiments is given by

(13) M+ = UsD~UO, Md = UOMU(),

where Us is an arbitrary unitary matrix. Parameters
included in Uo and two of three phase parameters pi2,
$31, and $23 (for example, bi and 62 defined by pi2
bi+62, psi = bi —62, and $23 = p —2bi) are unobservable
quantities.

Our next task is to seek for the quark basis (in other
words, Uo) by which we can obtain a beautiful description
of mass matrices. We do not need to pay attention to
what Us we should choose as far as we are interested in
the observable quantities, but the choice of Up is essential
for model building of mass matrices.

In general, matrix elements of D„and M are mixed by
choosing a mixing matrix Uo with sizable mixing angles.
Then, it should be noted that in the resultant matrix
elements of M„and Md, for example, the value ri„A
from (D„)ii cannot be neglected, while the term —v2A

from M33 is not so essential. Our prescription of the mass
matrix phenomenology is useful for careful treatment of
such small terms. If we were to express (D„,M) with
numerical values, we would not be able to distinguish
whether a numerical value comes from (D„)ii or from a
higher A" term of M33.

lMi2[ = r2dviA — [(2rid +r2dvi)vi —a]A

iO(A'),

IMsil =vsA rzdaA +o(A )
2v3

IM23l=v2A —T2dv2A + [(2T2d vi —v2)V2 —T2da]A2'
+O(A'),

where the parameter a is defined by

G=VyV2+tU )
2 2 (14)

and as seen from (15) below, the limit of a 0 corre-
sponds to a case of "maximal" CP violation (l sin Pl = 1).

The terms which include the deviation parameter from
the symmetric KM matrix [14] u appear in A in Mi2
and M3~ and in A in M23. Since det M = d~d2d3, the
phase parameter P and the parameter ur must satisfy the
relation
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The resultant mass matrix structure (D„,M) readily
suggests the following empirical sum rule: If we suppose
that the matrix elements Mq q must, at least, be smaller
than the order of A since the corresponding (D„)11is of
the order of A, we obtain a sum rule

we also require (M„)11 ——0. For example, ™delin
which M„and Mg have a similar struct ure is provided
by a rotation R:—R(81, 82, 83) with 81 A2, 82 A4,

and 83 A, where R(81, 82, 83) is defined by

rgd + r2dv, = 02

i.e. , the Weinberg-Fritzsch sum rule [12,13]

lv„, l
= illd, /d2[ = 0.223 . (20)

C3c2 S3C2 S2
R(812 822 83) — 83C1 C38182 C3Cl 838182 81C2

S381 C3C1S2 C381 S3C1S2C1C2J

When we require that (Mg)11 = 0, it is natural that (c, = cos 8, and 8, = sin 8,). Then, we obtain

0 r2„t—3A ( t2+ t3ti)A'l
—r,„t,A' r,„A' —tiA'

l (—t, +t,t, )A' —t, A' 1 )

I' 0 r2qvi e'&"A'

M~ = RtMR = r2gvie '&"As r A2
vse '~"A

(vze'&" —ti) A

)
(23)

where ti = 81/A, t2 = 82/A, and ts = 83/A, and we
have shown only the first leading term in each matrix
el™n~of M„and Mg. The more detailed expressions
of (M„)11 and (Mg)11 are

(MJ)31= v3e' "A —(v2e ' "t3+t2 t3ti)A + O(A ),
(29)

we obtain

(M„)11 = (ri„+ r2„ts)A + (—t2 + tsti) A +

(M&)11 (ri&+ r2&vl)A + 2cos412r2&vitsA + ' ' '

sin(p —$12) = sin($31+ $23) = 0

(24) and [17]

l&~b/V. bl = v' —ui/u2

(30)

(31)

The requirement (M„)11 = 0 leads to

r1„/r2„. —

(25)

(26)

Qn the other hand, since the second term (As term) in

(25) cannot be neglected, the requirement (Mg)11 ——0
leads to [13]

di Qy+ COS P12
2 Q2

l
»n &I =

1
»n(4»2 + 4'31 + 4'23) I

=
1
»n 4» I

= 1 (»)
which provides the "maximal" CP violation in the mean-
ing stated in the sentence after (16) and is in reasonable
agreement [16] with experiment.

If we require a further condition (M„)31 = (M&])31
0 according to Fritzsch's ansatz [13], from the relations
(M„)31 —( t2 + t3ti)A + O(A ) and

ins«ad of (19) [(20)]. Since the experimental val-
ues of quark masses, (2), give g—di/d2 0.223 and

g—ui/u2 0.062, the factor cos $12 must be vanishingly
sm»12 i.e., $12 —+x/2, in this model. If we consider a
model with $31+ $23 = 0 (and also = +n), the model
gives

The relation (30) is favorable to the case of "maximal"
CP violation, (28), because (30) means sing = sin/12.
However, the prediction p/p = g—ui/u2 0.062 is
somewhat small compared with the experimental value
0.10 6 0.03.

Concerning the prediction of lV bl, an alternative
model, where (M„)12 = (Mg)31 ——0 instead of (M„)31 ——

(Mg) 31 = 0, is also interesting: In order to give (M„)12 =
0, we consider a rotation R(81, 82, 0) with 81 tiA and
82 t2A . Then (M„),~ and (Mg),~ are given by replac-
ing t2A and tsA in (23)—(26) with t2A and ts = 0, re-
spectively. The requirements (M„)11= 0 and (Mq)11 = 0
lead to t2 - +g ri„and lV„, l

—g di/d2, (20).—The
requirement (M8)31 ——(vse'&" —t2)A + = 0 leads to
sin /31 = 0 and

lv bl = v' —ui/us . (32)

The predicted value g—ui/us 0.0040 is in good agree-
ment with the exper™entalvalue lV„bl = 0.0043+0.0019.

Thus, the matrix form (D„,M) is very useful for seek-
ing empirical sum rules on quark masses and mixings.
Although here we have discussed only an "extended"
form of the Fritzsch-type mass matrix [13], the form

(D„,M) will also be useful for a phenomenological study
of the "democratic"-type mass matrices [18]. However,
the study of the democratic-type mass matrices with the



QUARK MASS MATRICES PRESENTED BY A POWER SERIES. . . R4817

help of the mass matrix form (D„,M) is too specialized
to be treated in the present paper, so it will be given
elsewhere.

In conclusion, we have given the down-quark mass ma

trix Mq =—M at the M„= D„ frame by using only
seven observable quantities (my, m„me, ~V„,[, ]Ve~,
~V„e[, and ~), and have determined the mass matrix

structure (D„,M) by expressing in terms of A power
series expansion. The general form of the experimen-
tally favorable quark mass matrix (M„,Mq) is given by

M„= U&D„Uo and M4 = UtiMUo. In other words, a
mass matrix model (M„,Mg) inconsistent with the mass

matrix form (D„,M) will be ruled out. The mass ma-

trix form (D„,M) is also useful for seeking empirical sum
rules on quark masses and mixings. Thus the mass ma-

trix form (D„,M) given by (12) and (17) can offer a
useful tool for model building of the mass matrices from
the phenomenological point of view.
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