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The perturbative QCD corrections to the semileptonic decay width of the 7 lepton are analyzed in
various renormalization schemes. Significant differences are found between a priori admissible schemes,
which indicates that it is impossible to use these corrections to obtain a precise determination of the

QCD scale parameter A.
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Recently there has been some interest in the quantum
chromodynamic effects in 7-lepton decay [1-17], which
are represented by the quantity called R :

I'(7~ —v_+hadrons)
R.= — — =3(1+R,)[1+0(a.,)] .
(r —Vv.e Ve)

(1)

The QCD prediction for R, is dominated by the pertur-
bative contribution, which is now known up to next-
next-to-leading (NNL) order [1-4,8,10,11,13]. One of the
reasons for the interest in R, is that it appears to be quite
sensitive to the QCD scale parameter A, allowing in prin-
ciple for a surprisingly accurate determination of this pa-
rameter from the available data on 7-lepton decay
[4,7,9,13,14]). However, the running coupling constant at
the energy scale of m , is relatively large, so that the per-
turbation series for R is less reliable than in most of the
high-energy QCD predictions. Therefore in the case of
R . one may expect a relatively stronger renormalization
scheme (RS) dependence, which should be properly taken
into account in the fits to the experimental data. In this
article the problem of the theoretical uncertainty of the
predictions for R | due to RS dependence is considered in
some detail. A general picture of the RS dependence of
R, is obtained as the parameters determining the scheme
are varied over a reasonable range. It is shown that there
are significant differences between various a priori admis-
sible schemes. This implies that it is impossible to use R .
to obtain a precise determination of the QCD scale pa-
rameter A, despite the fact that in many schemes th.: pre-
diction for R _ is very sensitive to this parameter.

Let us begin by recalling some facts about the RS
dependence of the perturbative expressions. Neglecting
the effects of nonzero masses of the three “active” quarks
we may write the renormalization group improved QCD
perturbation expansion for R in the form

R, =a(km)[1+r(K)a(km )+ry(k)a*(km )+ -1,

(2)
ri(k)=r{®+B,Ink , 3)
ry(k)=r® +(c,; +2r?)B,Ink +(ByInk)? , 4)
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where k =u/m_ is a constant scale parameter, u is the
renormalization point, and a(u)=g(u)/47* is the run-
ning coupling constant. The numerical value of a(u) is
determined by the implicit equation

1

nt =0Va)+ [‘dz | ——
Boln 'y @)+ [ dz zX(1+¢,2)

1
zX(14+cz+cyz2+ -+ ) ] ’
(5)

1

c,a
+—+C11n
a

1+cia

Bo

®V(a)=c,In —ZZ

(6)

which is obtained by integrating the renormalization
group equation

da.
with an appropriate boundary condition. The results of
perturbative calculations are usually expressed in the

modified minimal subtraction (MS) scheme [18]. In this
scheme we have for R [13]

rOMS =5.2023, r{PMS=26.366,

=—Boaz(l+cla +c2a2+ e, (7)

and By=2, ¢, =18, c)S=3863/864=4.47 [19]. Other
schemes are related to the MS scheme by a finite renor-
malization, which in our approximation amounts to the

redefinition of the coupling constant:
ahTS(;L)=a(y)[1+A,a(y)—I—Azaz(yH- o1, (8

where the constants A4; are specific to the considered
scheme. Using this relation we find the following formu-
las for the expansion coefficients r; and c; in an arbitrary
scheme:

=S4, )
ra=r¥ 424,18+ 4,, (10
cy=cMS+ 40, +42—4, . (11

Also the scale parameter A depends on the choice of the
scheme [20]:
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A=Az exp(— 4,/B,) - (12)

It should be emphasized that this relation is exact to all
orders of the perturbation expansion. The coefficients 4;
are simply related to the finite parts of the renormaliza-
tion constants, and in principle they may be arbitrary.
Consequently, the coefficients ¢; (for i >2) and r; may
vary over a broad range of values. For example, one may
adjust the constants A4; so that ;=0 at each order. This
defines the so-called fastest apparent convergence (FAC)
scheme [21,22]. There exist, however, RS independent
combinations of the expansion coefficients [22-25]. At
NNL order we have

pry=c,+r,—cr—ri. (13)

In the case of R, p,=—5.475. The numerical value of
the predictions obtained with the truncated perturbative
expression does depend on the choice of the RS. In the
Nth order of the perturbation expansion the differences
between the predictions in various renormalization
schemes are formally always of the order N +1, but nu-
merically they may become significant if the expansion
coefficients are large or the coupling constant is not very
small. A proper estimate of the uncertainty in the predic-
tions due to the RS dependence is crucial for a meaning-
ful comparison of the theory with the experimental data.
The effect of the RS dependence of R, was discussed to a
certain extent in [6,7] (these, however, used an incorrect
value for r,) and in [9,14,15]. The analysis performed in
these papers concentrates on various “optimal” schemes,
which are distinguished by some additional requirements
such as the principle of minimal sensitivity (PMS) [22],
the condition of fastest apparent convergence, or others
[14]. It should be stressed, however, that all the optimi-
zation conditions are in fact heuristic rules, which pick
up one scheme among a continuum of possibilities.
Therefore, restricting our attention only to the ‘“‘opti-
mized” predictions we do not obtain a proper picture of
the RS dependence. Instead, for a full estimate of the RS
dependence ambiguity one should compare predictions in
all schemes which a priori seem to be admissible, without
the requirement that they be ‘“‘optimal” in any sense.
Such an approach is adopted in the following.

. It is instructive to discuss first the RS dependence of
the predictions for R, in the next-to-leading (NL) order,
even though in the fits to the experimental data the
NNL-order expression is usually used. The NL-order ex-
pression for R | in a general scheme may be written in the
form

RV=a(1+ra), (14)
B,ln =rOMS _, 4 p(q) , (15)
s
where
ro=rOMS 4t g Ink + 4, . (16)

The presence of Ay in this general expression is a conse-

quence of the relation (12), which has been explicitly tak-
en into account in order to simplify the comparison of
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the predictions in different schemes. (This is A%, as is
appropriate for three flavors—it is related to A% and
A% via the matching relation [26].) A conventional way
of estimating the renormalization scheme dependence in
the NL order in QCD is to use the MS scheme and vary
the scale coefficient k over some ‘“‘reasonable” range of
values, usually close to unity. This is justified by the fact
that in the NL order a change of the renormalization
scale coefficient from k to k' has formally the same effect
on the predictions as a change of the RS via (9) with
A,=pByIn(k’/k). Unfortunately, such a procedure does
not give a full picture of the RS dependence in the NL or-
der. To show this explicitly, let us note that any choice
of the RS or of the scale coefficient k in the expressions
(14)—(16) amounts simply to some choice of the expansion
coefficient r,. Therefore this coefficient may be used to
distinguish the approximants which are available in the
NL order. Varying the scale parameter k in the MS
scheme in the range { <k <3 we obtain variation of r; in
the range 0.26 <r, =10.15. However, the same variation
of the scale parameter in some other scheme may corre-
spond to an essentially different range of values for r,.
For example, in the so-called momentum subtraction
scheme, in which the coupling constant is defined via the
three-gluon vertex at the symmetric configuration of Eu-
clidean momenta [20] [ 4, = —4.09 in the formula (9), for
three flavors in the Landau gauge], the variation of the
scale  coefficient in the same range gives
—3.83=r;=6.06. It is thus evident that in the conven-
tional analysis of the RS dependence in the NL order
some of the approximants are not taken into account.
The NL-order predictions for R, in various renormaliza-
tion schemes are shown in Fig. 1. The experimental
value R$* =0.20F0.02 [27] has been indicated to mark
the range of values of R which are of phenomenological

FIG. 1. The NL-order predictions for R, as a function of
m./Ays, as obtained in the MS scheme with the scale
coefficient k =2, 1, % (r,=8.32, 5.20, 2.08, respectively), in the
FAC scheme (r, =0), and in the symmetric momentum subtrac-
tion scheme with k=1, I, 1 [r =1.11 (dashed line),
ry=—2.01, —3.83, respectively]. The dashed horizontal lines
represent the experimental value of R $*? =0.20+0.02 [27].
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interest. The predictions for R, in each scheme are
shown as a function of m_/Agg. This has the advantage
that the effect of the scheme dependence on the fit of Ay
to the experimental data may be clearly seen. The indi-
cated curves correspond to the values of ; from r, =8.32
(k=2 in the MS scheme) to r,=—3.83 (k=1 in the
symmetric momentum subtraction scheme). We see that
the difference between the schemes are large in the NL
order, and that they are significant compared to the accu-
racy of the experimental data. By changing the scheme a
qualitatively different dependence of the predictions on
Ay may be obtained. In particular, in some schemes
there is no Ay that would fit the central value of R *P.

Let us now consider the NNL-order predictions for
R .. The renormalization group improved expression for
R in the NNL order has the form

RP=a(1+r,a +ra?, (17)

where the coupling constant is determined by the equa-
tion

Boln =r(10)m_rl+¢(2)(a) . (18)

MS

An explicit form of ®'?(a,c,) is given for example in
[28]. The expression for r, in an arbitrary scheme and
with an arbitrary choice of the renormalization scale may
be easily obtained from (4) and (10). In order to fully
characterize the RS dependence of the NNL-order ap-
proximants we have to use two independent parameters.
The arbitrariness in the predictions, which is related to
the freedom of choice of the renormalization scale, is
most conveniently parametrized by the coefficient r|,
similarly as in the NL order. The second degree of free-
dom, which is characteristic of the NNL order, is related
to the scheme transformations which change the B func-
tion. To parametrize this arbitrariness we use the
coefficient ¢, [22]. To obtain an estimate of the RS
dependence one should now find the differences in the
predictions when the parameters r; and c, are varied
over some reasonable range. The choice of a proper
range of variation for these parameters is a delicate
matter if we want to argue for a strong RS dependence,
since for artificially large parameters we may always ob-
tain significant differences in the predictions. It seems
natural to relate the condition on 7y, r,, and ¢, to the RS
invariant p,—the values of r;, r,, and ¢, may be con-
sidered to be ‘“‘reasonable” or “natural” when their con-
tributions to p, do not involve extensive cancellations.
Below we show two figures which illustrate some charac-
teristic features of the RS dependence in the NNL order.
In Fig. 2 it is shown how the NNL-order predictions for
R, depend on the value of r, with fixed value of ¢, =c}'S.
The indicated curves correspond to the same values of 7,
as in the case of the NL-order predictions shown in Fig.
1. We see that although the curves corresponding to
larger positive r; lie closer to each other than in the NL
case, the differences between the schemes are large for
phenomenologically relevant values of R.. Again, we
find schemes with qualitatively different dependence on
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FIG. 2. The NNL-order predictions for R, as a function of
m,/Asz as obtained for c,=4.47=c}S and r,=8.32, 5.20,
2.08, 1.11, 0, —2.01. The dashed horizontal lines represent the
experimental value of R $*® =0.20+0.02 [27].

m./Ayg and schemes in which there is no Ayg that
would fit the experimental data. In Fig. 3 it is shown
how the NNL predictions for R, depend on the parame-
ter c, for fixed values of 7, =r{"MS and r,=1.11. The
predictions for R in the FAC scheme are also indicated
on this figure. Also in this case we find significant
differences between the schemes. Let us remark that the
fact that the MS predictions lie close to the FAC predic-
tions is of little relevance for the overall picture of the RS
dependence.

It should be pointed out that when the results of the
fits to the experimental data are expressed in terms of the
value of the running coupling constant in the MS scheme,
as is common in the contemporary QCD literature, it is
very difficult to extract correctly the error in the fit due
to the change of RS involving a change of the 8 function.
This is to be contrasted with the transparent way of es-
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FIG. 3. The NNL-order predictions for R, as a function of
m . /Asgs, as obtained for r, =5.20=r{"MS with ¢, = —25, 4.47,
25 and for r; =1.11 with ¢, =4.47, 10 (dashed curves). The dot-
ted line indicates predictions in the FAC scheme (r; =0=r,).
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timating the effects of the RS dependence on the fits of
Ajzs- The use of the parameter A is preferable in the fits
because the one-loop relation (12), translating it from one
scheme to another, is exact to all orders.

Summarizing, we may say that we have found strong
RS dependence of the perturbative predictions for R,
both in the NL and the NNL order. This strong RS
dependence is caused by the fact that the coupling con-
stant is not small, so that the perturbation expansion is
poorly convergent. For example in the MS scheme the
phenomenologically relevant value is @ =0.1, in which
case the NL-order and the NNL-order corrections are of
a comparable magnitude. Therefore even small varia-
tions of the scheme may have significant effect on the pre-
diction. A strong RS dependence of the predictions for
R, seems to indicate that the truncated perturbation ex-
pansion is not adequate in this case, even if one uses some
optimization methods. Presumably to obtain reliable pre-
dictions one has to go beyond the truncated perturbation
series, perhaps including the information on the high-
order behavior of the perturbation series and construct-
ing nonpolynomial approximants, as has been discussed
in [29].

From our analysis above, it follows that it is impossible
to obtain a precise value of Ay from the fit to the experi-
mental data on R_. It is true of course, that in some
schemes—including the MS scheme—the QCD predic-
tions for R are very sensitive to the value of Ay, as may
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be clearly seen in Figs. 1-3, and that the fits to experi-
mental data in these schemes yield tightly constrained
values of Ay, This sensitivity is a consequence of a rela-
tively large value of the coupling constant, which in turn
implies an increased rate of running of the coupling.
However, when the coupling constant is large, the RS
dependence is also large. This introduces an additional
uncertainty in the fits, which in the case of R completely
compensates for the increase in the accuracy of the fits
due to the strong sensitivity to Ayg. This resolves an ap-
parent paradox, that using a poorly convergent perturba-
tion series for R in, say, the MS scheme, we obtain a
more precise value of Ayg than from the fits of many of
the high-energy QCD predictions, for which the pertur-
bation expansion is much better behaved.

The method of analysis of the RS dependence formu-
lated in this article applies without modification to any
QCD prediction that depends on a single energy variable.
For QCD observables at higher energies the RS depen-
dence is less pronounced than in the case of R _, and con-
crete numerical estimates may be obtained for the
theoretical uncertainty in the predictions arising from the
freedom of choice of the scheme. The results of an exten-
sive study of the RS dependence of various quantities [30]
will be published elsewhere.
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