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We discuss the formation of primordial black holes during the early stages of the Universe if the
effective gravitational “constant” evolves with time. We describe two possible courses of cosmological
evolution: first, one in which the black-hole horizon evolves on the Hubble time scale, and a second, in
which the long-range scalar field from which the gravitational coupling is derived remains constant over
the horizon scale while evolving in the cosmological background. The second scenario leads to
significant changes to the standard picture of black-hole explosions because black holes retain “memory”
of the value of the gravitational constant at the time of their formation. There are significant implica-
tions for observational searches for black-hole explosions if the gravitation “constant” has changed with

time since the Universe was about 10”2 s old.

PACS number(s): 98.80.Dr, 04.60.+n, 97.60.Lf

There are a variety of motivations for considering the
formation of small black holes during the early moments
of the expansion of the Universe. If variations in the
gravitational potential were sufficiently large then black-
hole formation is inevitable in the early Universe [1].
Such variations can arise from inhomogeneous initial
conditions (2], phase transitions [3], vacuum bubble col-
lisions [4], or the gravitational decay of cosmic-string
loops [5]. Any black holes formed in this manner can ex-
ert a significant influence upon the future evolution of the
Universe. Indeed, primordial black holes which are mas-
sive enough to avoid Hawking evaporation by the present
are an ideal cold-dark-matter candidate. However, in-
terest in such relics of the very early Universe was first
aroused by the possibility of observing the final stages of
the Hawking evaporation of a black hole with a lifetime
of order the Hubble age of the Universe [6]. This would
present astronomers with direct information about a local
quantum gravitational event not dissimilar to the big
bang itself. And even the nonobservation of such effects
would provide important information about the smooth-
ness of the early Universe. Recently there has been in-
terest in the ways in which the Hawking evaporation
time and temperature of black holes might be modified by
higher-order curvature corrections to the Einstein-
Hilbert Lagrangian of general relativity [7]. Although
these considerations have significant implications for the
|

existence of relics in the present Universe, because black-
hole evaporation can terminate in stable Planck mass rel-
ics (see also [8]), the observable consequences of the ex-
plosive evaporation are not significantly affected. Here,
we discuss some possible consequences of the time varia-
tion of the gravitational coupling constant G for the
scenario of black-hole evaporation. In this case there are
potentially very strong changes in the observable aspects
of black-hole explosions to be expected. We shall assume
that if any period of inflation occurred during the early
Universe then it was completed before the formation of
black holes with Hawking lifetime equal to the age of the
Universe [7].

In order to illustrate the effects of a varying-G cosmol-
ogy it is most transparent to use a scalar-tensor gravity
theory [9,10] with gravitational action (c =#A=1):
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Variation of S and the matter field action with respect to
the metric g,, and the scalar field @ gives the field equa-
tions, linking the space-time Ricci tensor R, to the co-
variantly conserved energy-momentum tensor of the
matter fields, 7 ,,:
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Substituting the trace of (2) in (3) we obtain
[3+20(@) 0@+ [2¢A' (@) —2¢A (@) ]
=8rT —w'(@lp " . (4)

The coupling parameter w(g) and the cosmological
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function A(@) must be specified to complete the theory.
In the case where A=0 and w=w,=const we obtain the
Brans-Dicke theory [11]. In general, the weak field
corrections to general relativity tend to zero when w— o
so long as o'(@)o~*—0. We shall cite the Brans-Dicke
case as the simplest example of a cosmology in which
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G < @ ! in what follows. We know that the observation-
al limits, approximately @, > 500, from solar system tests
and cosmological nucleosynthesis are very strong in this
case, but there exist many other scalar-tensor theories
o'(@)>0, which are compatible with observational con-
straints. In such theories w(@) can be very small in the
early Universe, thus producing significant effects from the
time evolution of G(g); however, if w(¢) becomes larger
than about 500 by the nucleosynthesis epoch (t ~1-10°s)
then observable deviations from general relativistic Fried-
mann models will be negligible [10]. Since we shall be in-
terested in variations in G(¢) which occur during the
first 107%° s of the expansion, when black holes small
enough to evaporate can form, there can always be
significant evolution of G during this very early phase
without adverse solar system or nucleosynthesis effects
and our arguments are not constrained to operate within
the observation restrictions of Brans-Dicke models alone.

It was shown by Hawking [12] that static vacuum
black-hole solutions of the Brans-Dicke equations are
identical to those of general relativity. We can easily gen-
eralize this result to all scalar-tensor theories governed by
(1)-(4). This is evident from Egs. (2)-(4). If ¢ is con-
stant then the field equations reduce to those of general
relativity. The same conclusions hold for cosmological
solutions of Einstein’s equations with ¢ constant [hence
Alg@) is constant and equivalent to the usual cosmological
constant] so long as @A(@)=4x7T. If A5=0 this requires T’
to be constant and hence the source must be a massless
scalar field (or a p = —p perfect fluid) plus any trace-free
stress. If A=0 then the equivalence with Einstein’s
theory requires 7=0, that is, a vacuum or a radiation
field.

If primordial black-hole formation occurred during a
phase of the very early Universe in which the equation of
state was that of radiation then black holes could form
exactly as in general relativity. For simplicity we shall
assume these holes to be of Schwarzschild type. It is pos-
sible that the equation of state deviates from that of
blackbody radiation during the very early stages of the
Universe and in such periods ¢ would not remain con-
stant. In fact, even for radiation-dominated cosmologies
there are general solutions with time-varying G(¢) in
which G(¢) tends to a constant with increasing time.

We now pose the following problem: what happens to
black holes during the subsequent evolution of such a
universe if the gravitational ‘“‘constant’ evolves in time?
In general, the scalar field evolution ensures that the
present value of the gravitation “constant” G(t,) will
differ from its value G(t,) at the time ¢, when primordial
black holes formed. The problem may be stated in this
form irrespective of the precise scalar-tensor coupling or
the details of the cosmological evolution between ¢, and
ty. Of course, given particular models for this evolution
(of which the Brans-Dicke theory is the simplest), one
can use other observational constraints derived from nu-
cleosynthesis and solar-system observations to constrain
the magnitude of the ratio G(tf)/G'(to). Here, we shall
confine our attention to general points of principle.

If black holes form at ¢, and G(¢,)#G(t,) then we
consider the following subsequent histories.
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(a) A Schwarzschild black hole of size R, =2G(t,)M
forms when a mass M enters the cosmological horizon at
time ¢,. If there is cosmological evolution of G(t) with
time then the black hole adjusts its size quasistatically,
evolving through a sequence of Schwarzschild states ap-
proximated by R =2G(t)M.

(b) A Schwarzschild black hole of size R, forms at ¢,
but subsequently the scalar field remains constant over
the length scale R, while it evolves on larger scales at the
cosmological rate. At present the black hole will have a
size that is determined by the value of G(z,) at the time
of its formation while the background universe is charac-
terized by the value G(t,). In effect, the scalar field ¢ is a
function of space and time which does not vary within
the black-hole horizon on small scales, but varies in time
over larger scales.

Both of these scenarios have striking features. The
first (a) requires that there be no static black holes during
any period when G changes. In the absence of an exact
solution it is difficult to assess the ramifications of this.
For some small interval (1 —1,) after formation we would
expand G(t)=G(t,)+(t—1,)G(t,)+ - - to leading or-
der; thus, the Dblack-hole area changes as
A= A(t)[1+2t —1,){G/G};+ -] and the
Hawking temperature  becomes Ty <(GM)™!
«{G(t)) [1—=(t—t){G/G)p+ -] Black-hole
area decrease occurs in the absence of evaporation if
G <0. If the hole still radiates as a blackbody then the
usual Hawking lifetime 7y =aG>M? for complete eva-
poration of a black hole of mass M formed at 1,=0 will
be modified to

aGAOIM3=7—72{G(0)/G(0)} +0(7) , (5)

where a gives the number of spin states evaporated (a =2
when only photons are emitted).

If G(r)xt " then M3 «<t™*! for n#*—1 and
M3 «<In(t) for n=—1. Thus, for n—1 and the small
time intervals over which the approximation (5) holds,
the mass-lifetime relation becomes 7o« M?3/?" "1 and,
when n < —1, large holes start to evaporate faster than
small ones, whereas small holes begin to evaporate faster
when n > —1 (which includes the standard case of gen-
eral relativity with »=0). In the first case the evapora-
tion slows down whereas in the second it is an explosive
instability.

Another consideration for this scenario might be to ask
whether a black hole ever forms. In Brans-Dicke theory
there exist static spherically symmetric vacuum solutions
[11] which are naked singularities rather than
Schwarzschild black holes; however, it is not clear that
they could be the end point of gravitational collapse of
matter in the early Universe. It is also worth recalling
that general relativistic cosmological models which are
scalar field dominated make primordial black-hole forma-
tion very difficult. Since the scalar field contributes a
pressure p =p, so the Jeans length equals the horizon
size, overdensities need to collapse almost as soon as they
enter the particle horizon or pressure forces will support
and dissipate them. However, the probability of black-
hole formation from bubble collisions or cosmic string
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decay can still be large in the scalar-field-dominated case.
It was once thought that p=p states in the early
Universe admitted the possibility of similarity solutions
growing at the same rate as the horizon [13] but subse-
quent investigation revealed that solutions that grow in
this way are pathological [14] and will not arise in prac-
tice.

The second scenario (b) assumes that there is no non-
quantum evolution of the black holes because the ¢ field
remains constant over the scale of the event horizon.
Hence, the hole behaves like a small gravitationally
bound structure in an expanding universe. The novelty
of this possibility is that a black hole carries with it a
“gravitational memory” of the value of the gravitational
coupling G(zy) at the time of its formation. The Hawk-
ing temperature and lifetime gy of a black hole formed
in the early Universe at time ¢, will be determined by the
value of G(t;), at the time of its formation, not by the
value of G(t,=7gy) today. The lifetime of a black
hole formed when G=Gl(z;) is rpy=aGt;)M’
~3X10"Ya{G*(t;)/G*(ty)}(M /1g)* s. This lifetime
equals the present age of the Universe, ¢, for holes with
initial mass

to 1/3 G(to) 2/3
= 5 ; (6)
aG(ty) G(t,)
that is,
M~4.4X10" gx Glty) | 7)
‘ G |

where the first term on the right-hand side of (7) gives the
standard Hawking mass assuming the Hubble constant is
100 kms~'Mpc~! and the density of the Universe is
equal to the critical density [15]. The Hawking tempera-
ture of these black holes become

Ty =24 MeV{4.4X 10" g/M}{G(1,)/G(1,)}'3 .
()

In the standard evaporation picture [6], with constant G,
black holes of this temperature initially emit photons,
light neutrinos, electron-positron pairs, and gravitons to-
gether with Boltzmann-suppressed abundances of more
massive particles such as u’s, 7’s, and more massive had-
rons. The detailed spectrum has been analyzed by
MacGibbon and Carr [15] taking into account the de-
tailed behavior of quarks and gluons emitted in jetlike
events at energies close to the QCD confinement scale
Aqcp~250-300 MeV. They discuss the detailed obser-
vational features expected of the emission over the 50
MeV -1 GeV range.

However, we see that the effect of a ‘“‘gravitational
memory” upon the evaporation process is to alter the
mass and temperature of primordial black holes that will
be undergoing explosive evaporation today. The change
in T'gy by the factor {G(2y)/g(1,)}'”> means that the ob-
servable effects of black-hole evaporations may be very
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different to those normally envisaged even if there is only
a very short period of G(g(t)) evolution during the first
1072 s of the Universe’s history. For example, if
G(ts)> 105G (t,), where tp~ 1072! 5, then the black-hole
evaporation temperature is reduced to less than 0.24
MeV, below the electron rest mass, and there no longer
exists any possibility of detecting black-hole explosions
via the observation of radio or y-ray bursts created by
relativistic electrons and positrons evaporated from the
hole spiralling in the Galactic magnetic field [15,16].
Likewise the limits deduced from the x-ray and y-ray
backgrounds [15] are significantly affected. If
G(tp)> 10'2G(t,) then the black-hole temperature is less
than 2.4 keV and the photon emission is primarily in the
x-ray band with massive particle emission restricted to
very light weakly interacting particles. A more detailed
analysis of these changes and the restrictions must be
given elsewhere. Here our purpose is simply to point out
that the possibility of time variation of the gravitation
constant during the very early stages of the Universe may
completely change the manifestations of black-hole eva-
poration in the present day Universe. Conversely, the
quoted limits on the possible abundance of black-hole ex-
plosions depend crucially upon the history of G(¢) at
very early times. As a corollary, the observation of
black-hole explosions would allow us to draw conclusions
about the gravitational Lagrangian at very high energies.

In summary, we have displayed a simple scenario in
which the gravitational coupling constant is derived from
a time-dependent scalar field. Such a possibility exists in
a wide variety of scalar-tensor gravity theories. Assum-
ing primordial black holes form after inflation during the
early stages of the Universe, we discuss two possible
consequences of the subsequent time variation of G for
the quantum evolution of a primordial black hole. In the
first, where quasistatic evolution of the hole on a Hubble
time scale is assumed to occur, there are no longer any
time-independent black holes. In the other, more likely
scenario, the scalar field is constant over the horizon
scale but varies in time on larger scales. As a result the
black-hole horizon retains memory of the value of the
gravitational “constant” on the horizon scale at the time
when the black hole formed in the very early Universe.
Consequently, the mass and temperature of black holes
that completely evaporate by the present time can differ
significantly from the standard values first derived by
Hawking [6] for the case of unchanging G. In addition to
offering a new probe of the strength of gravity during the
first 1072 s of the Universe’s history, and the evolution
of extra space dimensions [17], this possibility has consid-
erable implications for observational searches for explod-
ing black holes and the conclusions that can legitimately
be drawn about their possible cosmic abundance from ex-
isting astronomical observations of radiation back-
grounds and cosmic rays.
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