RAPID COMMUNICATIONS

PHYSICAL REVIEW D

PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY

THIRD SERIES, VOLUME 46, NUMBER 6

15 SEPTEMBER 1992

RAPID COMMUNICATIONS

Rapid Communications are intended for important new results which deserve accelerated publication, and are therefore given priority
in editorial processing and production. A Rapid Communication in Physical Review D should be no longer than five printed pages and
must be accompanied by an abstract. Page proofs are sent to authors, but because of the accelerated schedule, publication is generally

not delayed for receipt of corrections unless requested by the author.

Ashtekar’s variables for arbitrary gauge group

Peter Peldan
Institute of Theoretical Physics, S-412 96 Goteborg, Sweden
(Received 24 April 1992)

A generally covariant gauge theory for an arbitrary gauge group with dimension =3 that reduces to
Ashtekar’s canonical formulation of gravity for SO(3,C) is presented. The canonical form of the theory

is shown to contain only first-class constraints.
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When Ashtekar [1] managed to reformulate Einstein
gravity on Yang-Mills phase space it rekindled the old
dream of finding a unified theory of gravity and Yang-
Mills theory. However, it soon became clear that this
Ashtekar formulation relied heavily on the use of the
gauge group SO(3) (or a locally isomorphic one), and the
simple structure-constant identity that exists for these
groups. Without this identity the constraint algebra fails
to close, the theory is not difffomorphism invariant, and
it contains second-class constraints. In an attempt to find
an Ashtekar formulation for an arbitrary gauge group,
there are no problems with the generator of gauge trans-
formations (Gauss’s law), or the generator of spatial
diffeomorphisms (the vector constraint). They form a
system of first-class constraints by themselves, for an ar-
bitrary gauge group. The difficult part is the generator of
diffeomorphisms off the spatial hypersurface (the Hamil-
tonian constraint). This constraint is constructed with
the help of the structure constants, and in the Poisson
brackets between two Hamiltonian constraints, the iden-
tity, mentioned above, is needed to give a weakly vanish-
ing result. So, one strategy to construct a generalized
Ashtekar theory is to write down a Hamiltonian con-
straint without the use of the structure constants, such
that, when choosing the gauge group SO(3), the con-
straint reduces to the ordinary Ashtekar constraint. The
hope is then that the construction might work for an ar-
bitrary gauge group, since one does not use any particu-
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lar feature of a special gauge group any more. To do this
in practice, first define a scalar with the help of the
four fundamental scalar densities €, f, ik H?HfB,ﬁ s
€ape Siji H?H?Hi s €ape Sijk H?BJPBE, €abe fijkBianBli:
where II{ is the momenta and B/ is the magnetic field
constructed from the SO(3) curvature, in Ashtekar’s
canonical formulation of gravity. Then, multiply the or-
dinary Ashtekar Hamiltonian constraint with this scalar,
and, finally, use the SO(3) structure-constant identity to
eliminate all structure constants. After this elimination,
the gauge group can be considered as arbitrary. This new
Hamiltonian will then in general give a closed constraint
algebra for an arbitrary gauge group.

In this Rapid Communication, I will show how to ob-
tain this Ashtekar theory for an arbitrary gauge group,
through a Legendre transform from a pure connection
Lagrangian of the form discovered by Capovilla, Jacob-
son, and Dell [2] (CDJ). The resulting canonical theory
will correspond to multiplying the Hamiltonian con-
straint by the determinant of the “magnetic” field, in the
strategy above.

In order to find the Ashtekar theory for a general
gauge group, I will start with the generally covariant and
gauge-invariant CDJ action [2]

=1 [ d* 9[TrQ*+a(TrQ)], (1)
where QU:=e"°FlF/ s and Flg=08,Ap+fjx ALAf
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and 7 is a scalar density of weight —1. The trace is taken
with the invariant bilinear Killing form of the Lie alge-
bra. [For some Lie algebras, such as so(1,3), so(4), and
s0(2,2), there exist two different ‘“‘traces” that could be
used in the action (1), meaning that for these groups there
exists an even more general Lagrangian, quartic in the
field strength [3].] A 3+1 canonical decomposition of
this action, with @ = — 1 and the gauge group SO(3,C), is
known to give Ashtekar’s Hamiltonian for pure gravity
without a cosmological constant. It is important to note
that in doing this 3+ 1 canonical decomposition one has
to exclude field configurations with a ‘“degenerate” Weyl
tensor (2], and allow the fields to be complex valued, in
order to find the Ashtekar Hamiltonian. For other values
of a but keeping the gauge group SO(3,C), the action still
describes a theory that has an interpretation in terms of
Riemannian geometry [5,6]. This pure connection for-
mulation of general relativity has also been studied with a
cosmological constant and matter couplings in three and
four dimensions [2,4,7].

It is correct to state that, at the configuration space La-
grangian level, the action (1) is already a generalization of
Ashtekar’s general relativity for an arbitrary gauge
group; however, no one has yet given the canonical form
of the theory for an arbitrary gauge group. Since this ac-
tion is invariant under diffeomorphisms and gauge trans-
formations, it should be quite clear that a canonical
decomposition of it should give a set of first-class con-
straints generating these symmetries. And since one
knows that with the gauge group SO(3,C) it gives
Ashtekar’s variables, the general theory must be what
one would call “Ashtekar’s variables for arbitrary gauge
group.” However, there are at least two things that
could ruin this construction. The first is that it could be
“impossible” to perform the Legendre transform for a
general gauge group. [This is not so strange since previ-
ous work on this action has relied heavily on the fact that
the gauge group is three dimensional, and that the struc-
ture constant satisfies the simple SO(3) identity.] The
other thing that could have ruined the beauty of the
Hamiltonian formulation is that additional complicated
second-class constraints would have appeared. However,
none of these are the case, and as I soon will show, the
only thing that happens for an arbitrary gauge group is
that the Hamiltonian constraint splits up into three
pieces.

First I define the momenta conjugated to 4/:

.= aiﬁ =n(Q +a TrQ8) B , @

a

where B%:=¢%°Fj. is the “magnetic field.” a,b,c denote
spatial indices and i, j, kK denote gauge indices. Now, it is
rather straightforward to perform the Legendre trans-
form, provided the “magnetic metric” b°:=B%B} is in-
vertible. It is here that one must require the dimension of
the gauge group to be =3 in order to have a nondegen-
erate “magnetic metric.” The difference between this
Legendre transform and the one performed by Capovilla
[5] is that Capovilla chose the gauge group to be SO(3,C)
and could therefore use the magnetic field itself as a
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three-by-three matrix, while keeping the gauge group ar-
bitrary makes it necessary to use the ‘“magnetic metric”
instead. Defining the inverse of the “magnetic metric”

b= meaefebgh besp/t
and performing the Legendre transform gives
H o =NH+NFH,+AS, , 3)
where
H= —‘/de:( 5°) | amemith, , — (1B )by (N9BB,,
— HC_I—M(H”iB,”bab 2 |=0,
Ho=Le, 1"Bf =0,
$, =D, =0,
_ 1
. Zan ’
Ai=—4) .

F is usually called the Hamiltonian constraint, 7, the
vector constraint, and §; Gauss’s law. The value a = —1
must be handled separately. For that case, the Hamil-
tonian constraint splits up in two separate pieces which
will become second-class constraints. Notice that the
form of Gauss’s law and the vector constraint are in-
dependent of the gauge group while the Hamiltonian con-
straint looks a bit more complicated for a general gauge
group compared with the ordinary Ashtekar form for
SO(3):

i
-7{Ash: zeabc fijk anfBlf .
1

It is however easy to check that with ¢ =—2 and the
gauge group SO(3), using the identity

S e =8Y'67) 8k +8Li6715%, + 8L 8218 ,

valid for SO(3), # can be rewritten as ##=i%,g,. [The
structure constant identity follows from the fact that for
SO@M), fijk =¢€iji-]

Now, for an arbitrary gauge group, one must still
check that the constraints form a first-class set. And, as
mentioned earlier, there are no problems with Gauss’s
law and the vector constraint. We know that they gen-
erate gauge transformations and spatial diffeomorphisms,
and all constraints are gauge covariant and
diffeomorphism covariant, which means that all Poisson
brackets including these constraints are weakly vanish-
ing. So, the only nontrivial calculation is the Poisson
brackets between two Hamiltonian constraints. A
straightforward calculation gives

(H[N),H (M)} =%,q°°(No,M —Md,N)] , (4)
where

FH[N)= [d’x #N
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and lined in the beginning of this Rapid Communication. (2)

ab— »TyaiTTh aipec dyybj Write down the general CDJ-type Lagrangian with arbi-
=201*I1; — 3(I1*B{ )b 4 (B 11" . .

q =3 bea( BFITY) trarily high orders in the field strength, and perform the

+ 1+2a (b, dHCiB,-d)%(H(“jB;’)) Legendre transform. (3) Define the Hamiltonian con-

1+3a
(1+a)++a)

(1+3a)?
+3[b,,(IT°Bf)by( BT/ — b, TI°TI{ |6
on the constraint surface. And, according to Hojman,
Kuchat, and Teitelboim [9] the object ¢°® in the Poisson
brackets above is to be interpreted as the spatial metric
on the hypersurface.
From now on I will put a = — 1 which is the value that

for SO(3,C) gives ordinary gravity. This means that the
spatial metric is

q“*=211"T1? — 3(11“B{)b 4 (B T1%)
+3[b, (IM“Bf)by(BfTI/)) = b, MITI{ 16 (5)

( bcd HCiBid)Zb ab

a form that makes it very hard to ensure positive
definiteness of the metric, for a general gauge group.
During the calculation of the Poisson brackets (4), it
becomes clear that the only parts that could give a non-
closure of the constraint algebra come from the first term
in the Hamiltonian constraint. That means that there ex-
ists another Hamiltonian constraint, quadratic in mo-
menta, that gives a closed constraint algebra: namely,

V/det(b*)

Alt —
H 4

((IT“B)by, (MT“B )b,
—(I“Bfb,, )?]
- 1 aipd bjipe

e Caar BB . ©
This Hamiltonian constraint seems more tractable than
the original one in (3), at first sight. However, it has two
remarkable features. First, doing the Legendre transform
backwards for this Hamiltonian does not give a manifest-
ly covariant pure connection action, despite the fact that
one has a closed constraint algebra. (The same situation
appears for gravity coupled to a massive spinor in the or-
dinary Ashtekar formulation [7].) Second, the theory
only cares about the part of II* that is nonorthogonal to
B“ in its internal gauge indices. The orthogonal part of
1% do not have any effect on A/ at all. Which Hamil-
tonian constraint is then the best choice for a generaliza-
tion of Ashtekar’s variables? Both reduce to the Ashte-
kar Hamiltonian constraint for SO(3); #A" has a simpler
form, but # corresponds to a manifestly covariant La-
grangian. My opinion is that the pure connection La-
grangian (1) really has some fundamental role, and there-
fore one should choose #. And, in addition, there is
something strange with a theory which has a lot of “ex-
tra” fields (the “orthogonal” part of I1%) which have no
effect on the equations of motion.

If one is only looking for a theory that for the gauge
group SO(3) reduces to the Ashtekar formulation, and
does not mind whether or not, for instance, the Hamil-
tonian is quadratic in the momenta, then there exist
several different Hamiltonian constraints. They can be
found in three different ways. (1) Use the strategy out-

straint by contracting the following scalar densities with
epsilon-tensor densities: I“BY, BB}, and I1*TI®. Here
is an example of the third way:

T =€ e € o (TPTI(MPTIEN(TT*BY) .

This is an interesting Hamiltonian constraint, which has
the feature that the spatial metric will be of the familiar
form g“°~TI“TI%. Using the third way, one must careful-
ly check the constraint algebra; it will not always be
closed.

Now, the existence of a theory for a general gauge
group, which reduces to the theory of pure Einstein grav-
ity for a specific choice of the gauge group, makes it
tempting to speculate about a unified description of gravi-
ty and Yang-Mills theory. The question is then: What
kind of gauge group should be used? Could the naive
guess of SO(3) X G give gravity coupled to a Yang-Mills
field with gauge group G, or is there need for a more so-
phisticated construction that in some way could be re-
duced to the desired result (spontaneous symmetry break-
down?)? The first thing one may notice is that with gauge
group SO(3) X G the Hamiltonian in (3) can never give the
“ordinary” gravity-Yang-Mills coupling, given by Ashte-
kar, Romano, and Tate [8]. [That is because the ordinary
coupling is nonhomogeneous in the momenta, while # in
(3) is just quadratic.] Perhaps, some of the other general-
ized Hamiltonians, mentioned above, have a better
chance. However, what is required of the coupling is
really just that it reduces to the ordinary Yang-Mills
equations for flat space-times in the weak limit. But,
even that seems to fail. Trying the gauge group
SO(3) X U(1), it is easy to verify that Maxwell’s equations
do not appear in the weak field limit. So, if there will be
no miraculous improvements for some special Yang-Mills
gauge group, this naive construction will fail, and one
must really think of something more clever.

Also the reality condition of the Ashtekar formulation
seems tough to handle in this direct-product approach.
In general, the reality condition will have to be matter
field dependent, in order to get a real metric.

However, an optimistic speculation regarding the reali-
ty conditions is that it could be possible to find a gauge
group in which the “gravity part” would give a positive-
definite spatial metric without any need of introducing
complex fields.

Looking ahead a bit, one could start thinking of using
the Rovelli-Smolin loop-representation quantization
scheme [10] for this generalized theory. At first sight,
there are two obvious things that change: The “spinor
identity” will become more complicated, and the
definition of the Hamiltonian constraint in terms of the T’
variables and T operators changes. But otherwise it does
not seem to be an impossible task to redo everything for a
general gauge group.

I would like to thank Ingemar Bengtsson for numerous
discussions.
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