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Causally syinning anyonic cosmic string
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We present new gravitational anyonic solutions of (2+ 1)-dimensional Einstein-Chem-Simons electro-
dynamics which can describe spinning cosmic strings made of fermions, and discuss the physical impli-

cations of the solutions. Remarkably we show that a spinning string which does not allow any closed
timelike curves, and thus does not violate causality, is possible.
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Physics in 2+1 dimensions has been known to have
many interesting features. For instance, in a (2+1)-
dimensional space-time an anyonic elementary particle is
possible which carries a fractional angular momentum
[1,2]. This is because the rotation group in the two-
dimensional space is U(1), whose representation is
characterized by an arbitrary real number. A well-
known example of the anyon is a charge-flux composite
state in (2+1}-dimensional electrodynamics [2,3]. The
existence of anyons which obey fractional statistics im-
plies the existence of new physics in (2+1)-dimensional
space-time. Indeed, the anyons are expected to play a
crucial role in our understanding of the fractional quan-
tum Hall effect [4] and possibly high-T, superconductivi-
ty [5].

Recently it has been pointed out that (2+ 1)-
dimensional gravitation allows gravitational anyons [6,7].
In a (2+ 1}-dimensional space-time a point particle bound
to a spinning gravitational point source forms a gravita-
tional anyon. This is because the spin-energy composite
state in gravitation behaves very much like the charge-
flux composite state in electrodynamics. Indeed, one can
easily show that the angular momentum of a point parti-
cle with energy E (in units of the gravitational constant)
moving around a massless spinning gravitational point
source is given by [7]

where n is an integer and 0. is the spin of the gravitational
source. The result should be compared with the well-
known angular momentum of a charge-flux composite
state in electrodynamics [2]:

correspondence implies the existence of gravitational
monopoles which can radically generalize Einstein's
theory of gravitation [10].

So far, however, a self-consistent exact solution of
Einstein s theory which can describe a regular gravita-
tional anyon has been missing. The diSculty of finding
such a solution is twofold. First, in (2+1}-dimensional
space-time the gravitational attraction between two point
particles is in general too weak to combine them into a
bound state. This can be understood from the fact that a
gravitational point source in 2+1 dimensions does not
admit a closed geodesic in general. Second, any regular
spin-energy composite solution is most likely to violate
causality, because the spinning gravitational point source
necessarily has closed timelike curves around the source
[11,12]. So it is a nontrivial task to find a gravitationally
coupled spin-energy composite state which does not
violate causality. The purpose of this Rapid Communica-
tion is to present such a solution. We consider the
(2+1)-dimensional Chem-Simons electrodynamics cou-
pled to Einstein s gravitation, and obtain a set of causally
spinning gravitational anyons which also carries nonvan-
ishing electromagnetic charge and flux. Our result clear-
ly demonstrates the fact that the existence of a closed
timelike curve is not a necessity for a spinning cosmic
string. This tells us that any suggestion to dismiss the
spinning cosmic strings as unphysical is ill conceived and
unfounded.

Let us start from the following Lagrangian of
Einstein-Chem-Simons electrodynamics:

I=n- q4
2m.

' (2)
+m%% ——(%%)2

2
(3)

where q is the electric charge and @ is the magnetic lux.
This shows that energy and spin in gravitation play the
role of electric charge and magnetic flux in electrodynam-
ics. Exactly the same correspondence can be established
when one compares the gravitational scattering of a neu-
tral test particle around a spinning string [8] with the
Aharonov-Bohm scattering of an electron around a mag-
netic vortex [9]. This correspondence is not accidental,
and has a deep physi. cal implication. In particular, the

where ~, p, and A. are the gravitational constant, the
Chem-Simons coupling constant, and the fermionic quar-
tic coupling constant, and V& is the generally and gauge-
covariant derivative. Notice that when the Chern-
Simons interaction is induced by the quantum fluctua-
tion, one must have p, =Re /2m [13]. But in the follow-
ing we will keep ls arbitrary to be general. From (3) one
has the equations of motion
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+et'"t'F„=e %y "tIt, (4)

where

T„„=— (i—tIty „V„tIt+i tIty „V&tIt )
2

(V,+i V q)$~ =0,
where

~,. = 2m.e;~BJlnp

+g„„ i%y V~4 m—+tIt+ —(%%)
Km cr; o, ;

V', =8 +i + + +eA,
2m' 4m

[i—%'y„V„tIt+i%'y„V„tIt+g„„A(tlt+) ] .

Notice that in a coordinate basis (BtB, ) the most gen-
eral stationary metric can be written as

gpv=

—N 2 N 0.K

277

2
K 2 K 2N; r;.— N

2m 4~

(5)

where N, o;, and y;1 (i,j=1,2) are functions of the space
coordinates only. But in the block-diagonal basis (I}tet; )

[14]

V 1nF+=+2(trm +e /p, )F+, (10)

where V is the Laplacian of flat two-dimensional space.
The equation is known to admit a nonsingular nontrivial
solution when k(am+e /p) )0.

To obtain explicit solutions we further assume rota-
tional symmetry, and let

p=p(r), a; =a(r)B,.q&, cr; =o (r)B,tp, .

P~ =e '"~f~(r), A—;
= A (r)B;tp,

where r and g are the polar coordinates. Then with the
boundary condition

and e;J is the two-dimensional totally antisymmetric ten-
sor field normalized by e&z=&dety. Note that
F+ =p I((}+I

satisfies the Liouville equation

~t ~tt ~i ~i aint

where

(6)
a(0)=tr(0}=A (0)=0, (12)

we obtain the following solutions when +p/
(pt~m +e ))0:

[f„f,]=0, [$„$]=—II;,I}t,

the metric (5) can be written as

—N 0

To obtain the desired solutions we assume that the
two-dimensional space is conformally flat, and put

where 5, is the flat two-dimensional metric. Now, with

47TPKm (n+1)
(r/a)'"+'

pttm +e (r/a) "+ +1
27Tp

(n +1)
(r/a)'"+'

ptrm +e (r/a) "+ +1
2e ( r /a )

2 n +2

(n+1)
porn +e (r/a) "+ +1eA =+

=2 +
b

p
pKm +e

1/2 (r/a)'
[(r/a)2n +2~ 1]1—c

where a and b are positive integration constants,

pKmC—
pKm +e

(13)

N =1, A„=(0,A, (x))

0
0

L

the equation of motion (4) is reduced to [15]

and n is a non-negative integer. Notice that since the
regularity at the origin requires f+(0) to be finite, n must

be non-negative.
In addition to the regular solution (13}we can obtain a

more general solution if we allow a singularity at the ori-

gin. With a singular point source at the origin we can
choose the boundary condition [15]

and

KE =+m, A, =—
8 a(0) =ao, o (0)=cro, A (0)= Ao .

With this we obtain the solutions

(14)
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4&p,Kma —ao= 2ya
IMam +e
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2'f7'
2yk

@Km +e

e(A —Ap)=+ 2yk
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(15)

' 1/2

f~=- p
b pa'm +e

where

r~+ao/2n 1—

[(r/a) ++ 1]'

+moo o
y~=n keAo+1+

Notice that for the singular solutions the proper bound-
ary condition at the origin must satisfy the condition
f+ (0)=0. Furthermore, consistency requires that
pf+ (0} must be finite. So we must have the following
constraint for yz (when ap+0):

aor*»—2' '

Obviously the solution reduces to the regular solution
(13) when ap=a'p= Ap=0. The solution (15) is summa-
rized in Fig. 1.

Now we discuss the physical meaning of the parame-
ters of solution (15). First notice that the parameter a
determines the size of the solution, and b determines the
amplitude of the fermionic wave function. Next, the pa-
rameter Ao describes a point magnetic Aux 2m. Ao at the
origin. This is because the magnetic flux 4(r) passing
through the area encircled by the radius r is given by

Now the total energy 8 and the total angular momentum
J of the solution (15) are determined by the asymptotic
form of the metric:1;&i 1 4apm ~o„dx' ' =—a„= y++

ppcm +e
(19)

J p p
—~ dx O'I. —0' ~ —

2 y y + cKo .
pram +e

Notice that a„, which determines the total energy, is
nothing but the deficit angle at infinity. So when solution
(15) has zero total energy, which is possible if
ao= —4~cy+, the solution can describe an asymptotical-

ly flat but spinning Minkowski space-time.
Recently the possibility of the violation of causality

around cosmic strings has been discussed by many au-
thors [11,12]. It is generally believed that the existence of
closed timelike curves and thus a possible violation of
causality is a generic feature of (2+1}-dimensional spin-
ning space-time and spinning cosmic strings. However,
our result shows that this is not necessarily the case. To
see this notice that solution (15) does not allow any closed
timelike curves if

C
4L

I

I
I

I

4(r)= I d x~ye'JB;AJ

=2m dr', =2m A (r) ., dA (r')
df

The parameters ap and op describe the point mass ap/»
and the point spin uo at the origin. This is so because,
without the fermion field, Eq. (9) describes nothing but a
spinning cone with a singular magnetic flux at the origin.

To discuss the physical content of solution (15) we cal-
culate various quantities carried by the solution. First
the total magnetic flux is given by

I
I

I
I

I I

2~3 „=+ ye+2m Ao .4'
pram +e (17}

This means that the unit of the magnetic flux quanta is
given by (1—c)4m/e. But remember that in flat space-
time the unit of the magnetic flux quanta of the anyonic
solution of Chem-Simons electrodynamics is given by
4n/e [3]. Clearly the extra factor (1—c) is due to the
gravitational effect. The electric charge q is given by the
well-known Chem-Simons relation

FIG. 1. The causally spinning cosmic strings: (a) shows the
regular solutions and (b) shows the singular solutions. The dot-
ted lines describe the asymptotic structure of (2+ 1)-dimensional
space-time.
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(r/a)
pr — o =b

2tr [( / )2ra+1]c

KC70 C+—x~2' m

2y* )0. (20)
(r/a) +1

The condition at r=0 requires ao) 2m. when on+0. On
the other hand the condition at r = 00 requires a„~2m..
So causality requires o p=0 when ap (2m. But aside from
this restriction the condition (20) can easily be satisfied
with o „%0,if the parameter b is sufficiently large. This
means that a cosmic spinning string which does not violate
causality is possible. Indeed, the result shows that one
can always restore the causality of the spinning string by
smearing out and re gularizing the singular spinning
source at the origin.

We conclude with the following remarks.
(1) The analytic solution (15) is possible only when the

fermion field has a quartic interaction with a particular
coupling strength A, =tc/8. When A,Atc/8 there may still
be a solution, but the analytic solution (15) requires

A, =K/8.
(2) In the limit as tc goes to zero, the above solution

reduces to a solution of Chem-Simons electrodynamics
on a spinning cone. This is so because even when K=O,
up and o.

p could still become arbitrary constants. If we
further restrict the solution with up=0. 0=0 the solution
reduces to the known solution [3] of Chem-Simons elec-
trodynamics of a fiat (2+ 1)-dimensional space-time.

(3) In this paper we have discussed for simplicity only
the rotationally symmetric solutions which could de-
scribe an anyonic particle located at the origin. Howev-
er, one could construct a more general solution which de-
scribes n anyonic particles located at different points.
Indeed, the Liouville equation (10) guarantees the ex-
istence of such a solution.

A more detailed discussion on the subject will be pub-
lished elsewhere [15].
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