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Origin of the soft pT spectra
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In high-energy collisions, the soft pT spectra for produced mesons contain information on the motion
of the quarks and antiquarks which form these mesons. We extract this information in the context of the
flux-tube model with Schwinger s mechanism for particle production. We solve the Dirac equation for
quarks (and antiquarks) inside a flux tube, described as an infinitely long cylinder of radius ro, with a uni-
form electric field ~ inside it. We calculate the production rate of quarks, antiquarks, and pions as a
function of pT. We study first a sharp transverse boundary, and find that the result deviates from the ex-
perimental soft pT spectra, with its characteristic exponential fall. We therefore introduce a scalar po-
tential which varies smoothly in the radial direction. With simplifying assumptions we show how the ex-
perimental pT spectra of pions, created in p-p collisions, determine the transverse wave function and the
scalar potential that would produce it. The classical turning point for this potential is of the order of 0.6
fm. However, the potential flattens out considerably beyond that point. The wave function decays as
r ' and there appears to be a considerable excursion of the quark into regions far beyond the classical
turning point.

PACS number(s): 13.85.Ni, 12.40.Aa, 25.75.+r

I. INTRODUCTION

In the process of particle production, the origin of the
transverse momentum distribution for soft particles
(pT ~2.5 GeV/c) remains one of the unsolved puzzles.
In the simple model of the Schwinger mechanism [1,2],
one often assumes capacitor plates which have an infinite
extension in the transverse directions [3,4]. The pro-
duced quarks and antiquarks have a transverse momen-

tum pT and hence a transverse mass mT="~ mo+pT,2 2

where mo is the rest mass of the quark. Thus, the trans-
verse momentum acts as a mass which has to tunnel
through a barrier in the longitudinal direction to lead to
the production of qq pairs [1,3]. The produced q's will
later combine with q s to form the observed mesons. The
tunneling of the transverse mass gives rise to a probabili-
ty distribution for the transverse momentum of the
quarks in the form

exp[ —~(pT+mo )/a. ] .

Although the root-mean-squared value of the transverse
momentum of the observed pions (-0.37 GeV/c) is ap-
proximately consistent with a simple estimate from Eq.
(1.1) [(&2nlm. )-0.35 GeV/c] with a string tension of
~=1 GeV/fm, there are many conceptual problems with
such an explanation. First, the observed distribution
[5,6] is better described in terms of an exponential func-
tion exp( pT /T) or exp( m—T /T). This diff—ers from the
Gaussian shape (1.1) expected from infinite parallel
plates. Second, the concept of confinement suggests a
color electric Aux in a limited region in the transverse
direction, so the treatment of two parallel plates of
infinite extension is not appropriate. The effects of a
transverse boundary have been studied by Martin and
Vautherin [7]. Using the Schwinger proper time method

and the Balian-Bloch multiple reflection expansion of
Green's functions, they calculated the pair production in
a unified electric field confined in a limited volume in
space. Their result, however, is for the overall produc-
tion rate, excluding the detailed momentum profile.

The transverse momentum distribution of the pro-
duced particles has well been reviewed [6]. In several pa-
pers, the confining radial potential is taken to be that of
the MIT bag model, or an equivalent boundary condition.
Pavel and Brink [8] have solved the Dirac equation by
separating it into longitudinal and transverse com-
ponents. Although they introduced a spatially dependent
mass term, it was applied to a square well with a sharp
boundary. In their work, and also in the work of
Schonfeld et al. [9] and Sailer et al. [10], they had a
boundary condition that gave a particle distribution of
oscillating Bessel functions of the transverse momentum.
The absence of such oscillations in experimental data
[5,6] raises the question of whether a bag model descrip-
tion for the transverse direction is realistic or not.

It is clear from the outset that the pT spectra of soft
particles reveal the motion of the produced particles in
the transverse degrees of freedom. This distribution can
be used to provide information on the motion of the con-
stituents of the mesons. Let us assume that the observed
mesons, such as pions, come from the combination of a
quark and an antiquark. If so, the distribution of the ob-
served pion comes from the convolution of the momen-
tum of the quark with that of the antiquark. In this pa-
per, we show that the qq pairs are produced mainly in
their ground state of their transverse degrees of freedom.
Assuming they stay in that state, the pT spectra of pions
provide direct information on the transverse momentum
distribution of q and q. From this information, we can
infer the shape of the effective potential that the quark
and the antiquark experience during the process of their
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FIG. 1. Schematic picture of the flux tube, as a cylinder of
length L and radius ro. Inside there is a uniform field ~. Out-

side the field is zero.

the projectile hits the target a quark from one nucleon
combines with a diquark from the other to form a flux
tube. Two such tubes will be formed in each nucleon-
nucleon collision. The leading quark-diquark pairs act
like qq strings and provide an external color field between
them where new qq pairs can be produced [3]. We shall
assume that the field created by the leading quark and an-
tiquark (or diquark) can be approximated by an Abelian
gauge field A „. Quarks and antiquarks are spontaneous-

ly produced in this field when a quark tunnels from the
negative energy continuum to the positive one. The in-

teraction potential is gA„, where g is the charge which is

positive for a quark and negative for an antiquark. We
wish to confine both quarks and antiquarks with the same
transverse effective potential (with the same sign). It is

therefore proper to introduce an external scalar potential
[8] m (r) which contains the rest mass of the quark and
does not distinguish between quarks and antiquarks. The
Dirac equation for the quark is

[y"(p„—gA„)—m]/=0 . (2.1)

production.
We carry out such a program with the soft pz- spectra

for nucleon-nucleon collisions and find the shape of the
effective potential for the quark and antiquark. Not
surprisingly, the potential one extracts rise sharply in the
region inside the "flux tube. " The classical turning point
for the quark is of the order of 0.6 fm. The motion to the
region beyond the classical turning point is, however,
considerable, as the effective potential flattens out at large
values of transverse distances, and the height of the po-
tential above the effective energy of the quark is not
large. In the radial cylindrical coordinate r, the wave

function goes like r for large r.
In our model the flux-tube is described as a cylinder of

length L and of radius ro, with a uniform electric field ~
inside it and zero everywhere outside (see Fig. 1). In the
next section we define the problem, and apply the separa-
tion of the Dirac equation into longitudinal and trans-
verse components, as shown by Pavel and Brink [8]. The
longitudinal equation is the same equation as for the
one-dimensional problem of two infinite capacitor plates,
previously solved by Wang and Wong [4]. In this paper,
we are interested in the transverse direction only. In Sec.
III we study the radial equation with a square well poten-
tial, given by a small mass inside the tube and an infinite
mass outside it. Such a potential leads to a boundary
condition equivalent to the one given by the MIT bag
model. We show that this result does not agree with the
experimental pz spectra. In Sec. IV we allow the scalar
potential to vary smoothly with the radial coordinate
m =m (r). We show how the soft pr spectra can be used

to obtain the ground-state wave function and the trans-
verse characteristics of the potential. In Sec. V we su-

marize and present our conclusions.

II. SEPARATING THE DIRAC EQUATION TO
LONGITUDINAL AND TRANSVERSE DIRECTIONS

In applying the Schwinger particle production mecha-
nism to nucleon-nucleon collisions, we envisage that after

Let us choose the gauge so that A=O and Ao= Ao(z).
In that case Eq. (2.1) becomes

[a p+gAO(z)+Pm (r)]Q=EQ . (2.2)

(2.3)

Inserting these into the Dirac equation, one can intro-
duce the separation constant m *, so that the equation
decouple to the form [8]

—(m' —m) p p, (r, cd)

—(m '+I ) p2(r, p)
=0, (2.4)

where p+ =p~+ip~, and

(gAO E+m')—pz cp, (E,z)

pz (gAo E —m *) cp&(—E,z)
=0.

(2.5)

For the longitudinal part, let us write

y, =cr, (E,z)+cr2(E, z),
y~=cr, (E,z) —cr2(E, z) .

In this case, Eq. (2.5) becomes

(2.6)

[gAO(z) —E]+p,
[gA 0(z) —E]—p.

o, (E,z)

cr2(E, z)
=0.

(2.7a,b)

Inserting (2.7a) into (2.7b) and vice versa one obtains

Separation of variables is possible if one assumes the form

, (r, y)q, (E,z)

p2(r, g)cp2(E, z)

P3 pl(r 0)q2(E z)

P4 p2(» 4)q»«z)
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[IgA, (z) —E]'+igB, A, (z)+8',—m "]~,=0 . (2.8)

The equation for o z is just the complex conjugate of (2.8).
Therefore, if one solution corresponds to an incoming

wave, the other solution corresponds to an outgoing
wave. Equation (2.8) is identical to the one-dimensional
problem for infinitely parallel plates solved by Wang and
Wong [4], replacing mT with m*, and choosing the vec-
tor potential

0 for z & L/—2 (region I),
g Ac(z) = —a(z +L /2) for L /2 —z L /2 (region II),

aL —for L/2&z (region III) .
(2.9)

In the regions where Ao is constant (I and III), the solu-
tion of (2.8) is

p, R,„(r)e'"~, p2=iR2, (r)e' +"~, v=0, +1,+2, . . . .

(2.16)
cr i(z) =exp(ik, z), cr~(z) =exp( ik—,z),

with the dispersion relation

(gA E)2=m—' +k

(2.10)

(2.11)

This gives the coupled equations

+ R2„(r)+[m (r) m "—]R i„(r)=0, (2.17a)
a v+1
Br r

where Ao is diFerent for region I and region III. In re-
gion II the solution is a hypergeometric function given by
Wang and Wong [4]. Knowing the wave function, it is
possible to calculate the rate of pair production. This
was also calculated [4] and shown to be equivalent to the
pair production rate obtained first by Schwinger [1]. The
transmission rate for L ~ 00 is

8 v
R &„(r)+[m (r)+m "]Rz„(r)=0 . (2.17b)

III. SQUARE WELL BOUNDARY CONDITIONS

Equation (2.17) is the radial equation to be solved for a
given scalar potential m (r).

~m*
i Ti exp

and the pair production rate is

dN
d4x

2N,' afdp. r prln(1 —e ' "),

(2.12)

(2.13)

This is the case solved by Pavel and Brink [8] and also
by Schonfeld et al. [9] and Sailer et al. [10]. In this case,
the boundary condition is m(r)=ma for r &ro, where
m 0 is the current quark mass, and m ( r )=M ~ ao for
r ) ro. Solving Eqs. (2.17a) and (2.17b) on the boundary
[8] for r =ra+ e and r =ra egives th—e condition

where 2N, is the degeneracy, as we have (2s+1)N, for
spin s =

—,
' particles of color degeneracy N, . Schwinger's

calculation has been repeated and generalized for time-
dependent fields by Brezin and Itzykson [2] and by
Herrmann and Knoll [11]. It was shown to be useful for
particle production in @CD by Casher et al. [3].

Let us now turn to the radial equation. The explicit
form of (2.4) is

Ri, (ro)=R2, (ro) . (3.1)

One can solve Eq. (2.17) with m (r) =ma for r & ro The.
solution is

R,„(r)=A, J„(Cr), Rz„(r)= A2J„+((Cr), (3.2)

where J are the Bessel functions of the first kind of order
v. Equation (3.2) solves (2.17) with the dispersion rela-
tion [8]

p p2(r, g)+ [m (r) —m *]p,(r, P) =0,
p+p&(r, P) [m (r)+—m ]pz(r, P) =0, (2.14)

and

m' =C +m ~ m* =+QC +m (3.3)

where
C+=+

'1/ C+ +mo +ma

QC++mo +mo=+
C+

(2.15)

P Bx
8

l
By

Defining x+ =—C+ro, the boundary condition (3.1) with
the assertion (3.2) and (3.3) and (3.4) implies

The angular and radial dependence can be further
separated with the assertion

J„+,(x+)=+f(x+)J„(x~),
where

(3.5)
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Qx +(moro) +morof (x)=

Here we have a discrete set of allowed values for C, +
where v=0, 1,2, . . . correspond to the azimuthal quan-
tum number, and the s correspond to the sth solutions of
(3.5) for each v. The + correspond to the two solutions

of (3.3). The full wave function is given by (2.3). The lon-
gitudinal part is given by (2.6). We limit ourselves to the
incoming wave o &. The azimuthal part is given by (2.16),
and the radial part for this particular square-mell bound-
ary condition is given by (3.2). Hence the allowed wave
functions, as derived by Pavel and Brink [8], are

Iv+1/2, s, +(Ev, s, + & Cv, s, + }

A )(C„,+ )J„(C„,+r)e "~

i A—2(C, , + )J„+,(C, , +r)e""+"&

A, (C, , + )J„(C,, +r)e "~

iA~(C, , +)J„+)(C„,+r)e"

cr)(C, , +,E„,+,z) . (3.6)

(The v+ 1/2 is just a label associated with the angular momentum of that function [8].) This result becomes interesting
only after performing a Fourier transform onto momentum space. This was realized by Schonfeld et al. [9] and Sailer
et al. [10]. Let us defin

ro
cP, , +(p&r)= I dr r I dPe J„(C„,+r)e'" (3.7)

Equation (3.7) becomes
fp

cF, , +(prro)= dr rJ, (prr)J, (C, , +r)

2
pT Cvs+

C.,.+J.(prro)J. +i(C.,.+ro)+pTJ.+i(pTro)J (C., s, +ro)l . (3.8)

This result was obtained by Schonfeld et al. [9] and Sailer et al. [10],and also the transformed wave function

g +)~2,,, +(E + C +)=

A &(C.„,+ )~.„,+(prro)

tAz(—C»+)ct",+&, +(pTro}

A, (C, , +)d", , +(prro)

tA~(C„, +)8,+, , +(prro)

cr, (C„,+,E, , +,z) . (3.9)

These wave functions have to be normalized, but we shall ignore the normalization for the time being. The current j,
becomes

0 0.,
J.=fr.f=tl' a ()

r

=2 IA)+, ,, +(pTro)l'+I»+„ i, , (pTro)l' la)(E„,, +, )l'z.
J

(3.10)

When z ~~, the factor
~
cr, ~

is just the transmission probability
~
T~ for a normalized wave coming from z ~ —~.

For an infinitely long cylinder (L ~ ~ ) it will have the form (2.12). We remind the reader that the c number m in

(2.12) is each one of the eigenvalues of the coupled radial equations (2.17a}and (2.17b). Once derived, they will each be

substituted in the longitudinal equation (2.8},which is itself an eigenvalue equation for the eigenvalues E. The probabil-

ity of producing a q and a q is proportional to the current [4]

Comparing to the case of two parallel plates with infinite transverse extension [4], the current is now multiplied by a
new factor which previously was equal to 1. Therefore,

r

P„,+~ ~T~ ( A, cF, , +~ +
~ Az/ +, , +~ Xnormalization . (3.12)

The ratio between A
&

and A2 is given by (3.3)—(3.5). The probability of creating a pair out of the vacuum (in the area
b,x by) will be given by
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P„,z= —ln 1 —exp '—n(C„,~+I ) 1

hx hy

XJV'„,'+
I
J +&(C„,~rp)I ld"„, +(pprp)l'+ I J„(C„,~rp)l'I&„+), , g(pTrp)l' (3.13)

The total number of pairs produced out of the vacuum will be

dpx dpy dpz
dN =phase space X probability =2N, dx dy dz g P, , ~ .

2% 21K 2K
(3.14)

However dz =U, dt =p, dt /E =dp, dz =dp, (p, /E)dt =dE dr. For a constant field z, dE =~ dz and dp„dp~ =2mdprpr

and, therefore,

dN

dt dz pr dpT
=2N, g P„+= 2N, — g ln 1 —exp'—n(C„,g+m )

I J„+)(C ...g&p)I'I+..., g(primp)l

+ IJ„(C,, harp)l'Idt, +g„,g(prrp)l' ', (3.15a)

where

JV„,+= J 2n dprpr I J,+&(C„,+rp)l IP„,+(prrp)l + IJ„(C y&p)l I+ +],&, y(Pz'&p)l
0

(3.15b)

In Appendix A we show that in the limit where
r0~ 00, we recover the Schwinger expression. This was
not shown by Pavel and Brink [8], nor by Schonfeld et al.
[9] who derived the limit only for the total rate integrated
over all momentum space. The result (3.15) is presented
in Fig. 2 with v= 1 GeV/fm. A different value of a would
change the overall cross section, but not the shape of the

pT spectra. This is due to the exponential weight in
(3.15), which will make the state with the lowest energy
dominant over all others. The high pT dependence falls
off like pr, as seen from (3.15) and (3.8). The oscilla-
tions in Fig. 2 are characteristic of Bessel functions.
Note that Eq. (3.15) and Fig. 2 are for the creation rate of
pairs of quarks and antiquarks, and not of pions. Never-
theless, combining the momenta of a quark and an anti-
quark to form a pion (see next section), we will not be
able to produce the typical exp( pT/T) falloff. T—he low

pT has a Gaussian shape, and the high pT has oscillations.
This indicates that the square well is unrealistic as a
quantitative description of the transverse motion of the
produced quarks.

IV. THE SCALAR POTENTIAL

The soft pT spectra of the mesons contain information
on the transverse motion of the quarks and antiquarks
which form them. In the preceding section, we learned
that the pT distribution of those quarks is related to their
radial wave function inside the fiux tube. Knowing the
wave function, we can find out the potential that pro-
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FIG. 2. The rate of creating q's and q s with a sharp bound-
ary at r =ro. A different value of a. will not change the general
shape (see text). The wiggles result from the Bessel function Jo.

duces it. There is no a priori reason to justify an effective

potential with a sharp boundary. %'e therefore introduce

a smoothly varying scalar potential m (r). Changing the
potential will result in a change of the wave function and
the pr spectra. By inserting (2.17b) into (2.17a) and vice
versa, we obtain the equations
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1
R, {r)+— R,„(r)——R, (r)

+[m* —m (r)]Ri (r)= —R2 (r) m(r)
a

(4.1)a' 1 a (v+1)'
R2 (r)+ — R2, (r) — Rz (r)

+[m* —m (r)]R&,(r)= —Ri„(r) m(r) .
C}

Br
Equations (4.1) are like two Schrodinger equations with
an effective potential of the form m (r) and "energy ei-
genvalues" equal to m' . This is not entirely correct
since the equations are coupled, but if one neglects the
m'(r) on the right-hand sides, the equations decouple. A
scalar potential is a reasonable effective potential because
it acts on both the quarks and antiquarks in the same
manner. In fact, the electric field ~ should not be uni-
form along the radial axis, and it should vary smoothly
unless there is "perfect confinement. " Furthermore, in-

corporating the gluons with all the components of the
Yang-Mills fields is also missing here. We therefore allow
ourselves to include a space-dependent mass, which to
some extent may account for effects that were left out.

Let us now introduce a general scalar potential m (r)
and follow the same procedure as in the previous section.
Substituting (2.16) into the wave function (2.3), and also
(2.6}with o, only, the wave function is given by

R,„(r)e' ~

This is a generalization of Eq. (3.6). Just as in the previ-
ous section, v is the azimuthal quantum number s, corre-
sponds to the number of nodes, and + to be positive and
negative values of m'. After a Fourier transform the
wave function will be

0 +in, +(E„,+)=
i%z„(pT )e "+"&

A „(pT )e "~

cq ( )
i(v+1)$

o,(E„,+,z) .

(4.3)

0 0,
J, =fr, W=W'

=2 lx ., g(p )I'+l&z, „,*(pr)l' I~i(&.,, +,z)l'

(4.4)

This more general relation replaces Eq. (3.9}. The
current j, given by (3.10) for the square well is now given
by

fv+1/2, s, +(E , +v)s

iR (r—)e "+"~
2v

R,„(r)e'"~

iR (r)e'"")&
2v

o,(E, , +,z) .

(4.2)

Suppose we solve (4.1) and find all the solutions for
R,„(r), R2„(r), and m *. Comparing (4.4) and (3.10), and
examining (2.12), (2.13) and (3.3), the production rate for
the quarks (and antiquarks) (3.15) becomes

dN
2N, 2

g—ln 1 —exp
dt dz pTdpT 4~,+

ili 2~m, +
l&i„,g(pr }I'+l&2,, „g(pT }I' (4.5)

dN
&,(p&) ~ I&(prro)l',

t zpT p
(4.6)

where A(pT)=%(pr) is the (two-dimensional) Fourier
transform of R (r)e "~ Note th. at from now on we shall
use script characters such as A(pr) for Fourier trans-
forms to momentum space of functions R (r)e'"~ in
configuration space carrying the same capital italic letter.
We do not know what m (r) should be in (4.1). On the
other hand, we know the pion pT spectra from experi-
ment. Assuming that a pion is a combination of quark
and an antiquark, we can obtain the pT spectra for the
quarks. For simplicity, we neglect the time evolution, the
hadronization, and several other effects. Since (4.5) con-
tains the Fourier transform % (pT), one can Fourier
transform backwards to find R,(r)e' ~, and find the sca-
lar potential m (r) which will fit the data [5]. This is gen-
erally not possible, since (4.5) contains a sum. It will only
be possible if there is a dominant term, as there is in the
case of a square well. In that case

where A:—A, , 0, 0+ and P (pr) is the probability
for creating a quark with transverse momentum pT,
which is equal to the probability for creating an anti-
quark with equal transverse momentum P (pT). The

q

state Iv=0; s =0; + ) can be assumed dominant, since its
corresponding energy eigenvalue m* will be the lowest,
and it appears in the exponent as seen from (2.12}.

The rate in which the pions are created with a given pr
is proportional to the probability to find such a pion:

dN„(pT ) ~ "P (pT) .
dt dz pT dpT

(4.7)

This probability, denoted here as P (pr ), is given by the
convolution of probabilities for producing a quark and an
antiquark whose transverse momenta add to the pT of
that given pion. More explicitly
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'P (PT) f f dpTi, dpT2 p (PT, 1)~;(PT2) R(r}~y l(y[y[cP{p)]I
1 /2)1 /2 (4.13)

Xfi(PT PT, 1 PT2)G(~PT, 1 PT2~)

(4.8)

1 lPT 1'I'
Pq(r)= dpT, e T' P(PT, ), (4.9a)

1 /pT
dPT2e ' P(PT2) (4.9b)

and

P (pT)—= fdre P (r),T
277

then

(4.9c)

where the coalescence function G(~PT, —PT2~) specifies
the probability for a quark and an antiquark with a trans-
verse momentum difference pT &

—
pT 2 to form a pion. In

this paper we assume the binding of the quark and anti-
quark to form a pion arises from a longitudinal "yo-yo"
motion [12], independent of the transverse direction.
Therefore we take 6= 1. (Other forms of G can be intro-
duced if desired. ) The pion distribution can then be eval-
uated analytically by applying the Faltung (folding)
theorem which states that if we define

Equations (4.12) and (4.13) constitute some of the main
results of the present investigation. They provide a direct
transcription from the pT spectra to the transverse
ground-state wave function of the quark, and vice versa.

If we take the data of Alper et al. [5] for p +p ~n.+X
at &s =30.6 GeV and 8, =89, the pT distribution can
be fit very well with the parametrization

1 mTP (pT) ~
z exp

(mT)"

mT= v pT+m2 2
(4.14)

where m =140 MeV is the mass of the pion. The best
parametrization turned out to be T, =290 MeV and
A, =1.5. This fit of the data [5] is presented in Fig. 3.
Note that T, is not the usual "temperature, " since out fit
is difFerent from the usual exp( —pT/T). From this pa-
rametrization of P (pT), one can calculate the wave func-
tion R (r) by carrying out the series of operations de-
scribed by (4.13). Although it is not easy to form an ex-
act analytical evaluation of R (r), it can be carried out ap-
proximately, as shown in Appendix B. By taking the
modified Bessel function K„(z) as =&m. /2z e ', the wave
function turns out to be roughly (see Appendix B)

' 1/2

R (r)—= T[1 +( 2Tr) ]
P„(r)~2qrP (r)P (r) . (4.10)

for A. & 5/2, (4.15)

p(pT)=V[p(r)]= f dr rJ, (pTr)p(r) .
0

Consequently

(4.11a)

Let us denote the operation of taking the Fourier trans-
form by V, for example, P(pT)=V[P(r)], and inversely
P(r)=V '[P(pT)]. From (3.7), it is clear that the two-
dimensional Fourier transform of a function, P(r), with
angular dependence exp(ivy), is

and, for A, =1.5,

R (r)=&2/qrT, [1—+(2T, r) ] (4.16)

which shows that the wave function goes like r for
r ~~, a rather slow decay for large distances.

The approximation we used for the modified Bessel
function is good only for large z. Since the Fourier trans-
forrn involves the whole region of z, the result (4.15) pro-

P(pT )—:&[P(pT )]=f dpT pTJ (pTr)P(pT) (4.11b) P+P ~ 7T++X, s =30.6 GeV, e, m=
I I I I

I

I I I I

I

I I I I

I

I I

In our notation P (pT) =P[P (r)], and since the proba-
bility to create a quark is equal to that of creating an an-
tiquark, Eq. (4.10) implies that P (r) CC ~Pq(r) ~

. We shall
assume that, just as in the case for a square well, the
probability to create a quark is dominated by one wave
function. This is indicated in (4.6), which claims that ap-
proximately P (pT) ~ ~A(pT)~ . Here, %(pT) is the
ground-state wave function in momentum space, for
which v=0. Combining all these results, we find the pion
pT spectra P (pT) from R (r):

T

P (pT) ~ V V ' [V[R (r)]) . (412)

CL'0
b
'e

102

101

1oo

1O-'

10

10

1O-4

10
I I I I I I I I I I I I I I I I I

1 2 3

Qr inversely, if one is given the measured pT distribu-
tions, P (pT), one can find the ground-state wave func-
tion R (r) by applying the following set of operations:

pT (GeV)

FIG. 3. p-p data from Al per et al. , fit here with
mT exp( —mT/T, ) Xconst, having T, =200 MeV and A, =1.5.
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vides only a guide for the type of functions one expects
after the series of operation (4.13). Changing direction, it
is possible to start with R (r) and to obtain P„(pT), by
carrying out the operations in Eq. (4.12). We can use
R (r) as in (4.15), leaving the parameters T, and A, free to
fit the data. In other words, we replaced the approximate
sign in (4. 16) with an equality and chose

Wave Funct&on
I I ~ I I I I I

1

I I I

o.e

0.6

R (r) = I/2/rrTb [I+(2T~r) ]
"~ (4.17)

0.4
Doing this, we found that A, =1.5 agreed well with the
calculation, but T, in (4.16) could do with an adjustment,
and was replaced with the value Tb =200 MeV in (4.2) to
be the best fit of the data [5] (see Fig. 4). The difference
between T, and Tb gives an estimate of the error in (4.15)
and (4.16). The wave function (4.17), which leads to the
fit in Fig. 4, is given in Fig. 5.

Given the wave function, one can find out the potential
that would produce it. One may apply Eq. (4.1a),
neglecting m'(r) and taking v=O:

0.2

0.0
0 1.51

r (fm)
0.5

FIG. 5. The wave function R (r) given by (4.17) with Tb =200
MeV and A, =1.5 which produced the solid curve in Fig. 4. The
classical turning point r, around 0.57 fm is indicated by the ar-
row.m (r)=m +R (r)— r R(r) .

1 8 8
r Br Br

(4.18)

This gives
turning point for a sharp boundary. It is given by setting
V(r, ) —E=O in the Schrodinger equation. Since V E—
here corresponds to m (r) —m' [see Eq. (4.1)], the rela-
tion (4.20) will give

9 g (9/8 lI/4—)r , (2T—
& )

m (r)=m* +4
8 4 [ 2+(2T )

—2]2

(4.19)

r, = 1 1 =0.57 fm .
&9/2 —XT2 &3Tb

and for A. =1.5 (4.21)

3 3r Tb
m (r)=m* +—

4 [r~+(2T ) ~]2
(4.20)

which is the radial scalar potential for the Aux tube. The
potential (4.20) is given in Fig. 6.

The classical turning point r, can be interpreted as the
radius of the Aux tube, just as ro in Fig. 1 is the classical

Scalar Potential
+ & ~ 7T +X =30.6 GeV gc.m.=89 0. 1 I I I I

T
I I

I I I I I I I I I I I I

I

I

102 0.0

1O' -3/4
—0. 1

1oo
Tb =200 MeV

X=- 1.510

10

10

1O
—4

10 J ~J~~~~M ~~ J 3 ' i—0.5
0 1.50.5 1

r (fm)I I I I 1 I I I I 1 I I I I I

0 1 2 3
pT (Gev)

FIG. 6. The potential given by (4.20) with T& =200 MeV and
1=1.5. It can always be shifted by a constant, as only V —E
affects the wave function in the Schrodinger equation. The clas-

sical turning point r, around 0.57 fm is indicated by the arrow.

FIG. 4. The p-p data points from Alper et al. , and a solid

curve corresponding to the pT spectra calculated with the wave

function R (r) given by Eq. (4.17).

This value is reasonable for a qq string. For a general fit

of the form (4.14), the size of the string will be derived
from (4.19). In other words, a given experimenta! pT dis

tribution will imply an approximate size of the tube by the
prescription
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&
exp

(mr)'
Nfy

T, ' v'9/2 A—,T,

(4.22)

correct up to -30%.

V. SUMMARY AND CONCLUSIONS

Recognizing that the pz spectra of soft-produced
mesons contain information on the motion of the quarks
and antiquarks which form these mesons, we extract this
information in the context of the flux-tube model with
Schwinger's mechanism for particle production. This is
carried out by assuming that an observed pion comes
from combining a produced quark and a produced anti-
quark. Therefore, the transverse momentum distribution
of the observed pions comes from the convolution of the
transverse momenta distributions for the produced
quarks and the produced antiquarks.

We introduce a smoothly varying scalar potential and
consider the motion of a quark (or an antiquark) in a
strong external field. We calculate the production rate of
the quarks and pions as a function of pz. . We show how
the experimental pz spectra of pions produced in p-p col-
lisions can be used to determine the transverse wave func-
tion of the quark and vice versa, using Fourier trans-
forms. Based on some simplifying assumptions, the re-
sults are Eqs. (4.12) and (4.13). Knowing the transverse
wave functions we can obtain the effective potential that
would generate it.

From such a program, we find that the shape of the
effective potential in the interior region is what one
would expect. That is, the potential rises from the center
of the flux tube, and the classical turning point is of the
order of 0.6 fm, implying a classical size of the tube of
this magnitude. This size is close to the common esti-
mate [3) of -0.5 fm. Nevertheless, the effective potential
flattens out considerably beyond that point. For large r
the potential goes like —1/r Conseq. uently, the wave
function decays slowly in the transverse direction as
r for larger r, and extends much beyond the classical
turning point. The root-mean-square radius of the quark
wave function is 1.9 fm, which is considerably larger than
the classical turning point. Such a slow decay is a
surprising result. There appears to be a considerable
motion of the quarks in the transverse direction. In this
regard, it is of interest to note that the size of the tube
one obtains in a lattice gauge calculation is quite thick
[13], of the order of one-half the longitudinal length of
the tube for a system in equilibrium. The evidence
presented here may be the first indication of the extensive
transverse motion of the quarks, and is qualitatively con-

sistent with the lattice calculations in a different context.
In conclusion, our result indicates that the pz distribu-

tion of soft mesons originates from an effective potential
the quark experience in the transverse direction that al-
lows a substantial excursion of the quark into the classi-
cally forbidden region. That region is beyond 0.6 fm,
which is the classical size of our tube. The tube flux mod-
el, which was developed initially for p-p collision, has
since been applied to A-A collision at energies reached at
the BNL Relativistic Heavy Ion Collider (RHIC) [14].
The pz- distribution for A-A collisions is very similar to
p-p, and even with almost identical parameters [6].
Nucleus-nucleus collisions at zero-impact parameter have
at least two radial length scales: the radius of the elemen-
tary qq string (calculated here -0.6 fm) and the radius of
the colliding nuclei —1.2A ' fm. Nevertheless, these
processes occur at a "real" temperature of T=200 MeV,
which adds another length scale (1/T = 1 fm). A detailed
calculation of the pz- profile for A-A collisions is neces-
sary. It will help us to distinguish between the q-q string
effects and thermal effects, and could lead us to the con-
quest of the desired holy grail, i.e., the quark-gluon plas-
ma.
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liin J (x)—= V7T 7T
cos x

2 4
(Al)

and the expression in curly brackets in (3.15a) becomes
simply 8„,+(~). After setting ro +co in the inte—gral
(3.8), one obtains

18,+(~)= 5(pr —C„,g) .
T

(A2)

Substituting this result in (3.15), one notices that
& (pr —C„,+ ) =5(pr —C„,+ )5(0), and 5(0) is just a
volume element which disappears in the normalization in
the denominator of (3.15). Hence this will give use the
result
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APPENDIX A: RECOVERING THE
SCHWINGER LIMIT WHEN ro —+ ~

The Schwinger limit is Eq. (2.13) with m * replaced by
pr+m . That limit can be derived from (3.15) setting
rp~ ao as one should expect. In that case, one can use
the asymptotic form for the Bessel function, i.e.,

1/2

dN
lim 2N, g ln 1 ——exp-

r, -~ dt dzpz-dpi' 4~,+

m.(C,++m ) 5(pr —C„,+)
K 2mC, +

(A3)

All that is left now is to replace the discrete sum over all the coefficients found by Pavel and Brink [8] by a continuous
integral. This is easily done if one recognizes that the quantum number v is associated with an azimuthal angle as in
(2.16), and that the quantum number s counts the allowed frequencies necessary to form standing waves which satisfy
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the boundary condition. Therefore summing over v, s, + becomes an integral over all allowed momenta. When ro~ ~
the solutions are sufficiently dense to become an integral. At the limit where every point in momentum space is a solu-
tion, then g, +~Ax by X 2'fC dC, and consequently one recovers Schwinger's result [1]

dX
lim = 2N—, f dpi'. Prin 1 —exp-

fo~~ d x 4~

tr(pr+m )

(A4)

APPENDIX B: DERIVING THE WAVE FUNCTION FROM THE pz DISTRIBUTION

We shall evaluate the wave function R (r) in (4.15) from the experimental data [5] parametrized by (4.14), using the
relation (4.13). The multiple operation (4.13) is usually not possible analytically; however, in some cases it can be car-
ried out approximately. For the type of functions as in (4.14) it is useful to know the Hankel-Nicholson-type integrals

r"+'J„(ar)
dT

p ( 2+ 2)p+1
aI zv P

K, „(az) (a )0, Rez )0, —1&Rev&2Rep+3/2) .
2Pr(&+1)

(Bl)

For our purposes, using our notation

1

( 2+ T—2)P+1 "PrK „(PT/T.-» & 'IPrK „(PT/T—.)]"
( 2+ T —2)P+1

(82)

For large enough z, the modified Bessel functions are approximately

K„(z)=V tr/2ze (83)

for all p. We neglect the mass of the pion, mr=pal, and approximate cr(pr) as pr' Kz»z(pr/T, ). The order of p
at this level of approximation can always be chosen so that one can make use of Eq. (82). Applying formula (4.13), we

get

R (r)= 7 ~ p'r 'Ktg~+gn(pr/T, ) . (84)

This can be approximated again by using the exponential approximation for the modified Bessel functions, which will

imply that

QK„(z)=(z/2m. )' K„(z/2)

for any p and p'. Applying (82) again will produce Eq. (4.15).
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