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Diffractive elastic scattering and hadronic radii: Geometric and Pomeron approaches
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A parametrization based on geometric concepts is proposed for the spin-independent part of the am-

plitude A»(s, t) for elastic scattering of hadrons 1 and 2 at center-of-mass energies &s )20 GeV. The
dependence on the squared momentum transfer t is described by the form factors F;(t,R; (s)) for each
hadron and contain energy-dependent complex radii R, (s). Data on differential cross sections for pp, pp,
and mp as well as the energy dependence of the total cross section and the slope parameter are repro-
duced with few adjustable parameters. When our parametrization for A»(s, t) is compared to the one
from the Pomeron approach strong similarities emerge.

PACS number(s): 13.85.Dz, 12.40.Pp, 13.40.Fn, 13.85.Lg

I. INTRODUCTION

The understanding of elastic hadron-hadron scattering
is an iterative process within a triangle formed by experi-
ment, theory, and phenomenology, the driving force be-
ing the data. New experiments mostly at higher energies
led to refinements or even revisions of earlier descrip-
tions. In this paper we restrict ourselves to the energy re-
gime &s &20 GeV, where elastic scattering is called
"diffractive. " The data mainly come from experiments
performed at the CERN ISR, CERN SPS, and Fermilab
accelerators. As an introduction to the present status in
the field, we gave in Ref. [1] several reviews and confer-
ence proceedings. The theoretical concepts are Pomeron
exchange [2] and gluonic interactions [3]; the relation be-
tween both approaches is still being worked on [4]. Ex-
pressions for cross sections based on either theory con-
tain adjustable parameters. The phenomenological ap-
proaches [5—7] are mostly based on geometric concepts;
i.e., the size and shape of the colliding objects determine
the total and differential cross sections.

Within the triangle of data, theory, and phenomenolo-

gy, we present a refined phenomenological approach
based on geometric concepts. Its free parameters are
mostly related to effective energy-dependent complex ra-
dii. By comparing the amplitude in our geometric ap-
proach with the amplitude in the Pomeron parametriza-
tion, we are able to reduce the number of free parameters
in each of the approaches. In particular, we are able to
derive an expression for the slope of the Pomeron trajec-
tory. We present our approach in Sec. II, show the com-
parison with experiment in Sec. III, and relate it in Sec.
IV to the Pomeron picture.

II. GENERAL EXPRESSION
FOR THE SCATTERING AMPLITUDE

We denote by A &2(s, t) the spin-independent part of the
amplitude for elastic scattering of two hadrons 1 and 2 as
a function of the squared c.m. energy s and squared
momentum transfer t. The differential and total cross

sections derived from A &2(s, t) (spin being neglected) are

el

, (s, t)=—
2 iA, z(s, t)i (2.1)

aI2'(s)= ImA&z(s, 0) .
4m.

(2.2)

Frequently, we will also refer to the slope parameter at
t =0 defined by

CT 12
b, ~( )s= —ln (s, t )

dt dit[ t=O
(2.3)

Our phenomenologica1 approach for the amplitude
A, 2(s, t ) rests on two experimental observations: the re-
lation between the shape of the differential cross section
and hadronic form factors (Chou-Yang observation [5])
and a relation between total cross sections and slope pa-
rameters. We find a parametrization which incorporates
both relations and which is then generalized in order to
incorporate the requirements of analyticity.

A. Chou- Yang observation

When analyzing the differential cross sections for
high-energy pp collisions available at that time, Chou and
Yang [5] observed that the t dependence of the
differential elastic cross section is closely related to the
charge form factors F, (t ) i = 1,2 of the colliding hadrons.
Their observation may be written as

A»(s, t)~F, (t)F,(t) . (2.4)

which relation implies that the slope parameter b, z is re-
lated to the charge radii via

Q )1+ & rch )2) (2.6)

Although Eqs. (2.4)—(2.6) hold for any shape of F;(t), we

For small values of t the form factors are related to the
mean-squared charge radii ( r ), via

F, (t)=1+—,'(r,'„),t+O(t'),
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will rely on a specific functional dependence of F;(t),
which makes generalizations to complex energy-
dependent radii particularly easy. We will assume

(2.7)

where experiment (and quark-counting rules) suggests
n, =1 for mesons and n,. =2 for baryons. The only pa-
rameter A, is then directly related to the radius via

(2.8)

The particular shape [Eq. (2.7)] for the hadronic form fac-
tor F;(t) is rather arbitrary. In the notation of elec-
tromagnetic form factors, Eq. (2.7}corresponds to Gg(t),
but we retain only the functional form of GE(t) and con-
sider A; a free parameter. This approach differs from the
one by Donnachie and Landshoff [2], who postulate that
the Pomeron couples to the nucleon like a photon. Then
their hadronic form factors are identical to the elec-
tromagnetic ones.

B. Systematics o &2' versus b»

In previous papers [8] we have presented evidence for a
hitherto unnoticed relation between the total cross sec-
tion o';2'(s} and slope parameter b,2(s) for hadron-proton
collisions in the diffractive energy regime, i.e., &s -20
GeV. For pp and pp collisions, experiment shows a quad-
ratic relation between the total cross section and slope
parameter:

o"'(s)=ab (s) . (2.9)

C. Requirements of analyticity

We now combine the observations from Secs. II A and
II B and generalize them to obtain an expression for the
scattering amplitude A(s, t). In order to keep the formu-
las transparent, we drop the index 1,2 and deal with pp
and pp first. Within our geometric approach, we do not
distinguish between pp and pp; therefore, our amplitude
A(s, t) has C=+1. Differences between pp and pp,
which are seen in the total cross sections, real to imagi-
nary parts, and interference patterns in the dip regime,
are successfully accounted for by a small additional
C= —1 contribution to the amplitude A (s, t), as shown
in Ref. [2].

Since the experimental slope parameter b(s) depends
on energy, the relation (2.6) between b and the necessarily
energy-independent charge radii, which follows from the
Chou-Yang conjecture, )nust be modified. We dePne
energy-dependent hadronic radii by the equation

We have repeated the analysis of Ref. [8], including the
most recent data. Figure 1 shows the slope parameter
b(s) and [o"'(s)]' for pp and pp collisions as a function
of Ines. One observes straight lines with the same
slopes. This analysis is the basis of our claim for Eq.
(2.9). We note that Eq. (2.9) contradicts the scaling hy-
pothesis cr'" ~ b, postulated within the geometric scaling
model [7]. Equation (2.9) is a constraint which any
theoretical model has to reproduce and has serious conse-
quences for existing ones (cf. Sec. IV).

1.0—
F 0.9-

0.7—
CV

U'

I I I
)

I III) I I I ] ) III] I I I i I III (2.10)

Then Eq. (2.9) for the total cross section can be written in
terms of the hadronic radii as

o'"(s)=& [ ( r ) (s) ]' . (2.11)

The radii (r )(s) defined by hadronic reactions are not
far in value from the electromagnetic ones [8], and this
has been the reason for the Chou-Yang observation.
However, the hadronic radius (r2)(s) does not charac-
terize a static distribution of quarks and gluons in the
hadron, but should be viewed as an effective interaction
radius which increases with energy because more inelas-
tic channels open up and new degrees of freedom of the
colliding hadrons contribute.

We combine the concept of an energy-dependent ra-
dius with the shape of the t dependence of the scattering
amplitude [Eq. (2.4)] by postulating the parameter A in
the expression of the form factor F(t) to be energy depen-
dent and introduce the notation F(t, (r )(s)} to make
the energy dependence explicit. This generalization of
the t dependence of A (s, t) is an economical one. One
also might expect a change in the functional dependence
of F as s increases. But so far there is no need for a more
general shape as the comparison with the data shows
(Sec. III).

At the present state of our line of arguments, the
scattering amplitude is parametrized by
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FIG. 1. Energy dependence of ( r2 }(s),the real part of the in-
teraction radius squared, and of the total cross section and slope
parameter. Note that the straight lines for [cr'"(s)]'~ and b(s)
have the same slope.
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A(s, t)= AD[1 i—p(s)][(r )(s)F(t, (r )(s)}]

(2.12)

where

R, (s)=—,'b, ;(s)[1—i p, , (s) ]'~ (2. 19)

A (s,O) = AD[1 ip—(s)][(r )(s)]
4m

Analyticity of A (s, O) in s requires the quantity

(2.13)

where p(s) is the ratio of real to imaginary parts of the
forward-scattering amplitude. The amplitude A contains
the observations (2.4) and (2.9), but is not necessarily an
analytic function in s. The real functions (r )(s) and
p(s) are defined only for real (physical) values of s since
they are taken from experiment. In order to obtain an
analytical continuation, Eq. (2.12) has to be suitably
modified. We have, for t=0,

III. COMPARISON WITH EXPERIMENT

Let us compare the results of the geometric model as
presented above with experiment. The scattering ampli-
tude A, z(s, t) is calculated from Eq. (2.17) from the
phase-shift function y, ~(s, b), for which our approach
gives the parametrization

~0 d
g&z(s, b)= f e' ' g [R, (s)F;( —q, R;(s))] .

4m 2m.

(3.1)

R (s) = [1—ip( s)] ( r ) (s) (2 14) We choose

to be an analytic function. We call R (s) the complex ra-
dius function of the hadron. If we require A (s, t) to be
analytical in s, we have to modify expression (2.13) to

A(s, t)= Ac[R (s)F(t, R (s)})
4~

(2.15)

1 d
y(s, b}=—f e'q A(s, —

q ) .
lS 2K

(2.16)

Then our final expression for the scattering amplitude,
eikonalized and analytic in s, reads

A(s, —
q )= d be 'q'(1 —e ~' )

277
(2.17)

and will be confronted with experiment in Sec. III. The
generalization for unequal particles is obtained by a
straightforward generalization:

2

A, z(s, t)= Lag [R, (s}F,(t,R;(s))],12 4 0 (2.18)

In going from Eqs. (2.12) to (2.15), we have introduced
the complex radii also into the form factors in order to
guarantee analyticity in s also for t@0 Comple. x radii in

the form factors are not new, but have already been used
in the geometric scaling model [7]. They imply that the

ratio of real to imaginary parts of A(s, t) depends on the
momentum transfer t.

The form of the amplitude A (s, t) fails to describe the
differential cross section at values t~ ) 1 (GeV/c) . In
this regime a dip and a second maximum (or a shoulder)
appear and are reminiscent of double scattering in the
language of multiple scattering. Whether these phenome-

na originate indeed from an iteration of the amplitude 3
or if more complicated physics, such as the exchange of
more Pomerons or gluons, is responsible for it does not
seem to be settled. In our approach we eikonalize the
scattering amplitude A by demanding that the "Born am-

plitude" A(s, t } [Eq. (2.15)] determine the phase-shift
function y(s, b) as a function of the impact parameter b

by

q2g 2

F( —q, R; )= 1+
6n;

(3.2)

to be dipole (n =2) form factors for the baryons and
monopole (n = 1) ones for the mesons. The integrals (4.1)
can be evaluated in terms of the modified Bessel functions
K„(z). For instance, for pp or pp scattering, we obtain

g~~(s, b)= R (s)
~0, &12b &12b

E3 (3.3)
16m ~ R (s) ' R (s)

The scattering amplitude is then calculated by numerical
integration. There are the several free parameters in our
approach.

(1) The overall strength A,Q, a real number of dimension
GeV, which is taken to be independent of the type of re-
action (pp, pp, np, or Ep) and independent of the energy
S.

(2) The radii R;(s) for the projectile and target parti-
cles. The R;(s) are complex functions of the energy.
Therefore there are two free parameters at each energy s.

We now explain how these parameters are determined
from experiment. We start with the pp data from the ISR
[10] and choose data at &s =23.4 and 53 GeV as
representative experimental results. The parameters A, D

and the real and imaginary parts of the radius R(s) at
this energy are fitted so as to reproduce well the data at
23.4 GeV. The region around the first minimum is found
to be particularly sensitive to R(s). The position fixes
essentially ReR(s), while the interference pattern deter-
mines ImR(s). The value A0=0. 52 GeV is obtained
from a good overall fit to the data of der/dt. The values
for the radius R (s) are given in Table I.

The resulting fit for do. /dt is shown in Fig. 2, and in
Table I we compare experimental and calculated values
for o'", the slope parameter b, and p, the real to imagi-
nary parts of the forward-scattering amplitude. The
differential cross section is well reproduced, including the
maximum after the diffraction peak, but agreement wor-
sens for ~t~)2 GeV/c. Other approaches do better in
this region, however, at the expense of further adjustable
parameters. In the Pomeron approach, two Pomeron and
C= —1 amplitudes are introduced, while geometric ap-
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TABLE I. Summary of the input data for each reaction (real and imaginary parts of the interaction radius) and a comparison be-
tween experimental and calculated values for the total cross section, slope parameter, and p.

c.m. energy Radius R (s)
Reaction &s (GeV) ReR (fm) ImR /ReR

0."' (mb)

Expt. Calc.
b [(GeV/c) ]
Expt. Calc. Expt. Calc. Reference

pp

pp

pp

p
K+p

23.5
52.8

546
1800

16000
40000

20
20

0.77
0.79
0.88
0.93
1.01
1.04
0.64

0.005
0.01
0.04
0.04
0.04
0.04
0
0

38.94+0. 17
42.67+0.19

61.9+1.5
73.3+3.0

23.78+0.04
19.91+0.11

38 11.8+0.3
41 13.1+0.3
60 15.2+0.2
73 17.02+0.46
95

107
24 9.25+0. 12
20 8. 13+0.37

11.6
12.2
15.4
17.6
21
23
9.8 0.04
9

0.02+0.005
0.078+0.01
0.24+0.04
0.126+0.067

Amaldi et al. [10]
0.02

0.14 Bozzo et al. [11]
0.14 Amos et al. [12]
0.14

prediction

Akerlof et al. [13]

proaches use a t-dependent interaction function in addi-
tion to the t dependence in the form factors. We prefer
to stay with the discrepancy at large t.

Among all the data from the ISR, the data for do /dt
at 53 GeV are the most difficult to describe (Fig. 3). We
have chosen these data nevertheless in order to show also
a bad fit. The freedom in adjusting the real and imagi-
nary parts of the radius is not too large. The imaginary
part of the radius has here a value l%%uo of ReR. This
small value of ImR suffices to account for the shape of
the dip in do /dt and for a rough agreement with the ex-
perimental value of p (Table I}. It also introduces a rath-
er complicated pattern into the t dependence of
Re A(s, t). Figure 4 shows the behavior of ReA (s, t) and
ImA(s, t) for v's =53 GeV as a function of t The.
scattering amplitude A (s, t) is basically imaginary.
Im A (s, t) shows a zero in the region of the first minimum
[t=1.2 (GeV/c) ]. The real part is not constant as a
function of t, but has a zero for t =0.3 (GeV/c ) . There-
fore the relation between the phase of the amplitude at
the minimum, which we use to determine ImR(s), and
the phase at t =0, where p is measured, is rather compli-
cated.

We pass to the data for pp at 546 GeV [11]. The
differential cross section is shown in Fig. 5. There has
been an extensive discussion on the large experimental
value for the ratio p of the real to imaginary parts of the
forward amplitude. We show fits to the data for three
choices for the imaginary part of the radius. The situa-
tion in the middle [Fig. 5(b}] is our best fit and corre-
sponds to a value p =0.14. The calculation shown in Fig.
5(a) predicts p=0.07, and p=0. 21 relates to Fig. 5(c).
The latter value would be close to the experiment, but the
fit to the data [Fig. 5(c)] seems unacceptable. We note
that our best value p=0. 14 for Vs =546 GeV relates to
the experimental result p=0. 126+0.067 for &s =1.8
TeV, although the error bars are still rather large. The fit
to the data [12] at 1.8 TeV is shown in Fig. 6. Since the
data do not include the first minimum, we are not able to
determine ImR at this energy. We take it the same as for
the best fit at 546 GeV.

Before we proceed to predictions at even higher ener-
gies, we remind the reader of the systematics of the fitted
values for the radius constant (r )(s)=—ReR (s) as
shown in Fig. 1. The real parts of the values R (s),
which are obtained by fitting the data, especially the dip
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. . . . I
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FIG. 2. Differential elastic cross section for pp scattering at
&s =23.4 GeV. The data (of which only a part are shown) are
from the ISR experiment [10]. The solid curve is our fit as de-
scribed in the text and with parameters given in Table I.

FIG. 3. Differential elastic cross section for pp scattering at
&s =53 GeV. The data (of which only a part are shown) are
from the ISR experiment [10]. The solid curve is our fit as de-
scribed in the text and with parameters given in Table I.
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FIG. 6. Differential elastic cross section for pp at 1.8 TeV
(data from Fermilab [12] and our fit) and predictions for
&s =16 and 40TeV.
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FIG. 4. t dependence of ReA(s, t) and Im(s, t) for &s =53
GeV plotted linearly and logarithmically.

ReR (s ) = (0.60 fm ) ( 1+0. 19 ln V s ) . (3.4)

The observation from Fig. 1, that the slope parameter
and total cross section increase slightly slower with ener-

gy than the radius ReR(s), stems from the fact that the
eikonalization of the amplitude slightly changes the rela-
tion between R (s) and o"' from those in the Born ap-
proximation.

region at each energy, are drawn as a function of ines
and show a linear dependence. The value at 23.4 GeV is
still a little above the systematics, which may be ex-
plained by contributions from meson exchange which
have not completely died out [8]. The energy dependence
of the radius, as seen in Fig. 1, can be written as

Furthermore, the systematics for the energy depen-
dence of the radius (Fig. 1) can be used for a rather safe,
extrapolation to higher energies. We show our predic-
tions for &s =16 and 40 TeV in Fig. 6, in addition to
that for &s =1.8 TeV. Table I contains the correspond-
ing values for the total cross sections and slope parame-
ters. The values p(s) of the real to imaginary parts of the
forward-scatterin~ amplitude seem to reach the constant
value 0.14 for &s =500 GeV and above. This value is in
good agreement with p(s) = n.e/2=0. 12 (cf. Sec. IV).

Finally, Figs. 7 and 8 show the differential cross sec-
tions [13] for m. +p and E+p scattering and Table I the
corresponding slope parameters and total cross sections
for v's =20 GeV. The overall strength )t,o and complex
proton radius at this energy are known from the pp ex-
periment at 23 GeV; only the radius constants for the
pion and kaon have to be inserted. We take them to be
equal to the charge radii and give their values in Table I.
The differential cross sections as well as the values for
e"' and b are parameter-free predictions and agree fairly
well with experiment.

102

C9

E
10

10-4

0.07

I I I I I I I I I I m I I I I I I I I

1 2 0 1

t [(GeV/c) ]

.21

I I I I I I I I I I I l

20 1 2

(I)

10-2

E

~ 104b

10-6

TC P

Ps =20 Gev

FIG. 5. Differential elastic cross section for pp scattering at
the SPS accelerator at +s =546 GeV [10]. We show three fits

to the data, which differ in the imaginary part of the interaction
radius R. From these values one calculates a ratio p of real to
imaginary parts of the forward amplitude p =0.07 (left),

p =0. 14 (middle), and p =0.21 (right).

2 3
t [(Gev/c) ]

FIG. 7. Differential cross sections for ~p collisions at
&s =20 GeV. The data are from Ref. [13].
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a(t) —1
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~ 102C9

E

)0-i(e

Xexp —(r2t ) (4.4)

R (s)=(r )(s&)(1+c ln s/s&)[1 —ip(s)]'/ (4.&)

The data suggest a logarithmic growth of the radius
R (s) with energy,

)0
and a phase factor related to p(s). The mean-squared ra-
dius (r

~ ) of the Dirac form factor Ft(t) is

1 2 3
t [(Gev/c) j

FIG. 8. Differential cross sections for Kp collisions at
v's =20 GeV. The data are from Ref. [13].

IV. COMPARISON
WITH THE POMERON PARAMETRIZATION

Regge theory applied to high-energy collisions, where
o"'(s) is constant or slowly rising, has led to postulate a
new trajectory, the Pomeron trajectory a(t), with an in-
tercept a(0) close to 1. In recent years Donnachie and
Landshoff [2] have extensively applied this theory to the
data. The amplitude for one-Pomeron exchange is
parametrized as

A (s t) g 8 isa(i)/2—
P ~ P

sp

' a(t)

Fl(t), (4.1)

where )t,p is independent of the variables s and t and F, (t)
is the Dirac electromagnetic form factor, which differs
from the expressions [Eq. (2.7)] by a factor
(4m —2.79t)/(4m t) for th—e proton and takes ac-
count of the anomalous magnetic moment. F&(t) does
not contain a complex energy-dependent effective radius.
The authors of Ref. [2] use +so =2 GeV and

par ametrize

(4.6)

c =e/2, (4.7)

p(s) = e, —
2

(r& )(s&)
a'(0) =

6

(4.8)

(4.9)

With the help of these relations, the complex energy-
dependent radius R(s) and the Pomeron trajectory a(t)
can be written in terms of only two parameters e and
(r )(s, ):

in the expression for the Pomeron amplitude. In the
geometric approach, the free parameters are A, G, c, s, ,
(r )(s, ), and the function p(s). On the other hand, the
constants /(, p, e, and a'(0) are undetermined in the Pome-
ron picture. We relate the parameters of the two ap-
proaches by requiring that both amplitudes [Eqs. (3.3)
and (3.4)] describe the same physics, i.e., are just two
different parametrizations of the same amplitude. The di-
mensionless parameters ~e~, ~clns/s&, and ~p(s)~ turn
out to be small compared with 1. We have no prescrip-
tion for the choice of s, and therefore choose it for calcu-
lational convenience as Qs, =200 GeV, which is the log-
arithmic middle point of the interval (20 GeV, 2 TeV).
Working to first order in these quantities, one arrives
after some algebra at

a(t ) =1+@+a'(0)t, (4.2) R (s)=(r )(s ) 1+—lns/s i—
1 (4.10)

where e, a'(0), and the overall strength A,r are fit parame-
ters. We compare the scattering amplitudes A (s, t ) in the
geometric parametrization [which we denote AG(s, t)]
and in the Pomeron parametrization [denoted by A/, (s, t)]
for small values of t in which the form factors can be ap-
proximated by exponentials in t. For this domain in t,
the eikonalization of the geometric amplitude is not very
important and we may restrict ourselves to the Born am-
plitude, which reads in the approximation of exponential
form factors

(4.11)

The relations (4.10) and (4.11) are the central results of
this section. We want to discuss the relation [Eq. (4.11)]
between @=a(0)—1 and the slope a'(0). First, a compar-
ison with "experiment": In Ref. [2], e and a'(0) have
been determined independently from the data to e=0.08
and a'(0)=0.25 (GeV/c} . Using (r )(s, )=0.72 fm
from Fig. 1, we find, from Eq. (4.11),

AG(s, t)=isAGR (s}exp —R (s)2 (4.3} a'(0)=0.24 (GeV/c) (4.12)

Also, with exponential form factors, the Pomeron ampli-
tude is

in good agreement with the experimental value. Relation
(4.11) between the intercept a=a(0) —1, the slope a'(0)
of the Pomeron trajectory, and the mean-squared radius
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of the colliding nucleons is unexpected, since the proper-
ties of the exchanged trajectories are not necessarily re-
lated to properties of the colliding hadrons. Since rela-
tion (4.11) has generated some controversy, we want to
give another derivation for Eq. (4.11) which does not re-
late to the geometric model, but only uses the expression
for the Pomeron amplitude [Eq. (4.4)] together with the
experimental relation cr"'(s)=constxb (s) between the
total cross section and slope parameter b (s) O. ne
derives, from the Pomeron amplitude [Eq. (4.4)] to first
order in e lns /s „

4+A p s)o'"(s)= ( 1+e ln s /s, ),
Sp

(4.13)

b(s)= —(r& ) 1+ lns/so2, 3a'(0)
r,

(4.14)

The energy dependence of the total cross section is
governed by the intercept a=a(0) —1, while the rise of
the slope parameter b (s) with energy is determined by
a'(0). Any relation between the total cross section and
slope parameter imposes a relation between a' and e.
Empirically (see Fig. 1), the energy dependences of
(o"')'~ and b(s) are the same within the interval con-
sidered; therefore,

1 3a'(0)
(r', )Ins, /s,

' (4.15)

where (r, )Ins, /so=(r )(s|). This derivation makes
clear that Eq. (4.15) or, equivalently, Eq. (4.9) is imposed
by experiment, once one uses the one-Pomeron-exchange
amplitude to describe elastic-scattering properties at low
t. We come back to Eqs. (4.10) and (4.11), which express
the central quantities, the effective radius R (s) in the
geometrical approach and the Pomeron trajectory a(t) in
the Regge description, in terms of only two parameters
( r )(s, ) and e. It is remarkable that both R (s) and a(t)
depend on the same two quantities, although they are
very different mathematically and physically. a is a func-
tion of t, while R is a function of s. u describes a trajec-
tory, i.e. a series of Regge poles or particles, while R is

an effective interaction radius. The same small quantity e
determines the intercept a(0)—1 and slope parameter
a'(0), as well as the logarithmic energy dependence of the
radius R (s). The dependence of R (s) and a(t) on the
same parameters points to a common origin of the two
pictures, the geometric and Regge pole ones. However,
we are unable to clarify this common origin.

V. SUMMARY

We have presented a phenomenological approach to
the elastic scattering of hadrons in the diffractive energy
regime &s 20 GeV. The basic idea is a geometric one:
The differential and total cross sections are determined
by the shape of the colliding hadrons. The more refined
analysis, presented in this paper, indicates that the "in-
teraction form factor" of the hadrons varies with energy
whose variation can be accounted for by an energy-
dependent radius. For reasons of analyticity, the radius
has to be complex. While the energy dependence of the
radius indicates that this is an effective interaction radius,
the physical interpretation of its imaginary part is un-

clear to us. The real part of the radius increases linearly
with lns, which makes predictions to higher energies
rather straightforward.

Our parametrization of the scattering amplitude in
terms of the radius gives a good fit to the data of d tr /dt
up to t =2 (GeV/c), but fails at higher values of t. The
transition from pp to mp and Kp is straightforward, since
only the radii for the projectile have to be changed, but
not the overall strength. We think that the presented
model is a very economical model in that it contains few
parameters only, most of which have direct physical in-

terpretation.
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