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Deep-inelastic events containing a measured jet
as a probe of @CD behavior at small x
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We examine the proposal that deep-inelastic (z, Q ) scattering events which contain an identified

jet, with transverse momentum squared k Q, allow an ideal determination of the @CD behavior
at very small x. %'e solve the Lipatov equation to predict the shape of the jet spectrum in such
events and show that measurements at the DESY ep collider HERA should be able to verify, inter
alia, whether the gluon indeed has the theoretically anticipated g x small-x behavior with the
intercept o;z of the bare perturbative /CD Pomeron possibly as large as 1.5.

PACS number(s): 13.60.Hb, 12.38.Bx, 12.38.@k, 13.87.Ce

I. INTRODUCTION verse momenta

The behavior of parton distributions at small z is phe-
nomenologically important, but is also of great theoreti-
cal interest since it illuminates the properties of /CD in a
new regime. Although as z -+ 0 we ultimately enter the
nonperturbative regime of /CD, there is a transitional
region in which novel theoretical ideas have been intro-
duced to extend the applicability of perturbative @CD
to smaller x than hitherto [1].These novel efFects are ex-
pected to become evident in the region x ( 10 2—10 s,
which will be probed by the next generation of colliders
[that is, the DESY ep collider HERA, the CERN Large
Hadron Collider (LHC), and the Superconducting Su-
per Collider (SSC)]. In this small-z region the partons
are mainly gluons (and sea quarks which originate from
the gluons) and so we focus attention on the behavior of
g(x, Q ), the gluon distribution in a proton, in the small-

x, large-Q region, or to be precise in the region where
Q2 is at least about a couple of GeV2 so that /CD per-
turbation theory is applicable. As usual, z is the Bjorken
variable,

Q )) kT )) knT )) ' ' )) klT )) kOT'

The sum of these diagrams gives

(2)

zg(x, Q ) oc exp 2
~

'ln(Q )ln(1/x)
in'

(3)

at small x and large Qz, where we have omitted a
slowly varying multiplicative [ln(Q2)ln(1/x)] 1~2 factor.
If we include the running of cr, then cr, ln(Q2) becomes
oc ln[ln(Q )]. However, this form, (3), based on the
Altarelli-Parisi equations, does not take into account all
the leading terms in the small-x limit. It neglects, by def-

inition, those terms in the perturbation expansion which
contain the leading power of ln(1/x) but which are not
accompanied by the leading powers of ln(Qs). To sum
the leading ln(1/x) terms we should retain the full Qz

dependence [and relax the strong ordering of the kl 's,
shown in Eq. (2), which generated the leading ln(Q2) be-
havior] and integrate over the full kT phase space with

and Qz = —q2 where p is the four-momentum of the
proton and q is the four-momentum transfer of the probe.

The traditional way to estimate the behavior of
g(x, Qs) at small z and large Qz, based on the
Altarelli-Parisi (or Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi) evolution equations [2], is to sum the leading pow-
ers of ln(1/x) and ln(Qz/Az). That is for each additional
factor of n, we keep only the leading in(1/x)ln(Qz) term
accompanying that a, . In axial gauges, these leading
double logarithms are generated by "ladder" diagrams
(Fig. 1) in which the gluons have strongly ordered trans-
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Permanent address: H. Niewodniczanski Institute of Nu-

clear Physics, 31-342 Krakovr, Poland.

FIG. 1. Diagrammatic representation of a deep-inelastic
probe of the gluon content of the proton at high Q . p and

q are the proton and virtual photon 4-momenta, respectively,
andQ = —q.
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Q, kT, k„&, ... only restricted to be much larger than A .
The sum of these leading ln(1/x) terms is given by the
Lipatov (or Balitsky-Kuraev-Fadin-Lipatov) equation [3,
4], which leads to a small-x behavior of the form

xg(x, Q) oc x +'

with

(4)

ng —j.
12a,'

ln2, (5)

where, for simplicity, we have again neglected the effects
of the running of a„and omitted the relatively slowly
varying [ln(1/x)] i~2 factor. aJ is the intercept of the
bare QCD Pomeron, or so-called "Lipatov" Pomeron,
and since ap —1 0.5 (for a typical a, ~ 0.2) we should
expect to see a spectacular growth of xg(x, Q2) as x ~ 0.

Clearly the growth shown in Eq. (4) [or, for that mat-
ter, in Eq. (3)] cannot go on indefinitely with decreasing
x, since eventually the density of gluons will become so
large that they can no longer be treated as free partons.
Recombination of gluons will begin to occur and compete
with the evolution in such a way as to limit the growth
of xg(x, Q2) [1,5—9]. However there is an "intermediate"
region of x, with x 10 s, where these shadowing or re-
combination effects are expected to be small and where
the rapid "Lipatov" growth should be evident.

So far experiments have not been able to probe down
to such small x values (at least for Q2 large enough to be
in the perturbative region) and so no confirmation of the
Lipatov (or QCD) Pomeron exists yet. Measurements
of the deep-inelastic structure functions Fl, (x, Q2) and
F2(x, Q2) at HERA can probe g(x, Q2) and q(x, Q2), re-
spectively, in this region of x, but over a limited range
of Q2 [10]. The comparison of the experimentally deter-
mined parton distributions with the QCD predictions is
complicated by the need to input some "starting" parton
distributions (such as their x behavior at Qs

——4 GeV2)
in the QCD calculation. Thus if a steep behavior were to
be observed at small x [such as in Eq. (4)] which, most
reasonably, could be taken to indicate the existence of
the Lipatov Pomeron, there is always the possibility that
the effect could be of nonperturbative origin. A study of
the Q2 dependence would appear to be of little help. The
steep behavior with decreasing x that is generated by the
Lipatov equation is stable to evolution in Q . Moreover
the Q2 dependence arising from the Lipatov equation is
similar to that given by using the Altarelli-Parisi evolu-
tion equation [7, 11—13]. Finally, only a limited range of
Q is accessible at HERA, for small values of x, so the
evolution length ln(Q2 /Q2, „)is small; recall that Q2;„
has to be large enough for perturbative QCD to be valid.

It is clearly desirable to look for experiments which fo-
cus on the small-x behavior of QCD (rather than its Q
behavior) and which, unlike the deep-inelastic FI. and
F2 structure function measurements, do not depend on
assuming some input x distribution. An intriguing pro-
posal has been made by Mueller [14]. The idea is to study
deep-inelastic (x, Q ) events which contain an identified
jet (x~, ki2T, ) where z && x~. and Q2 ki2T, . The process
is illustrated in Fig. 2 where the jet arises from parton a
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FIG. 2. Diagrammatic representation of a deep-inelastic
event which contains an identified jet with longitudinal and
transverse momentum of x~p and k~T, respectively. x~ is cho-
sen as large as experimentally feasible (x~ ~ 0.1) and so we
assume strong-ordering of the longitudinal, as well as trans-
verse, momentum at the parton a-gluon vertex. Parton a may
be either a quark or a gluon.

(which can be either a quark or a gluon). The longitu-
dinal momentum fraction x~ carried by the jet is chosen
not to lie in the small-x region and the strong-ordering of
transverse momenta at the gluon-a vertex (k,'T « k»)
means that the exchanged gluon and the jet have ap-
proximately the same transverse momentum, as shown
in Fig. 2. Since we choose events with kiT Q the Q
evolution is neutralized and attention is focused on the
small-x, or rather the small-x/x~, behavior.

It is convenient to express the rate (or cross section)
of deep-inelastic events containing an identified jet as a
difFerential structure function in terms of the jet vari-
ables, BF2/Bx~ Bki27, . Recalling that the Lipatov sum of
the gluon emissions shown in Fig. 1 gave the behavior
shown in Eq. (4), we would expect the deep-inelastic +
jet events arising from Fig. 2 will have the form

2 BF2 2 2x, kiT „2 a, (k,T ) x, ) f, (x, , k,2)
2 1T

q
1-A~

x i— (6)

where, assuming t-channel pole dominance, the sum over
the parton distributions is

).f. = g+9(g+g).

The factor a, arises in Eq. (6) because the structure func-
tion for events with an identified jet is of 0(a, ) in relation
to the inclusive deep-inelastic structure function I"2. In
the next section we show that the QCD prediction has
indeed just this type of behavior and so a measurement
of the z/x~ dependence of deep inelastic + jet events
should reveal the Lipatov Pomeron; it has been heralded
as a landmark measurement of QCD [14].

UVe have mentioned one reason why this measurement
is so special: the choice ki27, Q2 means we have elim-
inated the strongly ordered gluon emissions associated
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with the standard Altarelli-Parisi evolution. However
there is a second reason. The small x/x~ behavior of
Eq. (6) is directly linked with the high-energy behav-
ior of the virtual-photon —virtual-parton-a cross section.
This is evident because the center-of-mass energy ps~it
of this subprocess is given by

s - 2k. q — 2xp q = —Q
Xj 2

using Eq. (1). Note that the four-momentum of the ex-
changed parton a in Fig. 2 is k, x~p on account of
the strong-ordering of the longitudinal momenta which
holds at the gluon-a vertex, since x~ is 0(1). Thus the
proposed experimental determination of the /CD small
x behavior is associated with the high-energy behavior
of a partonic cross section; as opposed to directly mea-
suring the small-x behavior of parton distributions in a
proton which necessarily are accompanied by nonpertur-
bative ambiguities (in the form of assumed "starting" z
distributions).

The above special features are shared by inclusive di-
jet production in hadronic collisions, for certain kine-
matic regions ofthe '

jets [15], where again the small-z
behavior is associated with the high-energy behavior of
a partonic subprocess. However the electroproduction
of a single jet should be more accessible to experiment,
particularly with the advent of HERA.

The outline of the paper is as follows. In the next sec-
tion we derive the precise /CD form of the difFerential
structure function for deep-inelastic events containing an
identified jet In the. fixed coupling case we are able to
obtain a closed analytic expression for BF2/Bz~BkiT, in
the leading in(z~/z) approximation. We then turn to
the more realistic running coupling case and describe a
procedure that allows a numerical solution of the Lipa-
tov equation. In Sec. III we implement this procedure
and present numerical values of the differential structure
function BF2/Bz~BksiT, as a function of x and z~. These
results show that the analytic (fixed coupling) approx-
imation overestimates the rate of deep-inelastic events
containing an identified jet. We discuss special features
of the difFerential structure function and, in particular,
we show how measurements of the shape of the jet spec-

trum can reveal the small-x behavior of @CD. In Sec. IV
we give our conclusions.

II. THE CROSS SECTION FOR
DEEP-INELASTIC + JET EVENTS

We are interested in the process in which deep-inelastic
scattering is accompanied by a single identified jet. That
is the process

"p" +p ~ jet(x~, k)+X
shown in Fig. 3 (or Fig. 2), where, for convenience, we
denote the transverse momentum of the jet as simply k =
kiT. The difFerential structure function for this process
may be written in the form

BF2(x, Q2; x~, k2)

Bx,Bkz

3Q ) ( ') Fi —,k', Q'i (8)

[cf. Eq. (6)], where the sum over the parton distributions
is given by Eq. (7). The factor F, which has the dimen-
sions of k2, represents the photon-gluon process shown
by the upper blob in Fig. 3; that is F/k2 can be iden-
tified with the gluon structure function integrated over
the longitudinal momentum of the gluon. The factor k 4

in Eq. (8) arises from the gluon propagators. Since we
are interested in small z/zz, the magnitude of zz should
be taken as large as is experimentally feasible. In fact
it has already been tacitly assumed in Eq. (8) [and Eq.
(6)] that there is strong-ordering of the longitudinal mo-
menta at the gluon-parton a vertex of Fig. 3 so that z~
of the exchanged parton, which occurs in f (z~, kz), is to
a good approximation that of the outgoing jet.

in the leading in(zr(z) approximation the structure
function F(z/x~, k, Q ) is given by the sum of ladder
diagrams shown in Fig. 4, together with virtual gluon
corrections (not shown). This gives a Lipatov equation
for F(z, k, Q~) of the usual form

3n, ~
dz' dk'~ (F(z', k'~, Q2) —F(z, k2, Q~) F(z, k~, Q2) l

(9)

where the occurrence of F(z, k2, Q2) in the integrand is on account of the diagrams with virtual corrections. In Eq.
(9) the coupling is fixed at a, (Q ); we will discuss the effect of allowing o,, to run in the ladder integrations later.

The inhomogeneous or driving term Fo in Eq. (9) corresponds to the sum of the quark box and crossed-box diagrams
of Fig. 5, shown simply as a box in Fig. 4. For transversely polarized photons Fo is found, for small z, to be

Fo (z, k2, Q2) = Fo (0, k, Q )—:Fo(k, Q ),

where
2 1 oo

Fo(k2, Qz) =2) ei so,, dta d ~[P +(1 —P) )

e 0 0
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FIG. 3. The diagram giving the cross section for deep-
inelastic scattering events containing an identi6ed jet of lon-
gitudinal and transverse momentum x~p and k, respectively.

FIG. 4. The leading ln(z~/z) approximation to the pro-
cess shown in Fig. 3.

Equation (10) applies for arbitrary values of k~ and Q~,
athough here we are interested in k2 = Q2. In deriv-
ing Eq. (10) we have assumed massless quarks. We also
neglect the small longitudinal contribution to F2, so our
results refer, in principle, to the structure function 2zFq
corresponding to transversly polarized virtual photons.
For fixed a;, the relative smallness of Fl. = Fq —2zFq

has been checked [16], see below. The numerical results
which we present in Sec. III are for values of Q0 for which
it is reasonable to assume that three quark fiavors are ac-
tive. We can rewrite the integrand of Eq. (10) in terms
of a Feynman integral, which allows the d2K integration
to be performed analytically (see Appendix A). In this
way we find

e2
F(k Q)= kQo.4'

' „,[~'+ (1 —~)'][&'+ (1 —P)']
[A(1 —A) k'+ P(1 —P)q~]

As required, Fo has the dimensions of k~. Although here
we are concerned with the regime where k~ Q0, we see
from Eq. (11) that if k0 « Q2 then Fo k2 modulo a
ln(Q2/k ) factor; whereas if k0 )& Q2 we have Fo ~ Qz,
modulo a ln(k0/Q2) factor, which when inserted into Eq.
(8) leads to the usual k behavior associated with sin-
gle jet production. The k~ behavior of the driving term
Fo is not transmitted directly to F, but is significantly
modified by the Lipatov equation [Eq. (9)] particularly at
small z, as can be seen by inspection of Eq. (12) below,
or from the discussion in Appendix B.

If, as we have so far assumed, the coupling n, is fixed
then we can use Mellin transform techniques [3—5] to
solve the Lipatov equation (9) and obtain an analytic ex-
pression for the leading small-z behavior of F(z, k2, Q2).
Using these techniques on Eqs. (9) and (ll) we find

1 1
9~z 2 + e~a;~ ( k& ) ~ z-~p+~

512 /21((3)/2 (Q ) Qln(1/z)

x 1+0/( 1
(12)

with n& —1 given by Eq. (5), and where ( is the Riemann
zeta function. The derivation of Eq. (12) is outlined in
Appendix B. When this fixed coupling result is inserted
into Eq. (8) we obtain the leading small z = x/x~ depen-
dence that was forecast in Eq. (6). It is interesting to

note that the k0/Q0 dependence shown in Eq. (12) arises
because, in the fixed coupling case, the Mellin transform
parameter r, conjugate to k~, is equal to 2 (as seen in
Appendix B). The behavior is also related to the fact
that the anomalous dimension p(n, n, ) describing the k
evolution of the moments of F is equal to 2 for n = crp
[17].

For the fixed coupling case the formula for the differ-
ential structure function [Eqs. (8) and (12)] has also been
derived in Ref. [16]. They find that Fl, .'2xFq are in the
ratio 2: 9.

The analytic approximation Eq. (12) will give at best
a rough estimate of the value of F(z, k0, Q2). For one
thing, the Lipatov equation is based on perturbative
/CD and so the tr'ansverse momenta of the exchanged
gluons along the chains in Fig. 2 or Fig. 4 should sat-
isfy k0 )& A, and so should be at least greater than 1
GeV or so. This can be simply achieved by introducing
a lower limit cutoff ko2 on the transverse momentum in-

tegral in Eq. (9). Second, we should allow the couplings
n, to depend on the transverse momenta along the lad-
der. The conventional way of introducing the k2 or k'2

dependence of a, in Eq. (9) is to ensure that, if we were
to revert to the strongly ordered case with k « Q,
we would recover the correct evolution equation in the
double leading logarithm approximation with a running
coupling. Following this procedure we find that the Li-
patov equation for F(z, k~, Q~) becomes

3n k2~ ' dz' dk' (H(z', k', Q ) —H(z, k ) Q ) H(z, k Q') i
k"

q ~k" —k'~ (4k~4+ k4)~)

with

3n k2
H(. , k, q2) = '"(" 'F(., k, q )
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and similarly for Hp.
For consistency we should also study the sensitivity of the numerical results to the introduction of a transverse

momentum cutoff in the determination of the driving term Hp or Fp. To do this we write Eq. (10) in the form

2q 1 1 oo

Fp(k2, Q2) = ) e ' k2 Q dP dA dr' [P +(1—P) ] A
7r 0 0 tco

(2A —1)It'2 + (1 —A) [A(1 —A) k2 + p(1 —p)Q']
[It'2+ A(1 —A)k + p(1 —p)Q']'

The derivation of Eq. (15) is outlined in Appendix A.
In the next section we describe how we solve the Li-

patov equation [Eq. (13)] numerically. We present re-
sults for deep-inelastic events with an identified jet for
the choice of the transverse momenta cutoffs given by
kp2 ——It&p——1 GeV~ and we compare with those obtained
from the approximate analytic expression, Eq. (12). We
also investigate the sensitivity of the results to the choice
of the value of the cutoffs.

III. NUMERICAL +CD ESTIMATES OF
DEEP-INELASTIC + JET EVENTS

In Sec. II we described how the measurement of deep-
inelastic scattering (z, Q ) events which contain an iden-
tified jet (x~, k2), with k~ Q~, is a particularly sensitive
probe for investigating the small z =—z/xz behavior of
the gluon g(z, Q2), free from having to assume an input
distribution g(z, Qp~). Certainly we would expect that
measurements at HERA would be able to distinguish the
singular Lipatov z~ ~p form of growth, with decreasing
z, that was shown in Eq. (12). The analytic expression,
Eq. (12), is only an approximation for the leading small-z
behavior of F(z, k~, Q2) and to make a reliable quantita-
tive estimate of deep-inelastic scattering with a measured
jet we must solve the Lipatov equation, Eq. (13).

This integral equation (13) for F(z, k2, Q2) is based
on a leading ln(1/z) summation and so is not expected
to be applicable beyond the small-z region. On the
other hand, we anticipate that the inhomogeneous term
Fp(z, k2, Qs) itself should be a reasonable approximation
to F(z, k, Q2) in the large-z region, particularly for the
k2 Q values that we are studying. This follows be-
cause the standard Altarelli-Parisi /CD evolution should
be applicable in this region and when k2 Q2 the evo-
lution length [ n, ln(Q2/k2)] is very small so that the
effects of evolution can be safely neglected. We can there-
fore restrict the study of the Lipatov equation (13) to the
small-z region, z ( zo, by imposing the boundary condi-
tion

F(zp, k, Q ) Fp(zp, k, Q ) = Fp(k, Q ),

FIG. 5. The two diagrams embodied in the quark box
diagram of Fig. 4 .

I

where zp is chosen sufficiently small so that Eq. (11) is
a reasonable approximation for Fp. This means we can
solve the Lipatov equation (13) by writing it in the form
of an integrodifferential equation

BH
z

z
= KSH, (i7)

I I I I I I II]

10 = Q = k =SGeV

OJ

1

LL

unalytit: approx.

0.1

10

s s i i i l&il

10 10

iiI

10

FIG. 6. The photon-gluon structure function factor
F(z, kz, Q ) which controls, via Eq. (8), the strength of the
differential structure function for deep-inelastic (z, Q ) events
with an identifiai jet (z~, k ), as a function of z = z/2:, . The
continuous curves are calculated from the integrodifferential
form Eq. (17) of the Lipatov equation Eq. (13) for three dif-
ferent choices of the transverse momentum cutoff, ko ——1,
2 and 4 GeV, respectively. The solution is matched to the
quark-box driving term I'0 at z = zo ——0.1. The dashed curve
shows, for comparison, the analytic leading ln(zp/z) approx-
imation, Eq. (12), for F(z/z&&, k, Q ). Here we take eo ——1
GeV in Eq. (15).

where K is the kernel and 3 denotes the integration over
k'~. We impose the boundary conditions

H(zp, k, Q ) = Hp(k, Q )

and choose zp = 0.1. For any small z the solution
H(z, k~, Q2) therefore only depends on the behavior of
H in the interval (z, zp).

Using this procedure we obtain the results shown in
Fig. 6. To be precise the continuous curves are the val-
ues of F(z, ks, Q2) determined by solving Eq. (17) using
three different values of the transverse momentum cut-
off, namely kps ——1, 2, and 4 GeV2. For comParison, the
dashed curve is the approximate analytic form [Eq. (12)]
shown as F(z/zp, k2, Q2) as a function of z, which cor-



926 - KWIECINSK, . MARTIN, AND J SUTTON

e
e leadinresponds to th

it}1 fi

ymptotic
ld zp and so ls 0

Several features
'

ar

's only sho

of Fig. 6 are

t' 1

o ing. First

e
'

quation as z
r es rom th

d
t — '

sensiti t th

0). The "asym
is, in fact

r

e curves in Fi . 6i . 6fo the cut ff
oQ~ —1=

re in complete a
solut~o~s of a

i whichis ri ution it
fro FFig. 6 that th

substantia
e approxim

'
lly overest'

, in particul
imates the n

'
o

ar, that it has a
z. e reason is a littl

y 11 b
aximum ei'genvalue of the

can be direc
e kernel of th L'e ipatov

10 I I II I I I III I I I I I III
I

I I I I I I4-

x =10

10'=-

10'=-

— (Qj k

q o (eu '
ee o

46

nation). In the fi p ing case the lead

0

c
'

s curves to a
) we would at first

'
h

e chosen cut- K-0 s

g P

h

) obtained fo

)

, calculat d
's ri utions of tB f

n tirling (KMRS
o K i, artin,

urves in F
er s own

x where in th
the lower fi uw ile in

p
gU ansverse m

parison w

0-

) tll e approximation whe
replaced in E . sim

g

e uc ure function i.e.
ff . The i put F

i d t

p is

n ofzandth ~ e 'se
the quark an

o 'nr
. In

'
o ig. 7 shows that the

10

10 I I I

I

I I I IIII I I I I II

2

I I I I
I

(bj k = 10Geyey g —5Gey

10 I I I II I I I II I I I II I I III I I I I I I IL,

=1 2 or l, GeV2

10 =
x =10

C4

gp 10

10 =
K

10

10
10 10

I I I I I II

10
Xj

FIG. 7. The ial structure func
'

x, ) events with

re~laced

n to '
verse momentum

ive y.
squmed k = 5 m.d

10
10 10

X)

FIG. 8.
isl t f t

e if-

e in Eq.



46

difFe rence is dramatic
d 0.t}1

fo 1' to b

1 i in g e i
Lip t be sin u

an i entifie

h oththe magnitude of 8.„.) ...'"'

tio ofth C
e magnitude since

re ia e discriminat

p
s ow) the

gec t ert' i
e c oice of the cutoffs in

p ence of the r 1

e tran en a. Fi st w

. (13)[o E. ( Wo pinE.
resu ts to the c

d G . Alh1 2 ' t ough the cho. k
e uncertaint

ice 0
——4

'n y in normalizat' ion is ap-

I I II I I III)

10
U

CV

10

2
Q =5GeV

10
10 10

DEEP IN ELASTIC EyENTS C TAININ~ A MEASURED JET . .

x =10

I I I I I I I

X)

10

I I II I I Ill) I I I I I III

927

1 I I I I IIII

(gj 2
Q =5GeV

I I I I fill I I I I III',

FIG. 10. TThe differential

(, t tll
S

wi a measured jet (
n um squared

z, , k ) with t

CV)
CV

L3

10

-2
10

1 10

10

= 1GeV
= 2Gey

I IIIIII I I I I I IIII

2

I I I I IIIII

10 10 0

g2(Gey2)

10

I I I I IIII)

X =02

0
X=

1Gey

parent. We now turnw ll n
g t Fo. F gu 9

transver
0

b il h

ri ih

nction of z f d'e as a
rse momentum

8

m squared k

t
t do k'fr

ttll it . t .

'8
a

aiono e
we

inelastic m
in relation to ' ' e ee-
ofF.

1

o z. pl

inte dt t fu

0 10
L3 F', "(s ;xi ) 005 k ) 5GeV ) = 0.071

10
10

X)

10

e expected for an 0 a

Y
d }Ioou ee

'
wever, that the n

' '
o

wa e sensitivity of th D
h

e CD

e integrals over the
e cutoffs, k2 and

e transverse mmomenta.

FIG. 9. a~ The) The quark-box "drl g

n ( ) are obtained fro

y +0

' e om Eq. (8) when F

IV. SUMMARY

In this pa erper we have studid ed the propo a

efFects which
a unique probe of th

are expected to occ ' 'ono occur in this region.



928 J. KWIECINSKI, A. D. MARTIN, AND P. J. SUTTON

Indeed such an experiment offers a particularly clean way
to reveal the @CD (Pomeron) singularity implied by the
leading ln(1/x) resummation. The measurement has a
difFerent character from, and is complementary to, the
other proposed experimental probes of the small-z behav-
ior of the parton distributions such as heavy quark [13,18,
19] and J/Q [20] electroproduction, prompt photon pro-
duction [19] and ordinary inclusive deep-inelastic lepton-
nucleon scattering. Although such direct measurements
of parton distributions are extremely valuable, it will be
difficult to use them to unambiguously identify the gen-
uine Lipatov @CD growth with decreasing x. The reason
is that these processes (a) involve evolution in Qz which
steepens the small-z parton behavior with increasing Qz
and (b) require us to assume some input form of the par-
ton distributions, f, (x, Qo) (with, say, Qo = 4 GeV2),
which contain nonperturbative eff'ects. Thus we cannot
be sure whether an observed steep small-x behavior is
due to a combination of our input assumptions and the
Q evolution or is indeed a genuine Lipatov perturbative
@CD effect.

The unique feature of the measurement of deep-
inelastic (x, Q ) events containing an identified jet
(z~, k ) is the potential possibility of eliminating the
effect of the conventional @CD evolution by choosing
k Q and to cleanly isolate the small z/x~ behavior
directly at the yartonic level. Recall from our discussion
in Sec. I that, since

small z/x~ is directly linked to the high c.m. energy ps~
behavior of a partonic subprocess, that is the virtual-
photon —virtual-parton-a subprocess in Fig. 3. A simi-
lar kinematical parton configuration can, in principle, be
achieved in dijet production in hadronic collisions [16],
but the study of single jets in ep collisions should be ex-
perimentally much more accessible, particularly with the
advent of HERA.

We found that the singular small-z Lipatov effects dra-
matically modify both the shape and the normalization
of the jet spectrum in ep collisions (see, for example, the
difference between the continuous and dashed curves in

Fig. 7). The overall normalization is found to be subject
to ambiguities related to the choice of the low transverse
momentum cutoff. It is here that nonperturbative ef-
fects enter our study and lead to some uncertainty in
the exponent of the @CD singular zi ~ behavior with,
for different choices of the cutoff, o,~ —1 ranging from
about 0.35 to 0.5. However the shape of the jet spec-
trum is much less sensitive to the choice of the cut-offs
and so such measurements should serve as an ideal means
of identifying the @CD small-x behavior.

We also derived a closed analytic form Eq. (12), ad-
vocated in Ref. [14], which corresponds to the solution
of the Lipatov equation with fixed coupling n, (Q2) and
with no lower cut-off on the transverse momentum. This
approximation is found to grossly overestimate the jet
yield.

So far we have neglected shadowing corrections. The
rapid growth of the photon-virtual gluon subprocess in

Fig. 3 with decreasing x/x~ cannot go on indefinitely,
but must ultimately be suppressed by shadowing or re-
combination effects. These shadowing corrections in the
photon —virtual-gluon channel preserve the factorization-
like form [Eq. (8)] of the differential structure function

x~ BFq/Bx~ Bk . The corrections give rise to nonlinear
terms in the integrodifferential equation (13) for H which
would slow the rapid growth of F(z, k, Q ) with decreas-
ing z.

Conceptually these effects are the same as the shad-
owing contributions which occur in another process, one
for which we have some experience, namely the shadow-

ing corrections to the gluon structure function g(z, Q )
itself. In this case the rapid rise, with decreasing z, is in
the virtual-gluon —proton channel, and the suppression is
found [6, 7] to be small for z + 10 s. We would therefore
expect that the @CD predictions that we have shown, for
which z = z/z~ & 10, will have negligible corrections
for shadowing in the photon —virtual-gluon channel. Of
course it is possible that shadowing will be more compli-
cated, and even spoil the factorization structure of Eq.
(8), but it is unlikely that it will significantly distort the
shape of the jet spectrum in the region x/x~ & 10 s

accessible to HERA.
We conclude that measurements of deep-inelastic

(z, Qz) events accompanied by an identified jet (z~, k~),
with kz Qz, will provide a clean and unique way of
investigating the Lipatov perturbative @CD growth ex-
pected at small z = x/x~. This @CD landmark measure-
ment should be possible at HERA by studying the shape
of the jet spectrum as a function of x and z~ in the region
z 10 s and xz 0.1.
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APPENDIX A

Here we show how to write the basic box-diagram for-
mula (10) for the driving term, first, in the form of Eq.
(11), which is suitable for deriving an analytic result for
the (transverse part of the) difFerential structure func-
tion in the Gxed coupling case, and second in the form
of Eq. (15), which is suitable for studying the sensitiv-
ity of the numerical results to the value of the cutoff vo
on the integration over the transverse momentum. The
trick is to use the standard Feynman integral to rewrite
the integrand of the dzK integration in Eq. (10) in the
form
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~.(K, —k)
![~2+ Q2P(1 P)][(pg k)2+ Q2P(1 —P)])

=2 dAA
.2[(~- k)2+ Q2P(1 —P)] —~ (~ - k)["+ Q2P(1 —P)]

[AK + (1 —A)(K —k) + Q p(1 —p)]
(A1)

By replacing the transverse momentum variable K by

e'+ (1 —A)k (A2)

we can eliminate the angular dependence and reduce the twofold integration d2r to the single integration n dr' .
Equation (10) then becomes

k21 1 1 co

Fp(k, Q ) =) eq
' 'k Q dp dA dK,

'
[/3 +(1—p) ] A

7r 0 0 0

(2A —1)K'2+ (1 —A)[A(l —A)k2+ P(l —p)Q ]

[K' + A(1 —A)k + p(1 —p)Q ]

which after integrating over r'2 leads to formula Eq. (11)
for Fp. A related formula may be found in Ref. [21].
Imposing a lower limit cutoff rp on the integration in

Eq. (AS) gives Eq. (15) of Sec. II.

I

defined by

1

F(n k, Q ) = dzz" F(z k, Q ),
0

and conversely

APPENDIX B C+COO

F(z, k2, Q2) =
C—'LOO

dnz "+ F(n, k, Q ), (B2)

where the integration contour in Eq. (B2) is located to
the right of the singularities of F in n In term. s of the
moment function, the Lipatov equation, Eq. (9), reduces
to an integral equation in a single variable

In the fixed coupling case we can solve the Lipatov
equation Eq. (9) to obtain an analytic expression for the
leading small-z behavior of F(z, k2, Q2). The result is
formula Eq. (12) of Sec. II and is derived as follows. First
we introduce the moment function P(n, ...) of F(z, ...)

I

Fp(k2, Q2) So,, 2
~ dk'2 F(n, k'2, Q2) —F(n, k2, Q2) P(n, k2, Q2)

n —1 s(n —1) p
k'2

!
k' —k ! (4k 4+ k4)-'

This equation can be solved by taking the Mellin trans-
formP ( r ) ofP ( k2 )

I

where K is the Mellin transform of the kernel of the in-

tegral equation Eq. (BS), that is

which gives [3, 16]

P (n...Q') = Fp(r, Q2)

n —1 —(Sa, /m) K(r)

P (n...Q') = dk'(k')-"-'P(n, k', Q')
0

(B4)

(B5)

K(r) = —[4(r) + @(1—r) —2@(1)], (B6)

where 4' is the logarithmic derivative of the Euler gamma
function: 4(z)—:I"(z)/F(z). The function Fp(r, Q ) is
the Mellin transform of the driving term Fp(k, Q ). Us-
ing Eq. (11) for Fp(k2, Q2) and performing the k2 inte-
gration we find

F.(r, Q') = 4',,
'(Q')' " dA[A'+ (1 —A)'][A(1- A)]" ' dP[&'+ (1 - P)'][&(1-&)]

"

o! e
(Q ) "B(r+ 2, r)B(3 —r, 1 —r), (»)

sinxr

where B(a, b) is the Euler beta function. Finally, to obtain F(z, k2, Q ) we must calculate the double inverse of
solution Eq. (B5), that is

C+'EOQ y+$00 r
F( k Q)=! . ! d "+ d(k)"(2~i', , i; n —1 —(Sci,/vr)K(r)

Performing the n integration and changing the other integration variable r to
&

+iv we obtain
OO

F(z k2 Q2) d& (k2)~+ivpp(1 + i& Q2) + (k2)~-ivpp(1 i& Q2) z (3a,/w)K(~+iv)—
7t 0

(B8)

(B9)
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Now it follows from Eq. (B6) that the function K(z +
iv) is maximum at v = 0 and decreases with increasing
v. Thus the leading small-z behavior of F is controlled
by the contribution near v = 0. Expanding about this
point we find

F(z, k, Q ) = —(k )~Fp(r = z, Q )z

x dvexp
I

— 'K"(r = &)ln(1/z)v
p ( 2n'

x 1+oI (B10)(inl z)
where

n~ —1 'K(r= —,') = 12as'
1n2,

1 1

F z, k,
9n2 2+ezng f k& ) ~ zi
512 /21((3)/2 EQ p Qln(l/z)

(B12)

that was quoted in Eq. (12).

as in Eq. (5). If we now perform the integration over the
Gaussian form in v, evaluate Fp(2, qz) from Eq. (B7) and
note that K"(z) = 28((3), then we obtain the leading
small-z behavior,
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