
PHYSICAL REVIEW D VOLUME 46, NUMBER 2 15 JULY 1992

Comment on "Adiabatic holonomy and evolution of fermionic coherent state"
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We argue that the way to get the true adiabatic evolution of fermionic coherent states (FCS s) is to use
an averaged version of the quantum variational principle. Then Hannay's angle does not appear in the
global phase picked by the FCS during its evolution but in the argument of the parameter specifying the
FCS. In fact Abe's derivation of the classical holonomy must be understood in terms of canonical trans-
formations.

PACS number(s): 03.65.Sq, 02.40.+m

In a recent paper [1] concerning the extension of the
classical adiabatic holonomy (Hannay's angle) to the
Grassmannian case [2], Abe sheds new light on it by
calling for the introduction of fermionic coherent states
(FCS's}. Indeed FCS's, like the usual coherent states
(CS's), are known to be a suitable tool for exhibiting clas-
sical features at the quantum level. The model under
consideration is the Grassmannian spin which, after
quantization, becomes the well-known Pauli-spin system
with the Hamiltonian H(t)= —,'B(t) o. This Hamiltonian
also reads

H(t)= iB(r)i[b (r)b(r) —
—,']

in terms of fermionic operators which connect the lowest
eigenstate ~0, 8(t)} of H(t) to the highest one ~1,8(t)}.
One of the important results of [1] is that Hannay's angle
for the Grassmannian system (which is known [2] to be
the difference y, (t) yo(t) —of Berry's phases y „(t)
(n=0, 1) relative to the states ~n, B(t)})can be recovered
by the introduction of the FCS

~g(t), B(t)}=exp[b (t)g(t)+b(t)P(t)]~0, 8(t) )

and the evolution of the states
~ g(0), B(0)) . (Another re-

sult in [1],which we shall not comment on, concerns the
inverse problem of deriving Berry's phase from the classi-
cal Hannay angle through quantization. ) Our point con-
cerns the precaution to take when dealing with adiabatic
evolution of FCS's (or CS's). Although, following Ref.
[1], we consider the simplest two-level system example,
our discussion remains relevant for N-level systems and
also in field theory (where Berry's phase is closely related
to anomalies in some gauge theories with fermions). Our
remarks, which contradict several intermediary results of
Ref. [1] focus on the necessity, when dealing with FCS's
(or CSs) in the adiabatic limit, to consider, not the
Schrodinger equation as one does usually to get the
Berry's phase of an energy eigenstate, but an averaged
variational principle (where the average is over the argu-
ment of the parameter of the FCS}. As we shall show,
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this is the only correct way to obtain Hannay's angle
from the true adiabatic evolution of FCS's. The result is
that, in contradiction with a generally received opinion,
Hannay's angle does not appear as an external phase in
front of the FCS but inside its parameter's argument.
Then we shall prove that Abe's approach does not con-
nect, as claimed, the holonomy with the evolution of
FCS's but with canonical transformations. (This latter
approach has been, in the classical commutative case, the
one used in the pioneering papers [3,4].) Finally we shall
comment on a recent assertion according to which, in the
Grassmannian case, Berry's phase and the corresponding
Hannay angle may be identified [5].

Our first remark concerns the true adiabatic evolution
of FCS's. The simplest way to obtain it is to start from
the adiabatic evolution

~0, 8(0) }~exp[iyo(t) ]~0, 8(t) }
and

~1,8(0) & exp[iy, (t)]~1,8(r) &

of the energy eigenstates of H(0). As is well known, the
global phases y„(t) (n=0, 1) contain a dynamical part
y„(t)= —fg„(s)ds and a geometrical one y„(t)
=i f o(n, B(s)~B,~n, B(s) )ds (Berry's phase). From these
evolutions it is a trivial task to derive that of an initial
FCS:

~g(0), 8(0) ) = exp[ —
—,'g'(0)g(0)]

X[~0,8(0))—g(0)~1,8(0)}].
It simply reads

~g(0), B(0))—+exp[iyo(t)]~/(0)exp [i[y,(t) —yo(t) ]],B(t)}.

Therefore, up to an external phase factor, the FCS associ-
ated with the Hamiltonian at time zero moves into a FCS
associated with the Hamiltonian at time t. The main
point of this elementary result is that it differs from that
of Ref. [1] [formulas (22) and (23)]; in the true evolution,
the argument y&(t) —yo(t) of the parameter g(t) of the
FCS does not only contain a dynamical part y &

(r) yo(r)—
but also a geometrical one y&(t) —yo(t). This geometri-
cal part is nothing but (minus) Hannay's angle [2] and its
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presence at this place is quite natural. Indeed, as ex-
plained in Ref. [6] for ordinary CS's, the argument of the
parameter specifying the CS is (minus) the classical angu-
lar coordinate of a representative point of the system in
phase space, and therefore Hannay's angle which de-
scribes a geometrical drift of the canonical angle variable
must appear in this argument. What the above calculus
sho~s is that the Grassmannian case looks like the corn-
mutative one: Hannay's angle does not appear as the
geometrical part of the external phase in front of the FCS
[equal to yo(t) and not to y, (t) —yo(t)] but as the
geometrical part of the argument of g(t)

A second question of interest concerns the method
which consists, in order to find the adiabatic evolution of
coherent states (and FCS's in particular), of putting into
the Schrodinger equation test vectors ~g(t)) which are
the product of an unknown phase factor with a predeter-
mined coherent state: ~g(t) ) =exp[i/(t)]~lttcs(t) ). In
Ref. [1] (and in some other papers) the overall phase
P(t) is actually obtained through the relation
(g(t) ~iB, —H(t) ~P(t) ) =0 [understanding, of course, that
the predetermined state ~1(cs(t)) is the right one]. We
claim that this apparently natural procedure is ill found-
ed. The reason is that the so-called "solution" of the
Schrodinger equation in the adiabatic limit is not an ex-
act solution but an approximate one which becomes valid
only in the limit. Consequently, searching for an approxi-
mate solution, one must call for some variational princi-
ple and not for the Schrodinger equation to get the right
answer. As explained in Ref. [6], when dealing with adia-
batic approximation, the usual variational principle
(which is equivalent to the Schrodinger equation) has to
be replaced by an averaged version:

5 f (f(s) iB, —H(s)~g(s))ds =0.

[The overbar means that one first calculates the expres-
sion in the angular brackets for the value g(s)exp(i8) of
the parameter of the coherent state; then one averages
over 8 before varying the integral. ] One way to under-
stand the necessity of averaging is to remind ourselves
that, in the classical case, Hannay's angle is obtained
from a one-form averaged over the classical trajectory
and that (as previously quoted) there is an equivalence be-
tween the argument of g(t) and the angular coordinate on
the classical trajectory. Another way to convince oneself
is to make an explicit calculation and to recover the re-
sult of the previous paragraph. Let
~itj(t)) =k(t)~g(t), B(t)) be the test vector. The quantity
to extremize is then

~*(.)i(s)+ ~~(s) ~'(Ps), B(s)~(ia, —H(s)) ~g(s), B(s) ) .

A variation with respect to A, *(s) shows that the external
phase P(t) is the extremum value of the average quantity

f '(P(s), B(s)~(ia, —H(s)) ~P(s), B(.) ) ds .
0

From the definition of ~g(s), B(s) ) the calculation of the
integrand is easy and one shows that P(t) is the ex-
tremum of

5 S S S +yp g

+/*(~)g(~)[y](~) —yo(~)] 'ds .

[Notice that the effect of averaging is to eliminate cross
terms such as (0,8(s) ~B, 1,B(s)).] If one now varies this
later quantity with respect to g*(s) one recovers the re-
sults of the first paragraph, which are

g(t) =g(0)expIi[y, (t) —yo(r)]]

and

P(&)=y,(&) .

In conclusion, our second remark is a serious criticism of
the method followed in Ref. [1] [formulas (24)—(26)] to get
the global phase in front of a coherent state.

Our last remark concerns the reason why, nevertheless,
Abe obtains the exact Hannay angle from its formula
(26). We now show that the right-hand side (RHS)
[(g(t)~id, ~g(t)) —(g(t)~H(t)~g(t))] of this formula (26)
must not be interpreted as the time derivative of the glo-
bal phase of a FCS but as the new Hamiltonian obtained
after a time-dependent canonical transformation. In or-
der to understand this point it is useful to recall two re-
sults concerning the connection between the quantum
problem and its Grassmannian counterpart. (These re-
marks lie at the heart of Abe's approach and are quite ex-
plicit in his paper. ) The first one is that the mean value of
the quantum Hamiltonian in a FCS is the classical Ham-
iltonian. (For ordinary CS s this is true only in the classi-
cal limit. ) The second one is that the mean value of the
operator ir), in a FCS is the canonical one-form [i.e., the
Grassmann analogue of p(t)q(t) of the commutative
case]. Therefore the quantum variational principle with
fermionic coherent states

fi f '(1(„cs(s)~[iB,—H(s)]~/„cs(s))ds =0

is identical to the classical Hamilton's equations for the
variables g(t) The ques. tion now is what should we take
for FCS's? One may choose the FCS 's ~go(t), B(0)) asso-
ciated with the initial Hamiltonian H(0). In that case
the canonical variables go are chosen once for all. One
can also, at each time, choose the FCS ~g(t), B(t)). This
change of reference FCS, at each time, is equivalent to a
time-dependent canonical transformation [7] go~((go, t)
Such transformations have been the starting point for the
derivation of Hannay's angle in the cummutative case [4]:
the Hamiltonian which describes the evolution of the new
canonical coordinates is equal to the old one (written in
terms of this new coordinates) plus an extra term (the
time derivative of the generating functional of the trans-
formation) and Hannay's angle is the derivative of this
averaged extra term with respect to the action. Let us
now sketch what this procedure becomes in the
Grassmannian case. When one inserts the FCS
~g(t), B(t)) [instead of ~go(t), B(0))] into the quantum
variational principle, the mean value of iB, H(t) gains—
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the additional contribution

—i(g(t), B(t)~Bn~g(t), B(t))B(t) .

This term, which originates from the mean of the time
derivative operator, may be seen as a modification of the
Hamiltonian [to compare with the first term of the RHS
of formula (26)]. Then taking the derivative of the aver-
age g'(t)g(t)[7', (t)—yo(t)] of this quantity with respect
to the Grassmannian action g'(t)g(t) [1] one recovers
Hannay's angle 8 (t}=y,(t)—yo(t).

In conlusion, we have clarified three important points:
the correct expression of the adiabatic evolution of
FCS s, the inadequacy of the Schrodinger equation to
derive this evolution, and the distinction which must be
done between evolution of FCS's and time-dependent
canonical transformations. In so doing we have provided
three diFerent derivations of Hannay's angle (for the
Grassmannian spin system} from FCS's. Abe's derivation
seems closer to the last one although he never speaks of
canonical transformations. We think that this ambiguity
originates in the contradiction existing between its
definition (15) of the FCS [which coincides with our
states

~ g( t), B(t ) ) ] and relations (16)—(18) where he un-

duely identifies the diferent "vacua" ~O, B(t) ) to a unique
invariant one ~0). [In practice (18}helps Abe to elimi-
nate the above-mentioned cross terms which, in fact, can
disappear only if one calls for the averaging procedure. ]
Nevertheless, the "second quantization" idea suggested
by Abe's relation (18), although not valid in his approach,
is interesting. The right way to introduce it is to define a
true invariant vacuum ~0) and creation operators b„(t)
(n =0,1), which bring it to the "one-particle" states
~n, B(t)). In such an approach, which has been general-
ized to an N-level system in Ref. [8], the FCS depends on
two (N) Grassmannian parameters go and g&. The evolu-
tion of these FCS's is such that g„(0)~g„(0)exp[iy„(t)];
i.e., Hannay's angles coincide with the corresponding
Berry phases. This identification has already been no-
ticed in another context in Ref. [5]. It is, in our opinion,
the most natural relation between the classical and quan-
tum holonomies in the Grassmannian case because, con-
trary to the commutative case, the classical situation is
obtained from the quantum one without any limit pro-
cedure (fi~O or the action I~ ac ).
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