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We describe a technique for constructing the effective chiral theory for quenched QCD. The effective
theory which results is a Lagrangian one, with a graded symmetry group which mixes Goldstone bosons
and fermions, and with a definite (though slightly peculiar) set of Feynman rules. The straightforward
application of these rules gives automatic cancellation of diagrams which would arise from virtual quark
loops. The techniques are used to calculate chiral logarithms in fx /f ., m,, mg, and the ratio of (3s)
to {#u ). The leading finite-volume corrections to these quantities are also computed. Problems for fu-

ture study are described.

PACS number(s): 11.40.Fy, 11.30.Rd, 12.38.Gc, 14.40.Aq

I. INTRODUCTION AND MOTIVATION

The quenched approximation [1] to QCD, in which vir-
tual quark loops are neglected, is a necessary evil in lat-
tice QCD simulations and will be with us for the foresee-
able future. Even with the proposed QCD teraflop
machine [2], the quenched approximation will be needed
to approach the crucial corners of the parameter space:
large volumes, physical quark masses, and the continuum
limit. We therefore need to learn as much as possible
analytically about the quenched approximation in order
to have good control over the systematics of such calcula-
tions.

In the full theory, chiral perturbation theory (ChPT) is
a key analytic tool. It gives the following.

1. It gives the detailed form of the approach to the
chiral limit. The universal terms (“chiral logarithms”)
can be calculated order by order in the loop expansion.
Comparison with this expected chiral behavior provides,
for example, a crucial check of lattice weak matrix ele-
ment calculations.

2. It gives the leading finite-volume corrections at
large volume [3]. As the lightest particles, the pseudosca-
lar mesons clearly control these corrections; ChPT is sim-
ply the effective theory of their interactions.

It is therefore clear why one would like to have a
ChPT corresponding to the quenched approximation. In
fact, there have been several previous attempts to calcu-
late quenched chiral logarithms. Morel [4] and Sharpe
[5] use the strong coupling and 1/d expansions; Kilcup
et al. [6] and Sharpe [7] use the quark-flow approach (see
below). The papers by Sharpe in particular emphasize
the importance of quenched ChPT and mention several
of the key issues (in particular, the problems caused by
the %’). A preliminary version of the current work has
been presented in Ref. [8].

II. QUARK-FLOW APPROACH

In this approach, one starts with ordinary ChPT for
full QCD and writes down all meson diagrams which
contribute to the process of interest. To each meson dia-
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gram one then associates one or more quark-flow dia-
grams in QCD. Next, one eliminates all those quark-flow
diagrams which have virtual quark loops. Finally, one
attempts to reinterpret this elimination as conditions on
the meson diagrams. Note that, in the case where more
than one quark-flow diagram corresponds to a given
meson diagram, it is by no means obvious that the final
step can always be performed. We have been able to car-
ry it through, more or less satisfactorily, in simple cases
(see below), but have been unable to prove, within the
context of this approach, that it can always be done.

In order to go back and forth between quark-flow dia-
grams and meson diagr.ms, the natural basis to use is the
qq basis. In the neutral sector, this means that one works
with uii, dd, and s5 states rather than 7°, 7, and 7. The
latter basis is convenient in the full theory since one can
treat the 7’ mass as “large,” decouple it, and work only
with 7° and 7. This turns out not to be possible in the
quenched theory. In full QCD the 7’ gets the singlet part
of its mass (=pu) through the iteration of quark-loop dia-
grams joined by gluons (see Fig. 1). In the approximation
where the 7’ mass is much greater than the masses of the
octet mesons, the 17’ decouples and may be neglected. In
the quenched approximation, on the other hand, only the
first two diagrams in Fig. 1 survive, and only the second
diagram (the “two-hairpin” diagram —Fig. 2) depends on
p. The “two-hairpin vertex” in Fig. 2 is ~u?. Since the
vertex is not iterated, u? appears in the numerator, not in
the denominator, of the 1’ propagator. Thus the 5’ can-
not be neglected in the quenched approximation.

In many cases, it is immediately clear which full ChPT
diagrams should be dropped in the quenched approxima-
tion. For example, consider the lowest-order correction
to a 7" propagator: a meson tadpole, shown in Fig. 3.
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FIG. 1. Quark flow diagrams for the %’ propagator in full
QCD.
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FIG. 2. The “two-hairpin” diagram, the only diagram which
distinguishes the singlet-from the octet-meson propagator in the
quenched approximation.

When the tadpole is a K *, then the diagram must be ab-
sent in the quenched approximation, since the s quark in
the K1 is not present in the external states and must
come from a virtual loop. When the tadpole is itself a
w1, however, the situation is less clear. If the s quark of
the previous K tadpole is replaced by a d, then again
the diagram is absent in the quenched approximation.
But there is now a second possibility: the valence quarks,
themselves, could make the tadpole as in Fig. 4. The ver-
tex in such a diagram is a meson-meson scattering vertex
with no quark exchange. It turns out that such a vertex
vanishes at O(p?) in ChPT, although we have never been
able to prove this to our complete satisfaction within the
quark-flow approach.! Thus 7+ tadpoles are also absent
in the quenched approximation. Indeed, the only correc-
tion to the quenched m* propagator at this order comes
from an 7’ tadpole with a single two-hairpin vertex, Fig.
5.

The end result of this approach can be described as a
“Lagrangian + rules.” The Lagrangian is the ordinary
chiral Lagrangian corresponding to full QCD. The rules
give the weighting of the diagrams and prescribe how to
replace 17’ contributions by two-hairpin diagrams. How-
ever, we find this approach unsatisfactory for two
reasons. First of all, it is difficult to make the application
of the rules routine. As mentioned above, it is not obvi-
ous that one can always interpret the elimination of
quark-flow diagrams with virtual loops as conditions on
the mesons diagrams. One is, at the minimum, forced to
prove the vanishing of various vertices (such as the
meson-meson no-exchange vertex). Not only are con-
vincing proofs elusive, but new processes may bring up
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FIG. 3. The one-loop contribution to the pion propagator for
full QCD, with 7, 7% K *, K% n, and 1’ on the loop.

IFor the number of flavors Nz >4, it is easy to show that this
vertex vanishes. In that case, one can choose all four participat-
ing quarks to be different and thereby make a unique correspon-
dence between the quark vertex and a meson vertex. Examina-
tion of the trace structure of the O(p?) chiral Lagrangian then
immediately gives the desired result [12]. However, the proof in
this context for N-=3 escapes us, though the vertex certainly
does vanish, as can be seen by working backward from the
known result derived in the Lagrangian framework of Sec. III.

FIG. 4. A possible valence-quark contribution to the pion
propagator.

new such vertices, so it is never clear that all the neces-
sary proofs have been produced.

A second, more fundamental, problem with this ap-
proach is that the presence of the “rules” implies that one
does not have a true Lagrangian theory. This means, for
example, that the invariance of the physics under field
redefinitions is not guaranteed. Such redefinitions are
needed to reduce the number of terms in the Lagrangian
involving the n' — see Ref. [9]. (These terms are not con-
strained much by symmetry because of the anomaly.)
Similarly, the cancellation of the quartic divergences in
ordinary ChPT is guaranteed by the chiral invariance of
the Lagrangian and the measure. It is not clear (at least
to us) whether the rules automatically respect this cancel-
lation.

We therefore turn now to an alternative approach to
quenched ChPT which gives a true Lagrangian frame-
work and makes the calculation of quenched chiral loga-
rithms routine.

III. A LAGRANGIAN FRAMEWORK

We start with QCD. To make a Lagrangian that de-
scribes the quenched approximation, we take the ordi-
nary QCD Lagrangian and add, for each quark g,
(a=wu,d,s), a scalar (ghost) quark g, with the same mass
[4]. The ghost determinant then cancels the quark deter-
minant. Of course, the resulting theory is not unitary in
the quark sector; this is acceptable since the quenched
approximation is not unitary.

Assuming that quark confinement still holds, the low-
energy effective theory for this quenched QCD Lagrang-
ian may now be constructed. It will describe the interac-
tions of all possible pseudoscalar bound states of quarks
or scalar quarks with their antiparticles: ordinary qg
mesons (7,K,...) which we denote, generically, by ¢;
ghost g mesons denoted by ¢; and fermionic mesons gg
and g7 denoted by y and x', respectively.

As in ordinary ChPT, the symmetries at the quark lev-
el determine the form of the interactions among the
mesons. The symmetry is U(3|3); XU(3[3)g, where

FIG. 5. The quark flow diagram for the one-loop contribu-
tion to the pion propagator in quenched QCD.
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U(3]3) is “almost” a U(6) among u,d,s,i,d,s, but has a
graded structure since it mixes fermions and bosons [10].
If we write a matrix U €U(3|3) in block form as

A C
D B

) (1)

then 4 and B are 3 X3 matrices of commuting numbers,
C and D, of anticommuting. Unitarity is defined as usual:
U'U=1. Hermitian conjugation (T) also has the usual
definition (complex conjugation of the usual transpose),
but complex conjugation is defined to switch the order of
anticommuting variables: (€,€,)* =€5€]. There is also a
cyclic “supertrace” defined by str(U)=tr( 4)—tr(B), and
a “superdeterminant,” sdet(U)=exp(strinU), with the
property sdet(U, U, )=sdet(U, )sdet(U,). Explicitly,

sdet(U)=det(A —CB ~'D)/det(B) . (2)

Now define the Hermitian field ® and the mass matrix M
by

o= | V] = 2],
where
m, 0 O
M=10 my; O, 4)
0 0 m

is the usual quark-mass matrix. Note that, to lowest or-
der in M, these ChPT quark masses are the same as those
of QCD.

The unitary field Z=exp(2i®/f) transforms as
2-U, 20U, };. The Lagrangian invariant under the full
U(3(3), XU(3]3), is then

2
Linv=f?str(8#28“2T)+v strs+msh, )
where f and v are as yet undetermined bare coupling con-
stants. This looks very much like ordinary ChPT.

The anomaly breaks the symmetry group down to
SU(3|3), XSU(3]3), XU(1). The anomalous field is
®,=(n'—7%')/V'2, where the minus sign comes from the
relative minus sign between boson and fermion loops.
Under the reduced group, ®,xstrIn2=InsdetX is in-
variant, so arbitrary functions of ®; can be included in
the full Lagrangian .L. However, in the current frame-

work one can redefine X to simplify .£, much as in Ref.
[9]. The result is

L=V (Do)str(3,ZEN)+ V,(®y)str(MZ+MZ )
- V0(¢0)+ VS((DO)( a'uq)o)z ) (6)
L(Py=0)=L,,, , (7)

where the functions ¥; can be chosen to be real and even
by making use of the freedom allowed by field
redefinitions. In Ref. [9] a different choice is made: Vs is
set to O but ¥, is kept complex. The potentials ¥, and
V4 from Ref. [9] are not needed for the purposes of this

paper and have been dropped. Note that the notation in
Egs. (6) and (7) is slightly different from that used in Ref.
[8]. For the purposes of this paper, we need only the
quadratic terms in Lg, . We have

L":Linv"_a(aﬂq)o)z_ﬂzq)(z)'*‘ Tty
pA=1VE(0) .

One can now calculate straightforwardly with £. Note
that because of the minus sign in the definition of str,
some of the fields will have negative metrics. An unusual
feature occurs in the 7,7’ sector: terms from ¥V and V5
have a different matrix structure from those of .£;,,, and
one cannot diagonalize the quadratic Lagrangian in a
momentum-independent way. This leads us to treat the
quadratic terms from ¥V, and V5 as vertices. Iterations of
these vertices on the same line then automatically vanish
due to cancellation between the 7' and the negative
metric 7). This is a manifestation of the fact that the
iteration of the two-hairpin vertex is forbidden in
quenched QCD. When m,¥m another peculiarity
occurs: the 7° is the only well-behaved neutral particle.
The propagators of the orthogonal states do not have
simple-pole structures. When also m,#m,, even the 7°
propagator becomes ill behaved.

Because of the unusual structure of the neutral sector,
it is convenient, both in the formalism and in actual com-
putations, to write the neutral meson propagators in the
basis of the states corresponding to u#, dd, s5 and their
ghost counterparts. As mentioned above, this is unlike
the case of full QCD, where, due to the singlet part of the
7’ mass, the propagators in this sector are diagonal in the
7% 1,7’ basis.

Since we have a true Lagrangian theory, the symmetry
should guarantee that any quartic divergences in the di-
agrammatic expansion will be canceled by contributions
from the measure, just as in the full theory. We have ex-
plicitly checked this in the SU(1|1), XSU(1|1); case.
The SU(3|3), XSU(3|3), case is considerably more com-
plicated; however, it turns out that no quartic diver-
gences appear in any of the calculations presented below.

The vertices from ¥V, and ¥V can in principle appear
more than once in a diagram if they occur on different
lines. However, it is our philosophy to treat the parame-
ters u? and « as small. This is certainly true in the 1/N,
expansion. (Recall that in full QCD the %’ gets its singlet
mass at order 1/N, [11]). Moreover, it appears that the
real expansion parameters are a/3 and u?/3 (see below).
To estimate the size of the one-loop corrections, one may
take a=0, neglect -7’ mixing, and use the physical 75’
mass. One gets p?/3~(500 MeV)?*~m2, which leads
one to expect that quenched ChPT should be roughly as
good as full ChPT for the koan.

IV. RESULTS AND CONCLUSIONS

We have calculated, at one loop, m_, mg, f., fx»
(uu ), and (3s ). In the isospin limit (m,=m =m) and
at infinite volume, we get
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2 2
1loop )2,y H— a2 pooa B 2a , 2, 2
(m . °°P) 2f2 3A 3 + 3m,,-f- 3 M In(A*/m?%)
( lloop)zz 2 14+ 1 £A2+ H_z___g_q 1 2
K TR 82 |3 3 73 Mk [In(AY/m)
2 2mi—m 2mi
£ _Zomi-m?) LS P S|
[3 3 2Ami—m2) " | m? ’
f717_loop=f , 9)
fr |1P 1 |a }£+(yz/a)m§~(a/3>m3,(2m,2<—mf,)1 2m? 1
K - L2 _ i
fa 16722 | 3K 3 Ami—m?2) "2
— 1
m<uu>lloop:__‘i_(m11.rloop)2f2
STE S LT PSS SR S PRVND S - C NN V7L SN SR D PP S
s 4 K m 87T2f2 3 3 3 K T

2
*(ZmK m?2 %

where A is the cutoff, and my,
rameters:

m ., and f are the bare pa-

, 4vim,+m)

It should be noticed that, except for the A? terms, a
terms are actually higher order in a combined expansion
in 1/N, and M. This implies that, apart from quadrati-
cally divergent terms, we may set a=0 in Eq. (9) sys-
tematically.

Note that in the quenched approximation the ratio
Sfx/f, is finite at one loop, unlike the full theory where
this quantity contains a logarithmic divergence. In fact,
if we consider ratios in which the quadratic divergence
cancels, and then set a=0 as argued above, the ratios
(mg'°P/m11°P)2 and ((5s)/(@u))''°°P are also finite.
Expressed in terms of the bare quark masses we have

m11<100p 2
mTIrloop
m+m m
= ) PV B PO In(m,/m) ||,
2m 8m2f? mg—m
<o )1 loop
L) 00y B3 im sm) | an
(Eu )1 loop 87T2f

Despite the fact that many of our one-loop results are
finite, they are not quantitative predictions because the
terms in the O(p*) Lagrangian (the L;’s of Gasser and
Leutwyler [9]) may also contribute. In other words, we
have computed the ‘“‘chiral logarithms” only, not what
are usually called the “finite terms” (which are always
uncomputable in ChPT). One would need in general to
take further ratios of physical quantities to eliminate
such uncertainties.

Using a=0 and p as estimated above and neglecting
the “finite terms,” (fg/f,)!'°®=1.07, indicating that

I

quenched ChPT is working well. Note however that
(mllop /m )2=1.5 for A=1 GeV and
({55 ) /{au )) °°P=0.4, although these ratios are not
directly physical, and the large corrections should
perhaps not be worrisome.

We have also computed the leading finite-volume
corrections to the above results. The calculation is
straightforward: we simply replace the infinite-volume
meson propagators by their finite-volume counterparts.
We find

2 2 172 .
11 2 _ 2 My
Al(m 7007 )") = 2f2 (,u am;) m,L € ’
Al(m lloop )2)=0
A(f:r]oop):()
(12)
A((fg/f )t 1o°P)
1/2
1 21 —m_L
= (u*—am?) e 7,
167212 1 L
mz ) 2
— \1 loopy— _ 2 w m.
A(mau ) ) “Ten ~(ur—am?) Z e ,

A(m (35 )y 1oP)=0

where A (quantity) denotes leading order finite volume
corrections to be added to the infinite volume one-loop
expressions for the quantities given in Eq. (9). L is the
spatial size of the box. We have assumed periodic bound-
ary conditions? and T >>L, where T is the temporal size

2In order to preserve the graded symmetry, the ghost quarks
must have the same boundary conditions (antiperiodic or
periodic) as are chosen for the quarks. All mesons, including
the fermionic ones, will thus have periodic boundary conditions.
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of the box. In addition we have neglected terms of order

e —ma(V2L) and of order e ¥ L. Thus the leading correc-
tions come only from pions propagating from the closest
periodic images of the original box. Finally, we have tak-
en only the leading contribution to the pion propagator
and neglected terms of order (m, L) 3% """. Note
that the terms we have neglected may very well not be
small in many current lattice simulations. In such cases,
the exact one-loop finite volume corrections (computed
by using the exact finite-volume propagators) should be
used.

Some comments on our results and directions for fu-
ture work follow.

1. The absence of chiral logarithms in m . seen in Ref.
[5] is presumably a feature of the leading term in the 1/d
expansion. Indeed, the ' diagrams which give such loga-
rithms are mentioned in Ref. [7].

2. Many of these results [e.g., (fx/f,)! "%,
({35 ) /{au))' °?, or m1°°P /m ] blow up as m —0.
This is an IR effect coming from the double pole of the
two-hairpin diagram and is absent in the full theory
where the vertex is iterated. It is not clear at this point
whether this is a sickness of the quenched approximation
or only of the current quenched chiral expansion.

3. A Gasser-Leutwyler [9] program for quenched

ChPT at one loop is possible: we expect there to be in-
teresting numerical relations involving only computable
(on the lattice) quantities. Such relations could give
quantitative insight into the effects of quenching.

4. The techniques described here can be easily used to
generate the effective theory for a QCD in which the
quark loops are not neglected, but the masses of valence
and virtual quarks are not identical. Such an effective
theory is relevant to many ‘“full QCD” simulations.
Similarly, one can generate effective theories which corre-
spond to the quenching of some, but not all the light
quarks.

5. It seems to be straightforward to extend these ideas
to the calculation of the chiral logarithms in weak matrix
elements.
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