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In odd-dimensional spaces, gauge invariance permits a Chem-Simons mass term for the gauge
fields in addition to the usual Maxwell-Yang-Mills kinetic energy term. %e study the Casimir effect
in such a (2+ 1)-dimensional Abelian theory Th. e case of parallel conducting lines was considered
by us in a previous paper. Here we discuss the Casimir effect for a circle and examine the effect of
finite temperature. The Casimir stress is found to be attractive at both low and high temperatures.

PACS Numbers: 12.20.Ds, 14.80.Am, 72.20,My, 74.65.+n

I. INTRODUCTION

By now it is well known that, for theories in odd-
dimensional spaces, one can add a gauge-invariant Chern-
Simons mass term for the gauge field in addition to the
usual Maxwell-Yang-Mills term [1,2). Recently there has
been considerable interest in such a (2+ 1)-dimensional
Abelian theory in connection with the studies of the frac-
tional quantum Hall effect [3 in semiconductors and of
high-T, superconductivity [4 in copper-oxide crystals.
The Lagrangian for the Maxwell-Chem-Simons theory
written in curvilinear coordinates is

The equations of motion (1.4) are obviously invariant
under a gauge transformation, while the Lagrangian
changes only by an irrelevant total derivative.

In a previous paper [5] we considered the Casimir effect
between parallel conducting lines in two spatial dimen-
sions for the Maxwell-Chem-Simons theory defined by
(1.4). At zero temperature we found an attractive force
per unit length given by (47) of Ref. [5]:

(1.7)

g4F""F„„—+ 4ipe" pF pA„,

where g is the determinant of the metric g„„and

e" p = v'-ge" p (1.2)
fT~oo 1

4vrpa~

OO 1
dy

ey —I gyz 4lt2tis
(1.8)

where a is the separation of the two parallel lines. At
high temperature, P = (kT) i « 4+a, we found

e" p(B Ap —BpA ),2g —g

we can rewrite (1.1) as

l: =
2 g g(F"Fg + pF"—Ap).

(1 3)

Varying l: with respect to A„we find the equations of
motion

e" PB Fp+ pg gF" = 0, —

which satisfy the Bianchi identity

B„(g gF") = 0, —

(1 4)

(1.5)

consistent with (1.3). We can identify p, as the mass of
the gauge field by using (1.4) to show that in Cartesian
coordinates

(—8"Bp+p )F"= 0.

is a tensor density, with eoiz = l. In terms of the dual
tensor

FA 1 AnPy= 26 ~p

In this paper we turn to the case of a circular bound-
ary. In Sec. II we compute the Casimir self-stress start-
ing with the reduced Green's functions, both inside and
outside the conducting circle. The representation of the
product of two fields at a point is obtained by allowing
the two field points in the Green's function to become in-
finitesimally close. A formula for the force on the circle is
obtained in terms of Bessel functions. In Sec. III uniform
asymptotic expansions for the Bessel functions are used
to obtain an approximate numerical result for various
values of the Chem-Simons mass ls. In Sec. IV we exam-
ine this effect in the limit of high temperatures. Phys-
ically, to obtain a (effectively) two-dimensional system,
one needs to freeze the degrees of freedom in the third di-
rection perpendicular to the two-dimensional plane. Ac-
cording to quantum mechanics, it takes a finite amount
of energy to excite the motion in the third direction. So,
if the temperature is low enough, all the particles will re-
main in the ground state for those degrees of freedom and
the system behaves as if there were only two spatial direc-
tions. Implicit in our discussion of the high-temperature
limit in Sec. IV is the assumption that the temperature
is sufficiently low so that the degrees of freedom in the
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perpendicular directions are not excited. However, the
high-temperature result for the 2+ 1 theory is of field-
theoretic interest in its own right. In Sec. V we give
a brief discussion, and a comparison with the massless
(3+ 1)-dimensional Casimir effect for a cylinder [6]. For
that comparison we also need the result of the (massless)
scalar field case for the circle, the derivation of which is
relegated to the Appendix.

i(F"(x)F"(x')) = , "'8.'(F"(*)A (*'))

1
,
e" PB' G"p(x, x'), (2.9)

where g' = g(x'). We then have

(t P) = lim —.(eP~ 8'G —2g Pg„„e"~ 8'G" ),
1

II. CASIMIR SELF-STRESS ON A CIRCLE

We can rewrite the Lagrangian in (1.1') in terms of the
fundamental variable A„as

(2.10)

where the limit x' g x is to be taken symmetrically. For
the problem at hand we use polar coordinates

giejd 6 6 BggAp 8~Ag
Rap Igggr

2 —g

+ 'pe "~pB-~ApA), .

Note that the last term is independent of g„„. Varying
the Lagrangian (1.1") with respect to g»,

xi' = (t, r, 8),

so that the metric is given by

g„„=(—l, l, r ), v' —g=r.

Then the (t ) component is given by

(2.1la)

(2.11b)

bZ= sag Pt P,

we find

t p = g g(F Fp ——2ig pFpF")

(2.1)

(2.2)

for the stress tensor density for the photon, where we
have used bvt' —g = v' —gag»bg».

Next, we introduce the propagator D„, for the A„ field

according to

Ae(z) = J dz'g g(z')De (z—z')J, (z'"), ,

where J„ is the source for the A„ field. Equivalently, D„„
is given by the time-ordered vacuum expectation values

(t") = (i"")

2i (88' Bt' )1(8 o 8 o'l

"' I''G2 ' Gs'I
2i (,Bt' Br' )

(2.12)

G "( z)z=f e ' ~' ~ ) e' ~ Z~g '(rr')
m=-oo

We further introduce the Fourier transform appropriate
to the polar coordinates:

D„„(x,x') = i(A„(x)A„(x')). (2 4)
(2.13)

Similarly, we introduce the Green's function G„„accord-
ing to

ge(z) = fdz'Q —g(z')Ge'(z, z') J,(z'). (2.5)

e„""B„Gg + IJGIg = — g„b(x —x'), (2 6)

The equations of motion (1.4) imply that G» satisfies
the equation

where we have suppressed the dependence of the reduced
Green's function g on rn and ~. In terms of the Fourier
transform

(til) (gl go ) (gl + sgs )2 2

+ —,. I,g 2+r, g o I

1 (8 () 2 8
2i ( r' Br' )

= —(gi' —go') ——(r'gi' + gs')
2 2

where e&"" ——g~peP""/g g Equa—tio.ns (1.3), (2.3), and
(2.5) can be used to show that

1 ('B,s s 8
, "go'+ 8,gs' I,

2'd (, r' Br' (2.14)

G„„(x,x') = e„PB Dp„(x, x')
g—g

or, with the help of (2.4),

Gp (»x') = i(Fp(x)A (x')).

(2.7)

(2.8)

The vacuum expectation value of the stress tensor can
nova be put in terms of the Green's function by using

where the limit r' ~ r is understood, and ere have sup-
pressed all the (obvious) arguments. Henceforth, unless
stated otherwise, by g we mean g(r, r')

We now must solve the Green's function equation (2.6)
for the various components which appear in (2.14). The
corresponding equations for the reduced Green's func-
tions fall into three groups. The 6rst involves the 0, q,
and q components:



KIMBALL A. MILTON AND Y. JACK NG 46

1 0 p 4m p p 1———g2 + gi + pgo = — b(r —r'),
r Br r 27rr

tm p z(d p p
go + —g2 +Pgi =o,

r r

(2.15a)

(2.15b)

i~—rgi —r —gp + pg2 = — b(r —r ),2 2 2= 1 I

Br 27rr

which can be combined to yield

t'B2 1 B m2
+ -—— + ~' - p'

I
go'

iBr2 r Br r2 )

(2.19c)

i~rg—i —r—gp + p, g2 ——0.
r

(2.15c)

4J —P b(r —r'). (2.16a)2' pr

From gpo we can determine the two other Green's func-

tions according to

g2 =—p me+ pr~8
4)2 p2

1m p iM p

pr pr

(2.16b)

(2.16c)

Similarly, the p, r, and 2 components of (2.6) are

1B i im———g2 + gi +Pgo =o,
r Br r

(2.17a)

We combine these equations to find the second-order
equation satisfied by gp .

m'
2 2i p+-—— +~ -p Igo

r(Br rBr r

f'm~ 1 B t 1
b(r r')—, (2.20a)

i pr r Bri 27rr

1 ( Bi
g2 ———

i
nun+ p,r—I go~2 —p2 ( Br)

pb(r —r')
2mr(~2 —p2)

' (2.20b)

Fi =F„=O at r=a. (2.21)

It is interesting to note that this is precisely the con-
dition necessary to ensure the gauge invariance of the
Lagrangian (1.1'). That is, the mass term

2 p, dx g gF"Ap— (2.22)

'Em g RCd

gi = — go ——g2 (2.20c)
pr pr

Again we ignore the b function in (2.20b) in what follows.

We solve these equations for the reduced Green's func-

tions subject to perfect eonduetor boundary conditions
at r = a. That is, the tangential electric field must vanish
on the circle, or in terms of the dual field,

im g 1& 1—
go + —g2 +Pgi =—

r r
1

27rr
(2 17b) is gauge invariant only if we neglect the surface term [see

(1 5))

ltdrgl ——r—gp + pg2 = 0~r
(2.17c) 2p, dx Q gF"BAA = 2—ip dSgg gF~A = —0, (2.23)

which can be combined to yield

( B 1 B m+-—— +~ —p go
(Br2 r Br r2

i (mp Bi—(u —
~
b(r —r'), (2.18a)

27rpr ( r Br)

which is true if the normal component of F" vanishes on

the bounding surfaces.
We begin by solving the system of Eqs. (2.16). The

solution to (2.16a) is

2

gp = — . J (Ar()H (Ar&) + AJ (Ar) + OH (Ar),
4ip

gi' = 1 /imp . Bi+ old — p
Ld —p ( r Br j

p b(r —r')
27( r p —4J

g2 = ——go + gz + b'(r —r ).m g 1pr g
'L I

4) 21t 4)

(2.18b)

(2.18c)

(2.24)

where A = u —p, , J~ is the Bessel function of the

first kind, H = H is the Hankel function of the first

kind, and r( (r&) is the lesser (greater) of r and r' The.
constants A and O are to be determined by the boundary
condition (2.21). When we insert (2.24) into (2.16b) we

find

g2 —— (HJ)(r, r') —
, [Ag (Ar)+O'8 (Ar)],

1 8 2 im———g2 + gi +Pgor Br r
(2.19a)

im g i(d 2=go + —g2 + Pgir r
(2.19b)

Henceforth, we will ignore the b functions in (2.18b) and

(2.18c) because we are interested in the limit r ~ r'.
Finally, the p, &, and p components satisfy

(2.25)

where we have introduced the abbreviations (the prime

stands for the derivative with respect to the argument)

~ (&) = J (&) + J' (&) (2.26a)
m&

'R (x) =H (x)+ H' (x), (2.26b)
mv
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H (Ar') J (Ar), r & r',
(2 27)J (Ar')'H (Ar), r & r'.

When (2.24) and (2.25) are inserted into (2.16c) we ob-
tain

mA'
g&0= [J (Ar&)H (Ar&)+AJ (Ar)+BH (Ar)]4p~r

cd m+, [
—(HJ)(r, r') —Ag (Ar) —BR (Ar)]

4p, ~r

= ——[(HJ)(r, r') + Ag (Ar) + O'8 (Ar)],

B = -~ ( ') H (A ')
'H (Ao,)

(2.34)

from which we deduce the explicit form for these compo-
nents, for r, r' ) a:

gp = — . J (Ar&)H (Ar&)
4ip

~

Outside the circle, r, r' ) a, we must have outgoing
cylindrical waves, so A = 0, and the boundary condition
gq

——0 at r = a implies from (2.28) that

where we have rescaled the constants

(2.28) H (Ar)H (Ar')
J' (Aa)

Aa
(2.35a)

A= — A
A2

and have defined

&-( ) = J-( ) + J' ( )mp
A~= —g (z) ——J (z),p2 p2

R (2:)=H (x)+ H' (x)
mp

A2= —'R (x) ——H (x),p2 p2

(2.29)

(2.30a)

(2.30b)

(2.30c)

(2.30d)

g& = — . (HJ)—(r, r')+ 'R (Ar)H (Ar') ~,
g (Aa)-

(2.35b)

gg = ——(H J)(r, r') — 'H (Ar)H (Ar') ~.
m t'

4r
~

'
Aa

(2.35c)

Next, we solve the system (2.18). It is slightly harder
to solve (2.18a). We write

(HJ)(, )
H (Ar') J (Ar), r & r',
J (Ar')'M (Ar), r & r' (2.31)

gpc = — . J (Ar&)H (Ar&)

Now we are in a position to impose the boundary con-
dition (2.21) on gq . First, we consider points inside the
circle, r, r' & a. From (2.28) we see that B = 0 in or-
der that the solution be finite at the origin. Then the
boundary condition gqo ——0 at r = a implies from (2.28)
that

~=- -(")J„(A,),g (Aa)

from which we deduce the explicit form for these compo-
nents, for r, r' & a:

gp = Ag J (Ar) + BgH (Ar), (2.36)

where the upper (lower) sign holds if r & r' (r & r').
Equation (2.18a) implies that the derivative of go is dis-
continuous at r = r':

$m

27rrl
= (A+ —A )Ar'J' (Ar')

+(B+ —B )Ar'H' (Ar'), (2.37a)

while the function itself is discontinuous:

, = (A+ —A )J~(Ar') + (B+ —B )H~(Ar').
2%pr

(2.37b)

These equations are solved by

'8 (Aa) J (Ar) J (Ar') (2.33a)

Ap —A =,'H (Ar'),4rl

B+ —B = —,g (Ar').
4rl m

(2.38a}

(2.38b)

g&o = — . (HJ)(r, r')+ — J' (Ar)J (Ar')
m, (u ~ —,'8 (Aa)-

(2.33b)

g, ' = ——
~ (HJ)(r, r') — ~ (Ar)J (Ar')

m(

(2.33c)

B+'8 (Aa)+A++ (Aa) = 0.

Solving these equations gives, for r, r' & a,

(2.39)

gp' =, (JH)(r, r')+ — J (Ar)g (Ar')
m t, '8 (Aa), I

(2.40a)

Inside the circle, r, r' & a, we have B = 0 and the
boundary condition given through (2.18b) implies
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gi' = s, —g (Ar&)'8 (Ar&)'"rr' i

+ g (Ar)g (Ar')
'R {Aa)

(2.40b)

m'~
gz = A2, 2

[J—H](r, r')
4A2rr'2

~

+ Z (Ar)g (Ar')
'R (Aa)

(2.45c)

ga = —
4A2, I [H—J](r, r')+ j (Ar)g (Ar') ~.

(2.40c)

Here we have introduced the abbreviations

(JH)(,)
J (Ar)'8 (Ar'), r ( r'

(HJ)(, )H (Ar) J (Ar'), r & r'

(2.41)
and

and outside the circle (r, r' & a),

gp =—, (J—H) (r, r')
4pr"

+ H (Ar)'R (Ar') l,
g (Aa)

jm2 2

gg = ~,~
—g (Ar&)'R (Ar&)

(2.46a)

[HJ](,)
'8 (Ar') J (Ar), r & r',
g (Ar')N (Ar), r &r'. (2.42)

R (Ar)R (Ar'), (2.46b)
g (Aa)-

B 'M (Aa)+A J' (Aa) = 0. (2.43)

So now the solution to the system (2.18) is, for r, r' & a

Outside the circle, r, r' & a, A+ ——0 and (2.18b) im-
plies

rn (d
gg~ —— , [JH](r, —r')

4A~rr'~
~

(Ar) R (Ar')
J' (Aa)

(2.46c)

go =, (JH)(r, r') +— H (Ar)'8 (Ar') ~,
m f', g (An)

(2.44a)

gi' =, , ~

—Zm(Ar&)&m(Ar&)4A2rr'
i

where

(JH)( I) M~(Ar )J~(Ar)i r & r
(HJ)( /

)(Ar')H ('Ar), r & r'

(2.47)

and

+ '8 (Ar)'8 (Ar') ~,

J' (Aa)
(2.44b)

JH]{ ') ' [HJ]{ '
J (Ar')'H (Ar), r &r'

(2.48)

m 4)
g, ' = —,, [HJ](r,")-4A'r'

~

'M (Ar)'M (Ar')
J' (Aa)-

(2.44c)

Note that there are only six independent Green's func-
tions because of the following symmetry relations be-
tween them:

go2 = — (JH)(r, r')—4pr'~ '(

+ J (Ar)g (Ar')
'H (Aa) (2.45a)

The system (2.20) is solved in just the same way. The
result is, inside the circle (r, r' & a),

r' gg (r, r') = g2'(r', r), —

r'~go~(r, r') = g2 (r', r), —

gp'(r, r') = gg (r', r),

g, '(., ")= g, '(",.),
gg~(r, r') = gg (r', r),

r' g2 (r, r') = r g& (r', r)

(2.49L)

(2.49b)

(2.49c)

(2.49d)

(2.49e)

(2.49f)
2 2

g~' =
4 A, „l Zm(Ar&)—&m(Ar&)

+ g (Ar)g (Ar')
'8 (Aa)—

(2.45b)

Using the above symmetry relations we can write the
expression for the vacuum expectation value of the rr
component of the stress tensor (2.14) as (recall that the
limit r' —& r is understood)
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(t ) = ——i, r' gs +,gg ~. (2.50)
2i ( T' r'

What we require, in fact, is the discontinuity across the
surface of the sphere:

(2.51)

From (2.45a), (2.46a), (2.33b), and (2.35b) we find, for
this discontinuity,

(t )=— +[~
& (~a) & (~ )z)

m2

, I [&-(~ )]'+ [&' (~ )]' (2.52)

(zJ' (z))'= —z
~

1 —
i
J (z).

mzi
z') (2.53)

Equation (2.52), when integrated over the frequency u
and summed over rn, is our general analytic expression
for the Casimir stress on a conducting circle:

Here, we have used (2.26a) and (2.26b) as well as the
Bessel equation

III. NUMERICAL RESULTS
AT ZERO TEMPERATURE

We now turn to the task of extracting a numerical
result from expressions (2.54) and (2.52). To do so, it is
convenient to rotate the contour of frequency integration,
u -+ i(, define the dimensionless real variable z by z2 =
(~a~+ p~a2, and introduce the modified Bessel functions

f", a(c")
—OO

(2.54)
I,(z) = e ~ 'J„(ze~ '),

K„(z) = ie~""I—I„(xe~")
2

(3.la)

(3.1b)

is the total force on the circle. i (Recall tii is the stress
tensor density, so a factor of a = g—g on the surface is
already absorbed. )

(For details of the contour rotation see, for example, Ref.
[7].) When we explicitly symmetrize between positive
and negative values of z (or m), we find the result

[I (x)K' (x)+K (z)I' (z)]
2~a2 p2a2 m2 gzs gag I2 (x) y z2(z2 p2a2)I12(z)/m2p2a2

K (z)I (z) + z~(x —p a )K' (x)I' (x)/m p a
K2 (x) + z2(z2 y2a2)KI2( )/z2mp2 2a (3.2)

In the massless limit, pa ~ 0, (3.2) simplifies dramat-
ically:

OO

Fp ——— dz z—ln[2zIi (x)Ki (z)].
21l a2 o dx

(3 4)

1 ~ dF = — ) dzx 1n[x~I' (z—)K' (x)].
2KG p

(3 3)

We consider the m = 0 and the m g 0 terms in (3.3)
separately. As usual in Casimir calculations [8], we ignore
terms in the integrand of (3.3) which are powers of x
(contact terms). (Note that a power of x corresponds
to a polynomial in derivatives of b functions in time. )
In particular, for the m = 0 term, we add a contact
term to the integrand to make it converge, so that the
corresponding contribution to the force becomes

Straightforward numerical integration gives the attrac-
tive result

1 0 254
2~G2 G2

(3.5)

I' (x)K' (x) - — —,(1+z')'i', (3.6)

where z = x/rn The correspo. nding contribution to the
force is

For m g 0 we make use of the uniform asymptotic expan-
sions for the modified Bessel functions [9]. The leading
term gives

We should also be able to derive the result (2.54), (2.52)
kom the vacuum energy. It is easy to do so for p = 0, but
much more elaborate for y, g 0, so we forego further discussion
of this point.

FgT -—, dxx'2 )27tG o '+ "'

where the sum is performed according to

(3.7)
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1 12) = —coth 7t.x ——.
m2 X2'

m=1
(3.8)

Again, we supply appropriate contact terms, so that this
leading term m g 0 contribution is

1
LT —

4
1

24Q2' (3.9)

only 16% of (3.5). We should now correct (3.9) by
including the next-to-leading corrections. However, it
is not hard to see that these possess an infrared di-
vergence, a phenomenon which is associated with the
low dimensionality of the problem. This divergence
is probably spurious: each integrand in (3.3) is quite
accurately represented by the leading term given in
(3.6). {Even at m = 1, the maximum value of
ln[ —2z2I~(x)K~(z)(mz + zs) ~~s] is less than 7% of
the value of ln[ —zsI' (x)K' (z)], and globally the fit is
excellent. ) This divergence, of course, is regulated by the
mass p, so we will discuss this point further below.

When y, g 0, the calculation proceeds similarly. We
first treat the m = 0 term, which is easily seen from
(3.2) to be the obvious generalization of (3.4):

1 z
Po = — dx —ln[2zIq(x)Kq(x)].

27l a ~I2 zs —pzas dx

mz'
(3.1la)

2P Q

z (z —p a ) m z2 &2my)~(*)+,„... ~(*)- „..., 2
(3.11b)

2y2 Q2 2Q2 m2z2 7rKs ( )+ (* IJ )Ka( )
—2yIyy)

IfQ2P2Q2 @2Q2g

(3.11c)

(The value of rl is, evidently, irrelevant here. ) The fourth
factor requires that we go out to the next-to-leading or-
der:

I (x)K' (x) + K (z)I' (x) -—,ts. (3.12)

Here, adopting the notation of [9], we have the abbrevi-
ations

m g 0 we use the uniform asymptotic expansion for the
modified Bessel functions. Doing so with the general ex-
pression (3.2) requires only the leading terms for three of
the factors there:

x2(x2 p2a2)I (x)K (x)+ . . . I' (x)K' (x)m p a

(3.10) t = (1+z')-'~', z = —.
m

(3.13)

The results of numerical integration of (3.10) are shown
in Fig. 1. This contribution to the force decreases rapidly
from the massless value (3.5) to zero as pa y oo. For

We substitute these asymptotic expressions into (3.2) and
carry out the sum on m using (3.8), again omitting con-
tact terms. The result is

1 1 ys 1 (27rpa)s (1 ) 1

2uy (2w)y 2 „y'y~ —(2wya)& e& —I y I y ) (e& —I)
2 — —+1 + (3.14)

2.0 , 0.40

1.5 -'
0.30—

0.20—

1.0—

0.10—

0.5—
0.00-

0.0
0.0 2.0

I

4.0 6.0
I

8.0 10.0 0.5 1.0 2.0

FIG. 1. The contribution of m = 0 to the Casimir force
at zero temperature, Fo, given in (3.10). Plotted is fo ——

—2~a I'0 as a function of p,a.

FIG. 2. The leading uniform asymptotic approximation
to the m g 0 contributions to the Casimir force at zero tem-

perature, FrT, given by (3.14). Plotted is fLT = 2~a FLT—
as a function of p,a.
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2.0

1.0—

Given the complicated form of the integrand in (3.2), it
is very hard to work out the general temperature depen-
dence in this case. The high-temperature limit, however,
would seem to be tractable. That is because we antici-
pate that only the n = 0 term contributes when P ~ 0.
Indeed, if n g 0, x„~ 2zan/P ~ oo, and the corre-
sponding contribution to I" coming from (3.2) is

0.5-

+T~OO
n+0

(4 3)

(I (x„) K (x„)l
P -„„;"&I (*.) K (..)&

m=-OO n=1

0.0
0.0 2.0

I

4.0
I

6.0
I

8.0 10.0

FIG. 3. The sum of the contributions shown in Figs. 1
and 2. Plotted is f = —2na (+o+ FLT).

This result, of course, generalizes the formula in (3.9).
Numerical integration of (3.14) yields the contribution to
the force shown in Fig. 2. This partial result is extremely
interesting, because of the sign change, from attractive
to repulsive at about pa = 0.27. However, the m = 0
term given by (3.10) and Fig. 1 is much larger, so that
these terms together always give an attractive force. The
sum of these two terms is plotted in Fig. 3.

We have, of course, worked out the next-to-leading
contributions to the force. As noted above, these are
finite when p, g 0, but are larger than the leading term
given by (3.14) and Fig. 2 even for large p,a. Based on
our previous experience [10, 6] we expect that the lead-
ing terms should in fact be quite accurate, and that this
breakdown of the asymptotic expansion, which must al-
ways occur at some order, occurs early here because of
the lowness of the dimensionality of space. We therefore
believe that the m = 0 and leading-order contributions
here constitutes a reliable estimate of the Casimir self-
stress in this case. Clearly, there are issues here requiring
further investigation.

where we have used the asymptotic behavior of the Bessel
functions. This divergent contribution, in fact, should be
subtracted oK, for the constant summand may again be
identified with a contact term.

The high-temperature limit thus arises from the n = 0
term. We will use the uniform asymptotic approximation
employed in Sec. III, and hence we will make the replace-
ment (4.1) in (3.10) and (3.14). For the former, m = 0,
term we have

1
Ilo ——— x—ln[2xIq(x)Kq(x)], x = pa,

2aP dx

(4 4)

which is plotted in Fig. 4. This attractive contribution
equals —1/2aP at pa = 0, and vanishes as pa ~ oo. For
m g 0 we have, from (3.14),

mx 1 1 mx
&r.T aPe~" —1 2 e~ ' —1)'XX

x = p,a. (4.5)

This repulsive term vanishes both at pa = 0 and as pa ~
oo, and, like (3.14) is rather small compared to Fz+
The combined high-temperature Casimir force Fz+ ~ +
Fq+~ is plotted in Fig. 5.

IV. HIGH- TEMPERATURE LIMIT

It is easy, in principle, to see how to extract the finite-
temperature Casimir efFect. We take the general zero-
temperature result (3.2) and replace the continuous fre-
quency variable ( by the discrete variable 2mn/P, where
P = 1/kT and n is an integer. That is, 8

OO 4+2a
dxxf(x) ~ ) 'nf(x„),

p,a p2 ~ l1 'I (4 1)

2(2+an&
I +(pa)' (4.2)

where the prime on the summation sign means that n = 0
is counted with half weight.

FIG. 4. The contribution of m = 0 to the Casimir force at
high temperature, I'o, given in (4.4). Plotted is fo

aPF~™oas a functio—n of pa.
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Actually, there is a way to read oK the Casimir stress
for the massteas spin-1 fiel for the circle from that for
the cylindrical shell and the result for the massless scalar
field for the circle. We see this by returning to (2.52) and
taking the p ~ 0 limit:

iA J"(z) H" (z) 2&~

4~ J' (z) H' (z) z) ' (5.1)

FIG. 5. The total Casimir force at high temperature, in-
cluding the leading uniform asymptotic approximation for
m g 0. Plotted is f = aPF+—

V. D~SCUSSIOX

The process of quantization automatically leads to un-
avoidable vacuum fluctuations. Usually, the vacuum en-
ergy of a medium is irrelevant. But the physics changes
drastically (i) when a phase transition between two states
of the medium can occur, (ii) when the medium is the
whole Universe and one couples gravity to the vacuum
energy (leading to the vexing cosmological constant prob-
lem [11]), or (iii) when geometric boundary effects are
taken into account. In this paper we have studied the
effect of vacuum Quctuations in the last case, i.e. , the
Casimir efFect. The example of the Casimir effect that

we have considered is particularly interesting since it is
associated with topology, the non-Abelian generalization
of the "photon" mass term being the Chem-Simons sec-
ondary characteristic.

In a previous paper [5] we examined the Casimir ef-
fect between parallel lines due to the topologically mas-
sive photon in the (2 + 1)-dimensional theory of quan-
tum electrodynamics. We found that the Casimir force
is attractive and the result is the same as for a mas-
sive spin-zero field [12]. The agreement of the respec-
tive Casimir forces is not surprising since, as the scalar
field, the topologically massive spin-1 field in 2 + 1 di-
mensions has one (polarization) degree of freedom. We
anticipated that this agreement may not persist for other
geometries; for example, in (3+1)-dimensional electrody-
namics, the Casimir force between perfectly conducting
parallel plates is twice that for a scalar field [13],but such
is not the case for a spherical shell [10, 14].

In this paper we have calculated the Casimir self-stress
for a circle. A priori, it is hard to guess the sign of
the self-stress in this case, since the (3+ 1)-dimensional
analogue of a circle can be a spherical shell (for which
the stress is repulsive [10, 14]) or a cylindrical shell (for
which the stress is attractive [6]). We have found, in fact,
the Casimir stress, at zero and at high temperatures, to
be attractive. We have also found that the respective
Casimir forces are not the same for the spin-1 field (3.2)
and for the spin-0 field (All) discussed in the Appendix,
in accordance with our expectation.

where z = Aa ~ ua and use has been made of the equa-
tion of motion and the Wronskian. We can, in fact, read
this off directly from Ref. [6], if, there, we make appro-
priate (2+ 1)-dimensional restrictions. That is, we set
the momentum h along the cylinder axis equal to zero,
and include only B„E„,and Es.

T„„=zi(B, —E,),

where the discontinuities are

A~ H (z) J (z) l
H' (z) J' (z)) '

1 m ~ t'J (z) H (z)l
iz z' (J' (z) H' (z))

'

(5.2)

(5.3a)

(5.3b)

These follow from (3.5) and (3.3) of Ref. [6]. This agrees
precisely with (5.1) when we recognize the connection
hT„„=2'

6�(t„„)/a
Furthermore, in the Appendix we calculate the Casimir

self-stress for a scalar field, (A9),

(5.4)

iA (J"(z) J' (z) H" (z) H' (z) 2

4x (J' (z) J (z) H' (z) H (z) z

(5.5)

which corresponds to (3.11) in Ref. [6].
Schematically, we write the h = 0, p = 0 correspon-

dence found above as

(3+ 1).= (2+ 1)-+ (2+ 1)' (5.6)

We can understand this directly from the (3+ 1)„equa-
tion of motion

O„g gI'"" = 0. — (5.7)

When there is no z dependence, the v = 0, 1,2 com-
ponents coincide with the (2 + 1)„equations of motion,
while the v = 3 component can be written as

t'1 cl 0, m'l
r +~ — ~A =—0—, —

l, r Br Br rz ) (5 8)

subject to the boundary condition A3 ——0, so this is the
massless scalar problem solved in the Appendix. And
explicitly, the (2+ 1), contribution to the stress tensor is

which when combined with (5.1) yields the form of the
(3+ 1)-dimensional result of Ref. [6]:

+(~rr) ~vector + ~(~rr) ~scalar
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T„„=~(Hg), He = B—„As,

where

( s(x)As(x')) = G—.(x, x'), (5.1o)

APPENDIX: SCALAR CASIMIR EFFECT

Consider a scalar field in 2+1 dimensions with a circu-
lar boundary of radius a on which the field vanishes. We
write the Green's function in Fourier-transformed form

in terms of the scalar Green's function, or, in terms of
the reduced scalar Green's function (Al),

27r 8 8T„„=—.—,g(r, r')
2l Br Br

This is just the scalar result (A7).
No such decomposition occurs when h g 0 or when

G( z) -i(u(i-i') ) im(e-8'}
( I)2'

where we have suppressed the dependence of the reduced
Green's function g on m and u Th. e reduced Green's
function satisfies the difFerential equation
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We solve this equation subject to the boundary condition

g(a, r') =0.
The solution is

(AS)

r'8 1 8 s s m~1, 1+ —+-~ —y, —
~ g(r, r') = — b(r r'). —

qBr' r Br r' )

r, r' ( g: g(r, r') = —
i

J (Ar)J (Ar') —J (Ar&)H (Ar&) ~,
1 (H (Aa)
4i ( Aa

(A4a)

r, r') a: g(r, r') = —.
~

H (Ar)H (Ar') —J (Ar&)H (Ar&) i,
1 (J (Aa)

4i (H Aa
(A4b)

where As = u —ps. Then we calculate t« from

t ' = g g[8 $8'P —g—""2(8"QBqg+p P )j. (A5)

The vacuum expectation value of the product of fields is
taken according to

1 1 Z2
dz

4m'a2 i -~ gz2 + ps'&

x ) —ln J (z)H (z).
"- d

(A10)XX, X)Xo ( 6) To integrate this we perform an imaginary frequency
rotation and introduce the modified Bessel functions:

a 8 8
(~-) = —.

8 8, ( )2s Or Or' r=r'=a

Employing the boundary condition (AS) we find, for the
Fourier transform for the stress tensor on the circle, $2

s dx
2vras „gxs p2gs

x ) —lnI (x)K (x). (A11)

J (x)H' (x) —J' (x)H (x) = (A8)

Using the solutions (A4a), (A4b), and the Wronskian For m = 0 we can easily evaluate the integral numeri-
cally, after we insert the appropriate contact term. For
example, for p, = 0 we find upon integrating by parts
that

we find

A f' J' (Aa) H' (Aa)'l
4vri (J (Aa) H (Aa) j '

so the force on the circle is

(Ag)

dx ln2xIo(x)Ko(x) = 0 08808,
0

corresponding to the attractive force

0.014
0 6

(A12)

(A1S)
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For m P 0 we content ourselves with the leading uniform
asymptotic expansion

(A15)

—lnI (z)K (x) (A14)
dx m2+ z~

We carry out the sum using (3.8) and find

1 1 ~ dyy~ 1
+r.T - —,a2 (27r)s 2 &a gy2 —(27rpa)2 e& —1

which is a repulsive force, precisely the negative of the

first term in (3.14). In particular, at ti = 0, we have the
negative of (3.9),

1

24
(A16)

which overwhelms Ilo above.
This numerical equivalence at p = 0 is no coincidence.

It is a consequence of the theorem (5.6), because the
(3+1)„result described in Ref. [6] has only higher-order
contributions in the uniform asymptotic expansion.
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