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Nucleon Compton scattering in the nonrelativistic quark model
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The amplitude for Compton scattering from the nucleon is calculated within the framework of
the nonrelativistic quark model. The primary objective is to explore the behavior of the model for
a variety of observables over a wide range of energies, where multiple baryon resonances can play a
role, with an eye toward possible future experiments.
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I. INTRODUCTION

The electromagnetic properties of hadrons provide
nontrivial constraints on attempts to model them with
constituents. Compton scattering serves as an irnpor-
tant complement to electron scattering, Within a simple
nonrelativistic picture, electron scattering probes size as-
pects of a hadron, while Compton scattering probes its
spectrum. Of course, size and spectrum are related in

any model, but the ultimate test is the set of observables
available from these two processes.

Compton scattering from the nucleon is constrained at
very low energies by Low's theorem [1, 2], which com-
pletely fixes the contributions of O(l) and O(ur) in the
expansion of the scattering amplitude in powers of the
photon frequency. The first structure-dependent terms
come from Rayleigh scattering at O(~~). The coefficients
6 and P are the electric and magnetic polarizabilities,
respectively, and can be thought of as the Compton ana-
logue to the charge radius. At higher photon energies,
the incident photon can excite a variety of intermediate
nucleon resonances, and the corresponding amplitude is
more sensitive to the spectral details of the model.

There has been considerable theoretical interest in
computing the polarizabilities within various models, in-

cluding the bag model [3, 4], the nonrelativistic quark
model [5], a chiral quark model [6], the Skyrme model

[7], and with chiral perturbation theory [8]. We also note
that L'vov [9]obtains good agreement with available data
up to 4pp MeV using fixed-t dispersion relations, together
with the electric and magnetic polarizabilities, as input.
There are also some excellent reviews [10, 11].

Data at higher energies exist mainly in the form of
diA'erential cross sections. These have been calculated
in the 6(1232) region and above using dispersion theory
and the pion-photoproduction data [12]; this is success-

'Current address.

ful in fitting the data only at low energy and for forward
scattering. The Bonn group has also attempted to fit
the small-angle intermediate-energy data using the vector
(p) dominance model [13—16]; the 7p coupling constant
that results is smaller by a factor of 2 than the gener-
ally accepted value. Phenomenological isobar models,
along with the measured photoproduction amplitudes,
have been applied by the Tokyo group [17—20] to extract
resonance parameters from the Compton scattering dif-
ferential cross-section data.

Our goal in this study is to evaluate the performance of
the nonrelativistic quark model in predicting the Comp-
ton scattering amplitude over a range of energies. To
our knowledge, no calculation using a composite model
for the structure of the intermediate resonances has been
applied to Compton scattering at both low and interme-
diate energies. We believe that any quark model should
attempt to be consistent with low-energy theorems, the
measured polarizabilities, and higher-energy observables.
This is a nontrivial standard. Indeed, within a nonrela-
tivistic framework, it is generally impossible to reproduce
all contributions beyond leading order in the low-energy
theorem [1,2], and the calculations reported here are no
exception. Even then, the leading-order term is not au-
tomatically reproduced within models in which Hilbert
spaces are truncated or other approximations are made.
We discuss below some quantitative aspects of this is-
sue. We also believe t,hat it is important to understand
the role played by various ingredients of the quark model
in building the Compton amplitude. These include the
quality of fit to the baryon spectrum and the photon tran-
sition amplitudes, but also the possibility that baryon
resonances which couple weakly to ~N may figure more
noticeably into a photon process.

The paper is organized as follows. In Section II, we
present basic formulas for Compton scattering, along
with the salient features of the nonrelati vistic quark
model as they pertain to Compton scattering. We also
discuss our method of calculating electromagnetic cur-
rent matrix elements. The constraints provided by low-
energy theorems are then given, and we show how the
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leading-order term can be reproduced exactly for one
limiting case of the model. In Section III, we present
numerical results for low-energy limits, polarizabilities,
and a variety of observables at higher energies. Section
IV contains our conclusions.

II. DESCRIPTION OF THE CALCULATION

'R(z) = ) e;l,„(z)A"(z),

where e, is the charge of the ith quark, I," (z)
q;(z)p" q, (z) is the quark current, and A"(z) is the pho-

ton field. In a nonrelativistic valence quark model, the ef-
fective Hamiltonian has both one-photon and two-photon
terms:

A. Basic formulas for Compton scattering
+photon —+p + Hpp (2)

We take h = c = 1 and use Heaviside-Lorentz units,
whereby o;qED ——e~/4ir 1/137. The Hamiltonian den-

sity for the interaction of photons with quark fields is
The one-photon contribution is, for real transverse pho-
tons,

(4)

H» = —) e;I;(r;) A(r;) = —) '
(p; A(r;) + A(r;) p;]+ p; . 'V x A(r;)), ()

where p; = e;n;/2m; is the magnetic moment of the ith quark, e, , m;, o;/2, p; are its charge, (constituent) mass,
spin, and momentum, and A(r, ) is the photon field. The two-photon contact interaction is

2
*

l ( *)]','(') '( )

The photon field has the expansion

A(r) = ) [a(k, A)eg qe'"'+ at(k, A)ei, &e '"P] .
(2&)' v'2~~

The Compton amplitude can be written schematically as

) - (flH~ln&(nlH&li& ) - (flH&ln&&nlHpli& (6)

where ~ and ~' are the initial and final photon energies,
8; is the initial baryon energy, and E„ is the energy of
the intermediate hadronic state.

We now assume that the Hilbert space consists entirely
of the set of baryons generated from a quark model. In
addition, we assume no (qq) excitations, i.e. , only valence
quarks. In this regard, we mention recent work of Geiger
and Isgur [21] on (qq) excitations in mesons. First, they
find that (qq) excitations in mesons tend mostly to renor-
malize the overall string tension. Second, they consider
processes such as A ~ BC ~ D. For those processes
classifiable as Okubo-Zweig-Iizuka (OZI) suppressed, in
which the final meson D contains a (qq) pair not found in
the initial meson A, there may be amplitudes A ~ BC
and BC ~ D which are large on an individual basis, but
the sum of the combined amplitudes will, under certain
conditions, vanish, provided that all intermediate (qq)
states are included in the sum. These results were ob-
tained within a specific model, and make use of closure

2 w 1
&p ~A'A&A

gyp g2& ')/24J
(7)

where

and spectator approximations, Nevertheless, interpreted
in a qualitative sense, they suggest that, while amplitudes
for the photoproduction of intermediate baryon+meson
intermediate states may be individually large, there may
also be considerable cancellation among them, and that
it would be better to leave meson [or (qq)] excitations out
of the calculation entirely than to include only a partial
sum. In the exploratory calculation presented here, we
take the former option. Pionic excitation, however, may
be a special case, as is discussed in our conclusions.

If the pN system has an overall momentum P, and the
initial and final photon momenta are k and k', respec-
tively, then the Compton amplitude is

2

Tp p = ) (N; P —k'] 2' qt(0)q;(0)b), g)(N; P —k)
t

' „,(0)[x„;p&(x„;p[r, (0))N; p —k)+ ~ + ~M (P —k) —~M„(P)(¹P —k'iI „,(0)ix„;P —k —k'&(X„;P —k —k'i'(0)iN; P —k)
—4I +(dM (P —k) —4JM„(P —k —k )
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where

(p) =—/m'+ p',

and L„stands for any baryon in the spectrum.

(9)

B. Overview of the nonrelativistic quark model

where the spin-independent potential V'& has the form

br, ~ 2~,"
2 3",

with r, = r, —r . The hyperfine interaction H'~ is the
hyp

sum

of familiar contact and tensor terms arising from the
(color-) magnetic dipole-magnetic dipole interaction. In
practice, V & is written in terms of a harmonic-oscillator
potential plus an anharmonicity

and the resulting anharmonic terms are treated pertur-
batively.

States of the three-quark system which represent the
nucleons and deltas (with three equal-mass quarks) are
then written as the product of a totally antisymmetric
(under the exchange group Ss) color wave function and
a totally symmetric sum

(14)

where the spatial (@), spin (y), and flavor (P) wave

functions form representations of Ss (details of how

these sums are constructed can be found in Refs. [22]
and [23]). The zeroth-order spatial wave functions are
therefore taken to be the harmonic-oscillator eigenfunc-

tions QNI, M(p, A) with p = (ri —rz)/+2 and

(ri + rz —2rs)/~6. Ground states [such as N(938) and

6(1232)] are described (to zeroth order) by wave func-

tions with N = 2(nz + ng) + tz + Lg = 0, which means

they have no radial nodes or angular momentum. The
negative-parity excited nucleon and delta resonances (P

The wave functions for the nucleon and delta reso-
nances used here are those of the nonrelativistic quark
model (NRQM), specifically the model of Isgur and Karl
[22, 23], which describes a baryon as three valence quarks
moving in a confining potential ~ The Schrodinger equa-
tion for the nonrelativistic three-body system is solved
for baryon energies and compositions using the Hamilto-
nian

28=) (m+ ' +) V" +H~"
i&j

waves) in the 1.5—1.7 GeV region have N = 1 spatial wave
functions with either lz ——1 or l~ ——1, and the positive-
parity excited resonances in the 1.5—2.0 GeV region have
N = 2 wave functions.

The energies and compositions of the resonances are
then modeled by first-order perturbation theory in the
anharmonicity U;& and the hyperfine interaction Hhhyp

'

The anharmonicity is treated as a diagonal perturbation
on the energies of the states; in particular it is used only
to split the N = 2 band (it causes no splittings to first
order in the N = 0 or N = 1 bands). The diagonal
expectations of U in the N = 0 and N = 1 bands are
lumped into the band energies; the mixing of states be-
tween the N = 0 and N = 2 bands induced by U is

ignored. The hyperfine interaction is treated to first or-
der in both the energies and wave functions, with the
contact interaction active within all bands and the ten-
sor interaction active within the N = 1 and N = 2
bands. In their paper on positive-parity excited baryons,
Isgur and Karl [23] quoted wave functions for the excited

J =
z nucleons and J =

&
deltas which do not in-&+ 3+

elude the mixings with the ground states that were later
calculated and shown to have important physical con-
sequences by Isgur, Karl, and Koniuk [24]. As a result,
these wave functions are not orthogonal to the (properly)
mixed ground states from Ref. [24]; this is corrected here

(in our "mixed" basis) by rediagonalizing the hyperfine
(plus diagonal-anharmonic) interaction in the combined
N = 0 and N = 2 basis.

The main features of the spectrum of the P-wave and
positive-parity excited baryons are then quite convinc-

ingly described by this model. Just as important, the
compositions of the mixed states are in agreement with
details of their strong decays. There are more states pre-
dicted by the model in the N = 2 band than exist in the
~N partial-wave analysis data; a strong decay analysis
carried out by Koniuk and Isgur [25] establishes that the
states whose mixed wave functions allow them to cou-

ple to their xN production channel correspond, in both
energy and number, with the observed states.

C. Electromagnetic current matrix elements
in the nonrelativistic quark model

As will be discussed in the next section, we require all
four matrix elements of the electromagnetic current, cal-
culated with a nonrelativistic transition operator based
on the interaction Hamiltonian Hz given in Eq. (3). We
also need to be able to calculate matrix elements for all
values of the momentum transfer, with wave functions
mixed by the hyperfine interaction. The transverse ma-

trix elements were calculated in this basis of mixed wave

functions by Koniuk and Isgur [25]. They did not publish
the momentum transfer dependence of the amplitudes for
mixed wave functions as their purpose was to obtain pho-
toexcitation amplitudes for the nucleon and delta reso-

nances formed in yN ~ X —+ xN (at Q = 0). In order
to describe the calculation of the transverse, longitudinal,
and charge matrix elements at all momentum transfers,
we provide an overview of effective operators to be used

between eigenstates of the NRQM.
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The two transverse amplitudes A~ and Ay are defined
2 2

in terms of helicity states of the nucleon and the produced
resonance by

Ag = (XJ;OAII+ (0)IN-'; —kA~), (15)

where A~ —1 —A, and the matrix element is to be eval-
uated in the rest frame of X with kiiz. Note that A~ is

forbidden in the case that X has J = z.
If we insert the field A(r;) defined in Eq. (5) into

Eq. (3), then we can write the transverse amplitudes as

A), ——) (XJ;AiH,'iN ~; A —1). (16)
+2cu

Here the expectation value is taken to mean integration
over p, A, and R = (ri + rz + rs)/3, and the expecta-
tion value of spin- and flavor-dependent quantities be-

tween the spin wave functions X& and y~, and the fla-

vor wave functions Px and P~. Since the wave functions

in Eq. (14) are explicitly symmetrized, it is sufficien to
know the form of the operator for the third quark in the
sum in Eq. (3). We can write Hs in Eq. (16) as

where we have used the polarization vector e+i ——~
(1, i, 0). Integration over the center-of-mass coordinate

R (with rs ——R — A), after insertion of plane waves

for the center-of-mass motion, yields a simple integral
over internal coordinates:

2
Ag = 3(XJ;AIHsIN '; A —I), - (18)

with the operator

e, 1 I,„~„(03 ~ ——
m ~g +2~

and the charge matrix element as

Cg ——3(XJ' -'
I

— s 3 IN ). (21)

D. Boosts of current matrix elements

The key physical ingredient in the calculation of Comp-
ton scattering amplitudes is the set of current matrix ele-
ments between the target nucleon and each of the excited
baryons included in the spectrum. For real photons, only
matrix elements of the transverse components of the cur-
rents are in principle required. However, because the
current matrix elements are calculated in the rest frame
of the excited baryon, the need for transverse matrix ele-
ments in the presence of the crossed-photon process also
requires us to calculate all components of the current in
the excited baryon rest frame Sin. ce the quark model it-
self is nonrelativistic, Lorentz transformations of current
matrix elements cannot be done fully consistently. In
the face of this, we proceed as follows. For each excited
baryon, the transition current matrix elements can be ex-
pressed in any frame via Lorentz-invariant form factors.
These form factors are computed specifically in terms of
the transition matrix elements in the excited baryon rest
frame. The lack of full relativistic consistency would ap-
pear when we tried to compute the transition matrix el-
ements in some other frame and found different "Lorentz
invariant" form factors.

We use a Lorentz-covariant multipole expansion to ex-
press the physical information in the transition current
matrix elements. The details are summarized in Ref. [26]
We provide the salient details here.

The four-vector current operator I"(z) can be ex-
pressed in terms of a 2x2 matrix as

I~(z) = icr2(I (z)+ I(x) . o) (z), (22)e, e 1 t 2
Li. ——3(XJ; 2i—

2~ ' m 2~

x ~~A IN
1. i

)

P +2

(2o)

In a similar way, we can write the longitudinal current
matrix element as where cr are the Pauli matrices. Then I (z) transforms

P
according to the undotted and dotted representations of
SL(2, C). The matrix element can be written as follows:
Matrix elements of I (0) can th.en be expressed in terms

p
of reduced matrix elements as

(XJx,p'~'II'(0)IN&») = M"(p' ) (-',(,'nisp. )(&esp. ls)-s)(ir &j zli'1')
~M (p') ~M (p)

x&„"(p&)[L (p')]~ [L,(p')], .D'„-„[R (L (p'), po)1(XJxllI& z(& )IIN z)

The momentum po is the momentum of the initial nu-
cleon in the rest frame of the excited baryon. L,(p)
is a 2x2 representation of a rotationless boost under
SL(2, C):

L,(p)—:cosh 2u+ cr psinh 2u, tanhu = ipi/p,

corresponding to the transformation of a particle at rest
to a momentum p&. The Wigner rotation R, (A, p) corre-
sponds to a Lorentz transformation between momentum
gF and p'" = A"„p:

(24) a,y. , p) =—L (Ap)Ii. L.(p). (25)
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To make a connection between I (z) and I"(z) we
P )

define
(27)

Io(z) = I (z) (28)

which has explicit components

(26)
Note that Eq. (26) is simply a definition, and does not
imply that I„' has the rotational properties of a rank-

s tensor. The matrix elements of I„' (0) can then be
expressed as

(XJx; p's'II„', (0)IN-,' p~)

Mx ~M~(uo) - i i -, 1-1= (-1)*+ (,)
"(

)
).(-2~-2~le. )(-2~-2nlsl. )

x(&l isa. l/I Z)(i I Zl Zli'I ')&„', '(po)[I. '(p')]~ [I.(p')], D'„-„[&.(L.(p'), po)](XJxIIIi.g(e')IIN2). (29)

The reduced matrix elements (XJx IIIl, g(q2)IIN 2) are
Lorentz invariant and contain all the dynamical infor-
mation relevant to any electromagnetic transition matrix
elements between two states with a given mass and spin.
However, these reduced matrix elements are not all inde-
pendent: beyond the requirement of Poincare covariance
of the matrix elements, there are additional symmetries
which further constrain them.

The constraint of current continuity can be written as

q (XJx, p'p'lI (0) IN -'; pp)

—q (xJx, p'p'II(0) IN 2; pp) = 0. (30)

This equation, together with Eq. (28), means that re-

duced matrix elements of Ioo(0) can always be reexPressed
in terms of matrix elements of I„'(0), or equivalently, ma-
trix elements of the three-vector current I(0).

The output of the nonrelativistic quark model is a set
of helicity amplitudes, which are defined in terms of ma-
trix elements of I„'(0) as follows:

Ci = (XJx, 02 II (0)oIN2, —k2),
I. , = (xJx;0-,'II,'(0)IN-,', -k-,'),

.4 = (XJ;0-'lI,'(0)IN-'; —k —-'),

a, = (xJx; 0-,'II,'(o)IN-,';-k-,'),

corresponding to the Coulomb, longitudinal and the two
transverse amplitudes, respectively. In the rest frame of
the excited baryon, Eq. (23) has an even simpler form:

dent, the fourth being constrained by current conserva-
tion, There are also four corresponding reduced matrix
elements (XJx IIIl, ~(q )IIN 2) which are consistent with
spat, ial inversion symmetry, and the continuity relation
reduces this number to three. Equations (31) and (32)
can then be solved to relate the reduced matrix elements
to the helicity amplitudes. For j' = 2, there are only
three helicity amplitudes and corresponding reduced ma-
trix elements, of which only two are independent under
the constraint of current continuity.

As an application of this procedure, we compute the
elastic electron-scattering form factors for the proton and
neutron. The Sachs form factors GE(Q ) and GM(Q )
are related to current matrix elements in the nucleon
Breit frame as follows:

(N-2';+-2'qV'II'(0) IN 2 -2 qV) = ~~ ~ 1+T'

(N —;+—qp'II(0) IN —;——qI )

G (Q')
2Mlv „,„v1+ 7.

where r = Q2/4M&2 and Q2 = q2 in the Breit frame. A

boost of the current, matrix elements is necessary because
the helicity amplitudes A~, C~, and 1.~ are computed in

the rest frame of the final nucleon rather than the Breit
frame.

The form factors are plotted in Fig. 1, together with
modified dipole form factors:

(xJx; ol 'II;(0) IN-', pov)

= ) .( 2~ 2PIsl *)(~slsl. l&I z-)(i-l &I zli's')
x&' *(I o)(xJx III'.z(v')IIN-')

Of the four helicity amplitudes, only three are indepen-

2 1
Ep(Q )dipole —

(1 Q2/A2)2 '

2 2
Mp(Q )d p.i. = PpGEp(Q )d p.l. ,

GMo(Q )dipole = PnGEp(Q )dipole ~,2 2

2GEn(Q )dipole — 7 GMn(Q )dipole ~

(34)
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For A2 = 0.71 GeV, the dipole form factor represents
a reasonable fit to existing data, at least for purposes of
comparison. All of the Isgur-Karl form factors fall ofI' too
slowly for low Q2. As is well known, this means that the
predicted charge radius is too small: 0.4 fm vs 0.8 fm. In
addition, the form factors fall off too rapidly at large Q .
Most likely, this is a consequence of using a truncated
harmonic-oscillator basis.
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E. Low-energy limit

The low-energy behavior of the nucleon Compton am-
plitude can be characterized by an expansion of the am-
plitude in powers of the photon frequency. As shown by
Low [1] and by Gell-Mann and Goldberger [2], the contri-
butions of O(1) and O(cd) are completely determined by
the nucleon mass and magnetic moment. At O(cd2), two
new contributions enter, namely, the electric and mag-
netic polarizabilities. It can be shown, using methods
similar to that used to prove Low's theorem [27, 28], that
the structure of the amplitudes is completely determined,
though the actual polarizabilities n and P depend upon
the composite physics of the nucleon. For a proton in the
lab frame, the complete expression is [27]

0.4

0.2

0..0 I ~ ~ I 4 ~ I I ~ ~ I I ~ I

0 20 40 BO 80 0 20 40 60
tl'(rm ')

FIG. 1. G@ and GM for the proton (upper
and the neutron (lower solid lines). The dashed
modified dipole representation of the data.
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lines are a

e2, , 1+2A, . , (1+ A)
(e ~ e) —t(cd + cd) 0' (e x e) + i(cd' + cd) ~ (n' x e') x (n x e)

4M~ 4M~

—t [cd (n ~ e)cT ~ (n X e ) —cd(n ~ e )0' ~ (n X e)]
.1+3 I I I I I I

2M~

, (1+&)'(e'. e)+cd'cd (n' x e') (n x e)(n' n)
4M&~ 4M~2

(tl E)(ll tl) —dl dl l (E' E) —Id Id l (ll X E ) (tl X E)) + O(td ),
4M~ M~ M~

e

m (36)

The problem is resolved when one takes into account
the noncon$act contributions (those involving matrix ele-
ment, s of one-photon operators as opposed to two-photon
operators), while keeping track of the Fermi motion of the

where A is the anomalous proton magnetic moment, k =
~n and k' = ~'n'. The expression for the neutron is the
same except for omitting the very first term in braces.

A calculated nucleon Compton amplitude should
therefore be capable of reproducing the behavior dictated
by the low-energy theorems as well as correctly predicting
the polarizabilities. However, reproducing the low-energy
theorems is not guaranteed for any calculation: indeed,
there are many ways for a calculation to fail to yield the
low-energy behavior. For example, since the Thomson
limit [O(1)] for Compton scattering from a charged par-
ticle has the contact form (e /m)(e' e), one would be
tempted to assume that the Thomson limit for a com-
posite particle is simply the sum of the Thomson limits
of the constituents. In general, however,

constituent particles and the recoil of the final composite
particle in the lab. Indeed, it has been shown by explicit
calculation [29, 30] that these contributions combine to
yield the result dictated by the low-energy theorem.

The original proofs of Low's theorem 1, 2] were essen-
tially model independent. Later works [29, 30] centered
on classes of models, and used closure over the spectrum
of the strong-interaction Hamiltonian to obtain the low-
energy result. This presents a potential problem for cal-
culations based upon a specific model which are intended
to produce a Compton amplitude over a range of ener-
gies, and not just at threshold. A closure sum could
only be performed at threshold; at nonzero energies a
truncation of the model space is a practical requirement.
Nevertheless, a calculation employing a truncated model
space runs the risk of violating the low-energy theorem,
if the closure sum at threshold depends in an essential
way upon the truncated states.

A special case which ofI'ers a partial resolution of this
dilemma is the harmonic-oscillator model. Near thresh-
old, the noncontact term is dominated by processes in
which intermediate states are excited by the convection
current. The corresponding gradient operator converts
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the lowest-lying S state into a multiple of the lowest-
lying P-wave state. Only one state is excited, and the
closure sum therefore saturates with this one state at
threshold. This result has been verified explicitly for a
model of a charged spin-& particle bound to a spinless
uncharged spectator. A direct verification at threshold
for antisymmetric three-quark wave functions is techni-
cally more involved, but the result must be the same.
This can be seen by noting that Low's derivation of the
low-energy Thomson limit is a consequence of the conti-
nuity equation. Since the harmonic-oscillator model is a
local interaction which does not transfer charge between
constituent quarks, its one-body currents satisfy the con-
tinuity equation. We expect therefore that the Thomson
limit will be obtained with a complete sum over the ex-
cited baryon spectrum, and in fact it will saturate with
the lowest-lying P-wave states because of the particular
symmetry of the harmonic-oscillator wave functions.

While reproducing the Thomson limit in a particular
model is certainly feasible, as discussed above, correctly
obtaining the O(u) contribution is generally impossible
in a nonrelativistic calculation. Low's derivation of the
O(~) term depends upon two distinct pieces. The first
is what he labels "diagonal magnetic scattering, " cor-
responding to successive M1 photon transitions via an
intermediate nucleon ground state. The second he dis-
cusses within the context of "relativistic invariance, ' and
rests upon the fact that matrix elements of the charge
operator have relativistic contributions from the nucleon
magnetic moment. From the continuity equation, these
matrix elements in turn affect the transverse current ma-
trix elements. The first of these terms is naturally in-
cluded in a nonrelativistic calculation, but the second
is not. We therefore restrict ourselves to verifying that
our calculations reproduce the diagonal magnetic term
only. For nucleons, the O(a) contribution to the Comp-
ton amplitude makes a very small contribution to the
cross section compared to the Thomson limit and the po-
larizability terms. However, it is not known at this time
how large the relativistic corrections may be to the po-
larizabilities themselves. In a relativistic framework, no
new amplitude structures enter at O(w ) [27], but there
can be additional contributions to n and P.

While a pure harmonic-oscillator model can reproduce
the Thomson limit with a sum saturated by the lowest

lying P state, the Isgur-Karl model does not have that
property. Since the Isgur-Karl states correspond to lin-

ear combinations of pure harmonic-oscillator states, one
must at least include all states with admixtures of the
harmonic-oscillator ground and P-wave states in calcu-
lating the low-energy limit. A more serious problem,
however, comes from the fact that some effects of the
anharmonic potential are included only perturbatively in
the energy, and not in the wave function. This has the
effect of modifying the energy denominators in the ex-
pressions for the Compton amplitude, but not modifying
the corresponding current matrix elements. In general,
the Thomson limit will then be lost. Alternatively, one
could view the Isgur-Karl states as true eigenstates of the
Hamiltonian, if the latter is viewed as a set of projection
operators. In that case, the expression for the Compton

amplitude is correct, but the implied Hamiltonian is then
nonlocal, and the continuity equation can only be satis-
fied by introducing two-body currents. The extent of the
violation is discussed below with other numerical results.

F. Polarizabilities

In a pure nonrelativistic framework, the electric polar-
izability for Compton scattering is [27]

(37)

where

2) - I(&ID.I& )I' ~ i (~e)'
(38)

D, is the electric dipole operator, and Z is the charge
of the nucleon. The term A6 appears only in Compton
scattering and not in treatments of composites in static
electric fields; it arises as a form factor effect in the con-
tribution from the quark contact Hamiltonian at nonzero
momentum transfer.

The magnetic polarizability is

(39)

where

) - [(N iM, [X„)i~, Ze2 2, (D2)

(40)

In typical baryon models, P has a large contribution from
the A(1232) intermediate state, but tends to be canceled

by the negative term in AP, leaving a small result for P.
The polarizabilities 6 and P are related to 6 and P in

Eq. (35), respectively, as follows:

o.' = 0.'gEDQ, ', p —ei'+ED p. (41)

G. Gross section and polarization observables

At photon energies above those appropriate to the po-
larizabilities, we report our results in terms of various
observables in the center-of-momentum frame. In prin-

ciple, all information about the Compton amplitude is
contained in a set of six invariant complex functions. We

Note that n and P are not only dimensionless, but they
also do not depend upon the use of Heaviside vs Gaussian
units, in contrast with their barred counterparts.

In our calculations, rather than compute n and P from

the above formulas, we extract them directly from the
Compton amplitude itself. Making use of the formula

(35), we compute an amplitude in which intermediate
nucleon states are omitted. This eliminates the O(a )
contributions in Eq. (35) which are separate from n and

P. We then subtract the O(l) and O(io) limits, which

are calculated separately. The remaining expressions in

the forward and backward photons' directions are pro-
portional to n+ P and n —P, respectively.
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use the parametrization of Ritus [31]:

T: Aie e+ Ags s+ iAso' (e x

+iA4o . (s' x s)

+i As (o k)(s' e) —(o. . k')(s

+iAs (o' . k') (s' e) —(o k)(s (42)

where s = k x e and s' = k' x e'. All observables can in
principle be written in terms of bilinear combinations of
the invariants A;.

With our set of normalization conventions, the differ-
ential cross section in the center-of-momentum frame is

2 2

&&
= nqED IT I (43)

The amplitude T is defined in Eq. (7) for photon polar-
izations with respect to a common quantization axis. It
is more convenient to use photon quantization directions
along their respective momenta. In Eq. (43) we therefore
use

i(N ';k'A'iTi-N ';kA)i-

= ) D„',„,(8, , ) (N-2; k'A'iTiN ~; kA), (44)

where D ~ A'A'(8, ) is a rotation matrix and 8, ~ is the
center-of-momentum scat tering angle.

We have also studied the nucleon polarization asym-
metry Az(8, , E~), defined by

N+y —N y (45)

Here Ny& is the number of final photons (or nucleons)
that scatter into a detector at 0, with the initial nu-
cleon polarized along +y, where +y is in the direction
of k x k'. Both photon polarizations and the final nu-
cleon polarization are summed. Similarly, one can define
a photon polarization asymmetry P~ as

N+i —N i

N+i+N g'

where Nyi is the number of particles scattering into a de-
tector at center-of-mass angle 8, ~ with an initial photon
helicity of +1, and the nucleon and final photon polar-
izations are summed.

(46)

H. Model options

In the following we describe the types of wave-function
sets that we have used as intermediate states in our cal-
culation, and the associated spectra used to calculate
energy denominators. In order to study the low-energy
limit of our calculation, it is useful to define a basis set for
which we have exact current continuity. This is simply
the set of unmixed oscillator states from Refs. [22, 23],
with a pure harmonic-oscillator spectrum. Both ground
states are degenerate and are given an energy of 3mq, the
P-wave states are also degenerate and have an energy of

3rnq + ~Hg, and the N = 2 band states all have a mass
of 3mq + 2Hp. Here mq, ~Ho and the size parameter
aHo in the harmonic-oscillator wave functions must be
related by ~Ho = nHo/m~; we use nHo = 0.41 GeV
and mz ——0.336 GeV (the values favored by Koniuk and
Isgur [25] in their fit to the photon amplitudes) which
yields ~Ho —0.500 GeV. The resulting spectrum places
the ground states at 1008 MeV, the P-wave states at
1508 MeV and the positive-parity excited states at 2008
MeV, which compare roughly with the band centers in
the Isgur-Karl model which are at 1085 MeV, 1610 MeV,
and 1810 MeV.

Our full calculation then uses wave functions mixed
by the hyperfine interaction and physical masses (taken
from the Particle Data Group (PDG) [32] where possible)
for the states. Those states in the model which cou-
ple weakly to xN and so are unseen in the partial-
wave analyses (so-called "missing" states) are assigned
the Isgur-Karl model prediction for their masses. For
this set of states we have also calculated with hadronic
widths, which are allowed to enter the calculation in the
energy denominators, by the replacement of the energy
Ex of the intermediate resonance with Ex —iI'x/2. For
the known states, the widths are taken from the PDG;
the missing states are assigned widths typical of states
in t, heir energy range. The resulting spectrum and the
corresponding widths are listed in Table I. In order to
study the effects of the mixing between harmonic oscil-
lator substates induced by the hyperfine interaction on
the Compton scattering process we also use the unmixed
wave functions with physical masses and widths as above.
Although it might be more consistent to use the masses
which result from the Isgur-Karl model before hyperfine
mixing, this is problematic because of degeneracy of the
nucleon and A(1232) masses.

III. NUMERICAL RESULTS

A. Low-energy limit

As discussed above, the low-energy limit of the
Compton scattering amplitude is completely determined,
through 0(u), by Low's theorem [1). It thus serves as a
consistency check of a given model which, through vari-
ous approximations and truncations, may not necessarily
satisfy the theorem.

As noted earlier, a nucleon composed of three valence
quarks in a pure harmonic-oscillator well will yield the
correct Thomson limit, provided the terms correspond-
ing to the contact interactions with the quarks and the
excitation of the lowest-lying P-wave states are included.
In units of e2/M~, the contact term contributes a fac-
tor +3 and the direct and crossed P-wave terms each
contribute —1, giving the overall Thomson coe%cient of
+1

When the full quark Hamiltonian is turned on, the
low-energy limit of the Compton amplitude becomes
0.8e /M~, in contrast with the expected coefIicient of
unity. While all baryon excitations through the N = 2
band are included, the problem does not stem from a
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TABLE I. Spectrum of states corresponding to the coupled wave functions, from the Particle
Data Group [32]. States labeled with a dagger are "missing" states; they are given model masses
and widths estimated from those of nearby states with similar quantum numbers. The first 6'
with 1 = —+ [experimentally 6'(1600)] is assigned its model mass for consistency.

State type
(IJ )

~1+
2~3+
2

Mass
(MeV)

938
1232

Width
(MeV)

0

115

Mass
(MeV)

Width
(MeV)

Mass
(MeV)

Width
(MeV)

gs 1
2

~s1
2

N'-
2

Q 3
2

N'-
2

1535
1620
1520
1700
1675

150
140
125
250
155

1650

1700

150

100

1+
2

g» 1+
2
3+
2

~4 3+
2

~~g+
2

+s g+
2

N'-
2

g~ 7+
2

1440

2O6Ot

1875t

1720

1975t

1800

1680

1905
1990
1950

200

150

200

170

250

125

300
330
240

1710

1910
1870t

2055~

1920
1955t
1975t

110

220

170

170

250

100

270

19OOt

1955t

1985t

2000

85

170

200

140

truncated space, because our result has apparently con-
verged. The most likely source of disagreement is the lack
of current conservation associated with the mismatch be-
tween baryon state vectors and the Hamiltonian. As
noted earlier, a local nonrelativistic Hamiltonian with no
charge-changing interaction will yield state vectors whose
current matrix elements will be conserved with one-body
operators only. The Isgur-Karl Hamiltonian satisfies this
criterion, but some of its contributions to the state vec-

tors are only evaluated perturbatively. Thus, continuity
is no longer guaranteed. The Thomson limit should be
restored with a consistent set of state vectors. We have
also investigated the issue of current at higher energies,
as discussed below.

For the 0(~) contribution to low-energy Compton
scattering, Low's theorem contains two distinct contri-
butions: "diagonal magnetic scattering, " corresponding
to successive M 1 photon transitions via an intermediate
nucleon ground state, and a second term arising from
"relativistic invariance. " The first contribution alone is

proportional to the square of the nucleon magnetic mo-

ment ~ For both the pure harmonic-oscillator model and
the Isgur-Karl model, our results agree with this first
term in the sense that the magnetic moment is that pre-
dicted by the quark model. The second contribution
arises from the interplay between the charge and current
operators under Lorentz boosts; when combined with the
first contribution, the 0(~) term is proportional to the
square of the anomalous magnetic moment. While our

baryon current matrix elements have the correct transfor-
mation properties between the excited baryon rest frame
and any other frame, the fact that a covariant operator
was not used to compute the matrix elements in the first
place means that the calculation is not fully consistent
relativistically, and this fact is manifested in the failure
to obtain the correct 0(~) term in Low's theorem.

B. Polarizabilities

At 0(a2) in the low-energy expansion, the electric
and magnetic polarizabilities n and P enter as structure-

dependent coefficients. We discuss n and P in turn for
the proton and then the neutron.

The most recently measured values of the proton polar-
izabilities, obtained at the University of Illinois microtron
[33],are nz —(16.1 +3.2+ 1.9), and Pz

—(4.9~3.2+ 1.9).
Typically, Pz is close to or consistent with zero.

As noted above in Eq. (38), n has two distinct contri-
butions, one coming from a form-factor eA'ect from the
quark contact terms, and the other coming from excita-
tions of the P-wave baryons. In the Isgur-Karl model,
the proton rms charge radius is 0.375 fm. This yields
a contribution b, n = M&~(rz) j3 = 1.06 to the electric
polariz ability.

The numerical results are given in Table II. For
the pure harmonic-oscillator model, 6& is in qualitative
agreement with the experimental value. For the Isgur-



46 NUCLEON COMPTON SCA i IERING IN 'rHE. . . 93

TABLE II. Static limits and polarizabilities for two quark models described in text. Values of

P for the harmonic-oscillator model are not shown because they contain no b, (1232) contribution.

Parameter

Tpp (e /M)
Tpn (e /M)

Ckp

Pure HO

1.0
0.0
13.3

Isgur- Karl

0.8
0.1
3.8
3.7
2.8
4.4

Expt.

1.0
0.0

16.1 +3.2 + 1.9
4.9 y3.2 y 1.9

18.2 +2.4 + 3.0
4.6 +2.4 + 3.0

Karl model, however, 6 is considerably lower. This dis-
agreement has three primary sources. The first is that
the contact form-factor term is proportional to the mean-
square charge radius, which is already known to be too
low in the Isgur-Karl model. The second is that the en-

ergy denominators for coupling to the P waves are larger
than in the harmonic-oscillator case, and therefore de-
crease the contribution to a. The third is that there
is considerable variation among the individual P-wave
contributions. In both the harmonic-oscillator and Isgur-
Karl models, for example, the states corresponding to the
N'

z (1520) and the b, '
&

(1700) give disproportionally
large contributions to the overall amplitude.

The theoretical calculation of P involves a cancella-
tion between b, (1232) excitation and recoil contributions
from the P-wave baryons. A result close to zero there-
fore implies a sensitivity to the ingredients of both these
contributions. In the Isgur-Karl model, we would expect
the b, (1232) contribution to be lower than it should be,
given the fact that the pN 6(1232) coupling is too low by
a factor of 0.6, and this coupling-is squared when com-
puting Compton amplitudes. The fact that our result
for P is considerably higher than zero again implies, as
was the case for 6, that the coupling to P-wave states is
decreased significantly by larger energy denominators.

It is possible to improve the agreement with 6 and P
by replacing the P-wave energy denominators with some
(smaller) average value, and this step has been taken
sometimes in the literature, but this simply sidesteps the
main physics goal of obtaining a consistent spectrum with
consistent photon couplings.

The most recently measured values of the neutron po-
larizabilities, obtained at Oak Ridge National Laboratory
[34], are cr„= (18.2+2.4+3.0), and P„= (4.6p2.4+3.0).
The results are given in Table II ~ Once again, the
harmonic-oscillator result is much closer to experiment
than that of the Isgur-Karl model. No results for P
are shown for the harmonic-oscillator model because the
A(1232) is degenerate with the nucleon, and would yield
a completely unphysical energy denominator.

C. Higher energies

Our goal at higher energies, where the composite
physics of the nucleon must play a role, has been to
investigate which observables are particularly sensitive
to the inclusion of various intermediate resonances. We

have also searched for signatures in Compton scattering
which could be used to establish the presence of reso-
nances unseen in the xN partial wave analyses. In par-
ticular, since Compton scattering has two pN ~ X in-

teraction vertices, it is much more sensitive than pion
production experiments to those states whose coupling
to AN is weak and whose coupling to yN is not. By the
same reasoning, it is more sensitive than pion photopro-
duction (pN ~ Nx).

Our results therefore hinge on the reliability of the cal-
culation of the electromagnetic current matrix elements
using the Isgur-Karl model wave functions and the non-
relativistic transition operator. As noted above, our cal-
culation includes the longitudinal and charge matrix el-
ements, and we have calculated these (for a given inter-
mediate baryon X„ in the pN center of mass) for all
values of the inital nucleon momentum. Note that from
Eq. (8), unless ~s is equal to the mass of X„(we are
on the pole for that intermediate state) for the direct
term, the value of Qz = —qz = —[M„—uM~( —k)]z+ k
is not zero. The crossed term never reaches this kine-
matic point. Our amplitudes therefore explore a rather
different set of kinematics than the photoproduction am-
plitudes which are necessarily at Qz = 0, and a compar-
ison of the results for these amplitudes with experiment
should be made at all Qz. For this reason we have not
attempted to alter our calculation in order to fit the pho-
tocoupling data, but have adopted the parameters from
the photocoupling calculation of Koniuk and Isgur [25].
Their fit to the (rather uncertain) photocoupling data is
of poorer quality than the spectral fit, as we might ex-
pect from the results of a perturbative treatment. Our
calculation, when specialized to photocouplings, shows
some differences with published results [25, 35]; this is
discussed further in Ref. [36]. There exist calculations
which have gone beyond Isgur and Karl's model for the
spectrum and wave functions [37—39], and beyond the
nonrelativistic approximation [35,40] for the electromag-
netic transition operator. When relativistic corrections
to the longitudinal and Coulomb matrix elements be-
come available, we hope to apply a model of this kind
to Compton scattering.

We have calculated the differential cross section do /de
and the asymmetries A& and P~, both as a function of
lab photon energy E~ at fixed 0, m and for fixed E~
as a function of 0, m, with the former being more use-
ful for disentangling the contributions of various reso-
nances. Figures 2, 3, and 4 show our results for these
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to this point later. It is also important to point out that
because of the underestimate of the b, (1232) photocou-
plings we are underestimating the size of the effects at
the b, (1232) pole.

In Figs. 6, 7, and 8 we have plotted the observables
above (again at H, m = 60') calculated using our un-
coupled intermediate set, to illustrate the sizable effects
of turning off the wave function mixing caused by the
hyperfine interaction. This demonstrates that these re-
sults are quite sensitive to details of the model used for
the wave functions of the intermediate states, through
the sensitivity of the matrix elements of the electromag-
netic current. Simple models which count the resonances,
their masses, and photocouplings do not include the nec-
essary constraints imposed on these current matrix ele-
ments by the composite nature of the resonances and the
force which binds their constituents together.

The Ritus amplitudes A; defined above are plotted in

Figs. 9 and 10, and again the four curves are with just the
nucleon and 6(1232) as intermediate states, with these
plus P-wave states, with all states seen in xN up to
N = 2, and with all the states in Table I. Although
the A; are themselves not directly observable, we never-
theless thought it useful to illustrate their sensitivity to
these groups of intermediate states. It is possible that
if an A; demonstrates a particular sensitivity to some
physics [such as the presence or absence of the "missing"
states, as seems to be the case with Im(Aq) or Re(Az), for
example] an experiment could be designed that is sensi-
tive to it Note .that Aq is also the only amplitude which
has nonzero real and imaginary parts at zero energy [the
tensor it multiplies has the same structure as the Thom-
son limit, see Eq. (42)] and that its real part at zero
energy is reduced by roughly a factor of 3 (and its imagi-
nary part there becomes nonzero) by the introduction of
the P-wave states. Note also that the imaginary parts of
Aq, As, As, and As vanish when only the nucleon and
E(1232) are allowed as intermediate states. The imagi-
nary parts of these amplitudes are therefore only sensitive
to the resonances in the P-wave band and beyond, and
these results are independent of the size of the 6(1232)
effects.

The effects on dsr/dQ of imposing continuity on our
current matrix elements is illustrated in Fig. 11, for 50
and 300 MeV lab photon energy. We have calculated with
an intermediate set which includes up to the P waves
for simplicity, and have compared the results without a
continuity constraint to those where the longitudinal cur-
rent matrix element is constrained to be a multiple of the
charge matrix element, and vice versa. Although the 3QQ
MeV plot shows only small changes, at 50 MeV there is an
unphysical asymmetry about 90' and rapid fall-oH' near
0' when the longitudinal matrix element is constrained.
Fixing the charge matrix element by continuity seems
to reduce the size of do/dQ without affecting its angular
behavior significantly. Either of these procedures will ad-
versely affect our low-energy limit, so we have chosen not
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to impose a continuity constraint. We also conclude that
the violation of the continuity requirement is less serious
at higher energies.

Compton scattering data exist in the energy region of
interest mainly in the form of differential cross sections
measured at various angles and energies. We have calcu-
lated the angular dependence of do/dA at sample pho-
ton lab energies of 320 MeV and 800 MeV in order to
make a comparison with the data of the Bonn [14—16]
and Tokyo [17—20] groups. The first energy is close to the
A(1232) pole and the second is in the P-wave resonance
region. The data from Ref. [14] at 320 MeV and our
calculation for intermediate sets made up of the nucleon
and b, (1232), these plus P waves, and all of the states up
to N=2 are plotted in Fig. 12. The curve with just the
nucleon and 6(1232) shows the expected problem with
normalization due to the nonrelativistic quark model's
underestimate of the 6(1232) couplings at the pole [our
estimate of the direct term in the Compton amp/itude at
the 6(1232) pole is too small by a factor of about 1/3].
The other curves demonstrate that a minor cancellation
in the amplitudes, expected from the P-wave states at
the b, (1232) pole, becomes a large efFect when the Delta
amplitude is underestimated by this factor.

Examination of the Koniuk-Isgur predictions [25] for
the P-wave states give us confidence that, while serious,
this disagreement should not persist at higher energies
where the D(1232) contribution is less important. In-
deed, the situation is better at 800 MeV, as illustrated
in Fig. 13 where we have plotted data from Ref. [15] and
Refs. [17—19] and our calculation for the same three in-
termediate state sets. Here the data show an asymmetry
around 90' which is enhanced in our calculation when the

N = 2 band (positive parity excited) states are included
in the set of intermediate states, and the normalization
of our calculation relative to the data is roughly correct.
In Figs. 14 and 15 we have also plotted A& and P& at this
energy (for which no data exist).

One question which remains unanswered is the degree
to which our results have converged at the energies ex-
amined here. In order to be certain that the effects of
higher energy intermediate states are negligible, we need
to be able to evaluate the contributions of the next band
of states in the harmonic oscillator, the N = 3 band. At
this level, the harmonic oscillator plus corrections pic-
ture of the baryon spectrum is less likely to be reliable
as there are now states whose wave functions will sam-
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FIG. 13. Differential cross section at lab E~ = 800 MeV
(in the P-wave region). Legend as in Fig. 12. Data are from
Ref. [15] (+), Ref. [17] (0), Ref. [18] (x), and Ref. [19] (o).

e, (aeg)

FIG. 12. Differential cross section at lab E~ = 320 MeV
[near the 6(1232) pole] with intermediate states consisting of
the nucleon and A(1232) (solid line), these plus the P waves
(dashed line), and with all states from Table I (dot-dashed
line). Data are from Ref. [14].
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pie the potential in its (expected from QCD) linear re-

gion, where anharmonic perturbations will become very
large. For that reason it is understandable that there
exist negative parity excited states in the data which lie
within the energy range of the N = 2 band, the most
reliable of which [32] are the b, '(1900), with J
and b, '(1930), with JP =

2 . From counting arguments
within the NRQM these states cannot be N = 1 band
states, but lie far from the center of a postulated N = 3
band at around 2500 MeV. It may be that more sophis-
ticated models [37] can incorporate such states; in the
model with which we are most familiar [38], where these
wave functions are expanded in a harmonic-oscillator ba-
sis up to N = 7, the lowest 6 states with these quantum
numbers are at 2035 and 2155 MeV, respectively [41].
This is consistent with the roughly 100 MeV overestima-
tion of the mass of the Roper resonance in this model,
and the situation for these states is probably somewhat
similar; there may be mixtures of the F = 3 band states
which have particularly low energy.

In order to investigate the effects of these states on the
Compton scattering amplitude at ~s = 1900—2000 MeV
(corresponding to lab photon energies of roughly 1450 to
1650 MeV), we would therefore need to find the wave

functions of the lowest energy states in the N = 3 band
in the Isgur-Karl model, which would necessitate a com-
plete spectral analysis. The simpler option of evaluating
the effects of these states with an unmixed harmonic-
oscillator model for the wave functions (and energies) is,
from the above discussion, unlikely to lead to a greater
understanding of the issue of convergence. We would

simply see etfects near the (degenerate) band center of
mass and not elsewhere. This issue may only be dealt
with within a more sophist, icated model for the states
and their electromagnetic couplings which encompasses
the % = 3 band states. The result is that our calcula-
tions at these energies is missing the effects of two states
clearly seen in x¹Our calculation of the polarization
asymmetry A& for the spectrum with and without the ten

unseen states shown in Fig. 3 is therefore missing their
contribut;ions in both cases. We conclude that the differ-
ence of the curves at these energies, rather than details
of their shape, may survive inclusion of the N = 3 band.

IV. CONCLUSIONS

We have presented a systematic study of nucleon
Compton scattering within the framework of the Isgur-
Karl-Koniuk model. Our results include calculations of
low-energy quantities such as the electric and magnetic
polarizabilities as well as differential cross section and
polarization observables at intermediate energies.

We wish to emphasize that Compton scattering is not
simply a summary of baryon photocouplings. For some
observables, notably the proton asymmetry Az, there is
considerable interference among the individual resonance
contributions which would not be exposed by studying
individual baryon photodecay amplitudes. In particular,
Compton scattering appears to be quite sensitive to the
spectrum of P states.

We therefore urge experimenters to consider a variety
of measurements of nucleon Compton scattering, includ-
ing cross sections and, where possible, polarization ob-
servables, to provide more precise constraints on quark
models of baryons.

Overall, the behavior of existing data is qualitatively
reproduced by the model. Noticeable points of disagree-
ment, such as the failure to reproduce the Thomson limit
and the very low cross section in the A(1232) region, can
be understood in terms of specific shortcomings of the
model, such as the violation of current continuity at low
energies, and the small DNA coupling constant implied
by the Isgur-Karl-Koniuk model, respectively. Certainly
improvements in these aspects of the model will also im-
prove its ability to describe Compton scattering in detail.

There is also much work to be done on the theoret-
ical side. Extension of the Hilbert space beyond the
N = 2 band is an obvious candidate. We are presently
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investigating the applicability of the relativized quark
model [38],with a basis which extends up to N = 7. This
may improve both the agreement of the size of the photo-
couplings with data and the degree to which the continu-
ity relation is satisfied. There is also the eAect of relativis-
tic dynamics. Incorporating relativistic dynamics, which
includes both one- and two-photon operators as well as
multiquark current matrix elements, into a model which
also fits the baryon spectrum and satisfies the continu-
ity relation, is a major project. Different approaches can
handle different parts of such a project easily, and other
parts not so easily. The relativized quark model repre-
sents one way to do this. We are also considering models
which do not rely on v/c expansions. Another physics
issue is whether to include explicit meson [or (qq)] inter-
mediate states. As mentioned above, there is some evi-
dence that there may be substantial cancellation among
the intermediate (qq) contributions [21]. However, the
pion may represent a special case. In the chiral quark
model [6], it is pions rather than quarks that provide the

bulk of the nucleon polarizability. In chiral perturbation
theory, of course, all of the polarizability comes from pi-
ons [8]. On the other hand, at higher energies, pions may
play a role not unlike other mesons, in which case a va-
lence quark model may be more appropriate. This topic
is presently under investigation.
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