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Using a suitable ansatz for the gauge potentials and the external source currents, we demonstrate that
solutions for the topologically massive gauge field theories can be constructed to exhibit branching in the
total energy versus total external charge plot. As the gauge field is massive, charge screening of the

external matter source also occurs.
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1. INTRODUCTION

Recently there has been some interest in constructing
classical solutions of (2+ 1)-dimensional field theories in-
volving the Chern-Simons (CS) term. Since for the CS ac-
tion alone the classical solution is trivial, the Yang-Mills
(YM) action [1] or the charged-scalar field terms [2,3] or
both [4] are usually incorporated. Classical solutions are
useful as they may provide insight into the full quantified
theories. The purpose of this paper is to present some
solutions to topological massive gauge field theory in the
presence of external (nondynamical) matter sources.
These solutions exhibit bifurcation (branching) in the to-
tal energy H versus total external charge Q plot when the
controlling parameters of the external source are varied;
furthermore, complete charge (color) screening of the
external source also occurs. Solutions for (2+1)-
dimensional gauge field equations interacting with exter-
nal sources have been discussed in Ref. [5], but without
the above two features.

For the (3-+1)-dimensional YM theories, complete
charge screening solutions were first found by Sikivie and
Weiss [6]. These solutions can have arbitrarily low ener-
gies and the external sources are screened by the YM
gauge fields, which vanish fast enough at large distances
so that the total non-Abelian charge of the system (YM
field plus external matter source) is zero. The external
source distribution can be regarded as an assembly of
many quarks and the gauge-invariant measure of the
non-Abelian charge has been discussed in Ref. [7]. Bifur-
cating solutions were first constructed by Jackiw, Jacobs,
and Rebbi [8]. Their solutions require the support of
minimal nonzero source strengths and cusplike behavior
is seen in the energy H versus total external charge Q dia-
gram. As a working definition, bifurcation is said to
occur if there exists at least a common point in the para-
metric space at which the total energy and the total
external source strength have their respective stationary
values [9]. Consequently the branching of the total ener-
gy occurs as the total external source strength is varied.

In the following section we introduce our notation and
definition of the non-Abelian charge. In Sec. III we con-
struct an ansatz for the gauge field by imposing the axial
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symmetry, the resulting solutions have a finite energy as
well as finite total external source strength. The total
non-Abelian charge of the whole system vanishes, in con-
trast with the finite nonzero total charge of the external
matter source. This indicates charge screening of the
matter source by the gauge fields at the classical level. By
manipulating the parameters specifying the external
sources, we find that our solutions can lead to two
branches emanating from the stationary point in the H
versus Q diagram. The locus of bifurcation points is also
displayed in Sec. IV. We end with some brief remarks in
Sec. V.

II. THE EQUATIONS

For the SU(2) gauge group and in (2+ 1)-dimensional
spacetime, the YM equations with the CS term and the
Bianchi identity are, respectively,

D, FF+EFY=J", (1a)
D F'=0, F'=1e"fF 4, (1b)
D,J"=0, (1c)

where JV is the external source current and the metric is
g, =(—+ ). The coefficient £ of the CS term is re-
placed by —i£ in Euclidean spacetime. The total energy
H of the system is obtained from the energy-momentum
tensor 7',

H= [d>xT®
= [d[HEfEf+B°B)+JPAf], %)
where Ef=Fj; and B"=%6ijF,-‘}'- are, respectively, the
non-Abelian electric and magnetic fields. A gauge-

invariant measure of the total non-Abelian charge of the
system can be defined as [7]

Qr= [ d*x 3;(F*°p*), (3)

where 1% x ) is a unit vector in the internal space. The to-
tal non-Abelian charge of the external source is

Q=fd2x(J“°n") . 4)
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Note that as
o, (F*n*)=(D,F*")n*+F"(D, )" (5)
the non-Abelian charge carried by the gauge field is [7]
Qr= [d*x F2(D;n)*, 6)

and that due to the CS term and the external matter
source is

Qszfdzx(DiFiO)ana=Q+QCS ’ (7a)
where
Qcs= [ d*x(—EF{™) . (7b)

The CS term (—£F") can effectively be regarded as a
source for the gauge field. Clearly, Q;=(Q +Qcg)+ QOF-.
Charge screening occurs if Q0 but Q,=0.

III. SOLUTIONS

To construct solutions which exhibit a bifurcation
property we begin with a symmetry consideration so as to
arrive at a general and suitable ansatz. For the time-
independent case the simplest symmetry we can consider
on 2-dimensional space is axial symmetry. Using a polar
coordinate system the basis vectors are the radial and
transverse vectors n' and ¢; (i=1,2), respectively. At
each point in two-dimensional space, we characterize the
basis vectors in the SU(2) group space by n¢, ¢° and 8,
a=1,2,3 and n’*=¢*=0. The axial-symmetric ansatz
can be constructed by considering terms containing prod-
ucts of the space and group basis vectors; the coefficient
of each term is a function of p only. The proposed ansatz
is

A7=58%[n;g,(p)+6,;8,(p)]

+¢j[”ag3(P)+¢ag4(P)]
Xn;[¢°gs(p)+ngelp)], (8a)
A§=8f(p)+n’f,(p)+¢°f3(p) , (8b)

with a similar form for the external source current densi-
ty J,(p). This ansatz reduces the field equations (1) to a
set of nonlinear and coupled differential equations which
are rather complex. Inspection of these reduced equa-
tions reveals some redundancy. To resolve this redun-
dancy and for simplicity we set g, =g;=gs=0=f,=f,
and put g,=1/p, g4=P, g¢=T, and f;=V. Thus the
new ansatz is

Aj=(¢"P+85/p)p;+n’n;T , (9a)
Ai=¢°V , (9b)
and it leads to the nonlinear reduced equations
() —_— __V_’

4 + VT =E(P'+P /p)+J%¢° (10a)
QV'T+VT'+VT /p=—ETP+J%8¢ , (10b)
—(TPY —(P'+P/p)T=EVT +J78%, (10c)

P"+P'/p+P/p*—PT*=—E(V'+J7%; ,
(V2=P)T=J"n’n; .

(10d)
(10e)

To satisfy the constraint (1c) on the external current and
to simplify the above equations further, the source
current can now be written as

Je=(I—VT?)¢*+M55, (11a)

JE=T(V2—P%)n°n,—[T*P¢°+(TP)8%)$, , (11b)

where I and M are functions of p only. This choice
reduces Egs. (10) tremendously:

—V"'—V'/p=EP'+P/p)—1T , (12a)
—(P'+P/p)=EV , (12b)
2V'T+VT'+VT /p=—ETP—M . (12¢)

Evidently many solutions can be found for the above re-
duced equations. Since we demand our solution to exhib-
it bifurcation properties, the total energy and the total
external charge must have finite nonzero values. We find
after many trials that a viable solution can be constructed
by first solving Egs. (12a) and (12b):

V=K(a+2—sz), K=z% %, (13a)

P=zK, z=¢p, (13b)

I=8K[s*3a+5)—(a+2)—s(s>—1)z
—s(3a’+7a+3)/z+aXa+2)/22], (13c)

where a and s are positive parameters for the charge dis-
tribution. To solve the remaining nonlinear Eq. (12¢), we
expand the functions T and M by power series and after
some manipulation we obtain

T=¢(L, L=zPe 7, (14a)
M —E%2KL {25 +st —1—[s(4a+B+7)+t(a+2)]z !
+(a+2)2a+B+1)z7%} , (14b)

where [ and ¢, like a and s, are positive parameters for
the charge distribution.
The non-Abelian electric and magnetic fields are given
by
Ef=(¢°V'—85VT)n,; , (15a)
B*=383PT + ¢V . (15b)

At large distances the fields and the external source all
vanish exponentially fast:

Efmsz®"le ™ (¢ +855z0e i, (162)

B~ —gz"le " (¢ +852Fe ) (16b)

J8z§22a+le—s2[¢as(1_s2)+sgzﬂe—t1(2s2+st_1)] ,
(16¢)



838 C.H. OH AND K. K. LOH 46

J{’zgz‘”’gﬂe —(t+s)2{nani(s2__l)za+1e—sz

+¢ 9%z e "= 84(s +1)E]}

(16d)
while near the origin we have
Ef=~n/ (a+2)z%¢%/z —8%zP) , (17a)
B=£z%¢%a+2)—8%2P1"], (17b)
8=~ ENa+2)z%¢(a/z)*—2P/E]
+8%2P"1(2a+B+1)} , (17c)
Ji=EzB{nn(a+2)2°
+¢,[¢°€zPT 1+ 8%a+B+1)]]} . (17d)

Using the definition (2), the total energy H for the
above solution can be straightforwardly evaluated. We
find, after some calculation,

H=(as*+b)s eVt (cs?+ds+e)(s+t) HathbtD)

(18a)
where
a=T[2(6a®+16a+9)2a+1)
—3(2a+3)2a+1)a+1)
—8a(2a+3)(a+2)+4ala+2)’], (18b)

b=T[2a+3)2a+1)a+1)

—4(a+1)a+2)2a+1)+2Q2a+1)a+2)?],

(18¢)

c=T,[2a+2B+3)a+p+1)
—4a+B+1)a+2)+2a+2)], (18d)
d=—4T,(a+2)(B—1)t, (18e)
e=T,2t%a+2)*—(2a+28+3)a+B+1)], (180

I =(ra)4d"**1rQa),
C,=(6m)4" @t ETIr(2a+28+2),

and a>0, B> —(a+1). As for the total external charge
strength, we use definition (4) and project along the direc-
tion ¢“ to obtain

0= [d%x(VT*+£V)

=4q(s +2t) " @TBI(a+2B8+2)[tHa+2)—Bs],
(19)

where the integral over (£2V) is zero by using solution
(13a), and we require @ >0 and B> —1(a+2). Again us-
ing the definition (3), the total non-Abelian charge of the
total system projecting along the direction 7°=¢? is

Or= [ d* 3,(F%*)

=—fd2x

The total charge carried by the gauge field as computed
from Eq. (6) with ?=¢“is

Qr=— [dx vT? 1)

VII+L
p

=0. (20)

whereas that due to the CS term (—£F") is
Qcs=—6[dx V=0. 22)

Clearly, (Q + Qs +0Qp)=0 as it should be since the sum
is equal to Q7. As Qg vanishes but Q is finite, charge
(color) screening is said to occur. In passing we note that
if we project along the direction 7°=©6%, the total charge
of the system Q again vanishes while the total charge of
the external matter source as given by

0= [d* J%3

= [dx(V'T+ETP) (23a)
is a finite quantity, indicating color screening. However
in contrast with Eq. (22), here the charge due to the CS
term,

Qcs=— [ d*x(EFP89)

=—¢[dx PT, (23b)

remains finite. The charge carried by the gauge field pro-
jected along n°=285 is

Qr=—[dx TV . (23¢)

Again we have Q + Qs+ Qr=0.

IV. BIFURCATION

As mentioned earlier, bifurcation means the branching
of the total energy H(A) of the gauge field and external
source system when the total external charge Q(A) is
varied [8], where A is a set of parameters. The existence
of local extrema of H(A) and Q(A) at common paramet-
ric values, say A=A,, will imply the bifurcation of the
H(Q) curve [9]. We have four parameters here,
A=(a,pB,s,t), and if we vary all of them at the same time
then it is not easy to find the common parametric values
of (a,B,s,t) at which H(A) and Q(A) assume their
respective extrema. However by trial and error we find
after much effort that H and Q do posses their respective
local minimum when B=1.000000, =0.400000,
§=2.224259, and a=1.829673. In our search for the
bifurcation point, each time we fix the values of 3, 5, and ¢
when the parameter a is continuously varied. In this
way, H and Q essentially depend on only one parameter,
namely a. In Fig. 1, we present the bifurcating curve
with the characteristic cusp in the H versus Q plot; the
values of the parameters B, ¢, and s are fixed as above
while the parameter a is varied. Note that once a bifur-
cation point has been ascertained, many other bifurcation
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FIG. 1. Plot of H vs Q for the solution of the reduced Eqgs.
(12) when the parameter «a is varied while other parameters are
kept fixed: $=1.000 000, s =2.224 259, and ¢ =0.400 000.
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FIG. 2. The dashed line represents the locus of bifurcation

points. The bifurcating curve is that of Fig. 1.
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points can be traced out by varying, say, the parameter z.
The locus of the bifurcation point is shown in Fig. 2.

One can adjust the parameters so that the maximum of
the energy coincides with the minimum of the total exter-
nal charge. For instance, the parameter s is varied while
parameters a, 3, and ¢ are kept fixed. We find that when
t=1.535 850, a=0.500000, and 3=4.000000, H has its
maximum and Q has its minimum at s =1.343 869 simul-
taneously. The branching of H when Q is varied is
displayed in Fig. 3 and, as before many other branching
points, can be traced out as shown by the dashed curve in
the same figure.

From the explicit expressions of H(A) and Q(A), Egs.
(18) and (19), it is easy to locate the bifurcation points
analytically if we regard H and Q as dependent solely on
just one parameter, say, ¢ or s. For example, taking a, 3,
and s as constants we have H=H(t) and Q =Q(t); then
the extremum conditions dH /dt =0=dQ /dt lead to an
equation involving s, a, and 8 which can be solved for s:

s=[(2a+2B+3)Na+B+2)/(a+B+D)]V2.  (24)
The critical ¢ value is then given by

t,.=(2B+1)s/(2a+4) (25)
and at this ., H and Q assume their respective local max-

imum values. Assigning a==0.01, we find s =1.3208,
t,=0.3351, and
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FIG. 3. Plot of H vs Q for the solution of the reduced Egs.
(12) when the parameter s is varied while the rest of parameters
are kept fixed: +=1.535850, a=0.500000, and S=4.000 000.
The dashed curve represents the locus of bifurcation points.
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FIG. 4. Plot of H vs Q for the expressions (26) and (27). Here a=[£=0.01, and s =1.3208.

Q(1)=(25.5883r —0.1682)(2r +1.3208) >, (26)
H(t)=4.1093+(9.4217t2+12.2585¢ +2.4466)
X (1+1.3208)74% 27)

The maximum values of the energy and the total external
charge are respectively given by H_,, =5.10156 and
Qmax —1.04336. The bifurcation curve is different from
Figs. 1 and 3 and is shown in Fig. 4.

V. REMARKS

We end with some remarks.

(i) It is not difficult to construct solutions for Egs. (1)
once an appropriate ansatz has been written down. How-
ever, if we require the solution to have a finite total ener-
gy H and a finite total charge Q so that branching occurs
in the H versus Q plot, then much effort is demanded. In
Sec. III we have demonstrated that such a solution can
indeed be found. Of course our solution is not unique
and it is possible that other solutions with the above
properties can also be found. Incidentally, because the
gauge field is topologically massive due to the Chern-
Simons term, charge screening is anticipated.

(ii) The bifurcation picture presented in Sec. IV corre-

sponds to the weak bifurcation as suggested in Ref. [9].
This is because the two branches correspond to different
external charge density distributions although the total
external charges are identical. The weak bifurcation [9]
can always be engineered to occur by manipulating the
parameters specifying the external charge distribution.

(iii) The energy expression (2) is gauge dependent ow-
ing to the fact that 4/ transforms gauge noncovariantly.
Consequently, for our solution in Sec. III, the energy H
given by Egs. (18) is not gauge invariant. If we set J/=0
so as to make the energy gauge independent, then the
construction of a solution exhibiting charge screening
and bifurcation is much harder. Note that J can be re-
lated to the color magnetization density if J,, is regarded
as the quark current [10].

(iv) The charge carried by the CS term as defined in Eq.
(7) is in fact the magnetic flux since F'=B,. The CS
term may play some dynamic role as suggested in Ref.

[3].
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