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The compact formulation of U(1) Hamiltonian lattice gauge theory in 2+ 1 dimensions is studied using
the ¢ expansion. The ground-state energy, average plaquette, specific heat, photon mass gap, and the ra-
tio of the two lowest masses are investigated. Two contraction techniques are applied: a unistate scheme
which uses only the strong-coupling vacuum for the trial state, and a bistate scheme which allows the in-
troduction of variational parameters and arbitrarily large loops of electric flux in one of the trial states.
The mass ratio obtained from the bistate contraction scheme exhibits precocious scaling. No evidence of

a stable scalar glueball is found.

PACS number(s): 11.15.Ha, 12.20.Ds

1. INTRODUCTION

Compact U(l) gauge theory in 2+1 dimensions
[U(1),,,] has been the subject of many theoretical and
numerical studies since the introduction of lattice gauge
theory by Wilson [1] in Euclidean space-time and the
subsequent development of the Hamiltonian formulation
of lattice gauge theory by Kogut and Susskind [2].
Polyakov’s pioneering study [3], followed by the investi-
gations of Banks, Myerson, and Kogut [4], Glimm and
Jaffe [5], and Drell et al. [6], showed that the periodicity
of the magnetic portion of the action causes the theory to
have a single linearly confining phase and a nonzero mass
gap in the photon sector. Estimates of the mass gap and
string tension as a function of the inverse coupling 3 were
obtained by these authors. Gopfert and Mack [7] exactly
determined the mass gap in the Villain (periodic Gauss-
ian) approximation to the Wilson theory and gave a
rigorous lower bound on the string tension. Estimates of
the ground-state energy, mean plaquette, mass gap, and
string tension using strong-coupling perturbation theory
[8-12], variational methods [13-19], and a WKB
method using a weak-coupling Villain approximation [20]
later appeared in the literature. Evidence that the string
tension in U(1),,, undergoes a roughening transition
near 3~0.7 beyond which the on-axis strong-coupling
series cannot be analytically continued was presented by
several authors [8,9,21,22]. However, the behavior of the
mass gaps is believed to be analytic near the roughening
point [10,22].

The earliest numerical investigations of U(1),,,; were
performed by Bhanot and Creutz [23], D’Hoker [24], and
Ambjorn, Hey, and Otto [25] and were standard Wilson-
loop studies using Euclidean Monte Carlo methods. Ster-
ling and Greensite [26] performed a notable simulation
for a system with external sources and directly measured
the string tension from energy differences rather than
from Wilson loops. Other numerical methods which
have been applied to U(1),, include the projector Monte
Carlo method [27,28], the ensemble projector Monte Car-
lo method [29], Green’s-function Monte Carlo method
[30], the guided random walk algorithm [31], and a
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Langevin technique [32]. The finite-lattice Hamiltonian
approach [33], the method of correlated basis functions
[34], t expansion [35], and the block renormalization-
group method [36] have also been used to study this mod-
el. Although the qualitative features of compact U(1),,,
lattice gauge theory are now well understood, improve-
ment in the quantitative determination of the string ten-
sion and mass gaps in the weak-coupling region is still
needed.

In this paper compact U(1),,, Hamiltonian lattice
gauge theory (HLGT) is studied using the ¢ expansion of
Horn and Weinstein [37]. This method has been previ-
ously used to obtain glueball mass estimates in quenched
SU(2) [38-40] and SU(3) [41-45] HLGT in 3+1 dimen-
sions, as well as to study scaling in periodic QED [35].
The ¢ expansion uses the operator e ! to project trial
states onto the low-lying eigenstates of a Hamiltonian H.
Estimates of expectation values are obtained through a
process of power-series expansion and subsequent series
analysis. Although the method is a nonperturbative com-
putational scheme for general Hamiltonian systems, it is
particularly well suited to systems defined on a lattice.
The ¢ expansion, which will also be referred to here as the
“projector expansion method” (PEM), resembles the
high-temperature series expansion in statistical mechan-
ics.

After describing the ¢ expansion in Sec. IT and U(1), 4,
HLGT in Sec. III, expansions for the ground-state energy
and photon mass gap are determined in Sec. IV. An im-
portant feature of this study is the fact that two contrac-
tion techniques are employed: a unistate scheme which
uses only the strong-coupling vacuum as the trial state
and a new bistate scheme which allows the introduction
of variational parameters and arbitrarily large loops of
electric flux in one of the trial states. D-Padé approxi-
mants are used in the analysis of the series, which is
presented in Sec. V. Also, in this section, the vacuum en-
ergy expansions are manipulated in order to study the
mean plaquette and so-called specific heat, quantities
which provide clues to the phase structure of the theory
and location of the crossover region from strong to weak
coupling. An important finding of this paper is the
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effectiveness of the bistate contraction scheme in deter-
mining the photon mass gap and the ratio of the two
lowest masses in the weak-coupling domain. Precocious
scaling is observed in the mass ratio. Results and con-
clusions are summarized in Sec. VI.

II. t EXPANSION

The ¢ expansion uses e ‘¥ to project any trial state
|h) onto the true ground state |¥,) of Hamiltonian H
as the arbitrary parameter ¢ becomes large, provided that
(1| ¥)#0. The vacuum expectation value of an ob-
servable O is calculated in this method using

((O)=(‘l’0|(’)|\lfo)=tlim o) , (2.1
where the PEM function O(t) is defined by
~Ht/2@) ~Ht/2|y
o= {Hole e 77l 2.2)

(ole ~H(¢)

Instead of employing stochastic techniques to evaluate
this matrix element, the projector expansion method
proceeds by expanding (O(t) as a power series in ¢. This
expansion yields

o _‘t n
o= 3 (=0

n=0

o, , 2.3)
where the coefficients O, are termed “PEM moments”
and are defined recursively by [37]

c = 2 [m ]<¢O|HPI¢O>@::" —p
(2.4)
0 = 1

m= " [ ]<¢o|Hp@Hm “Play)
The PEM function must then be reconstructed somehow
from its Taylor series in order for the limit £ — o to be
taken. An interesting feature of the ¢ expansion is the
fact that it exploits the formidable power of analytic con-
tinuation to deduce long-range behavior from short-range
behavior, rather than resorting to statistical sampling.
The bistate contraction scheme [37] takes advantage of
the fact that the trial states on the left- and right-hand
sides of Eq. (2.2) need not be the same. The large-t limit
of the function

(xole “H20e ~H 2|y, )
(Xole _ch/’o)

also yields (@ ). The coefficients of the Taylor-series ex-
pansion of this function are found as before using Egs.
(2.3) and (2.4) except that all operators are now taken be-
tween { x,| and |¢,).

O )= (2.5)

L U(1),;, HLGT

In the compact formulation of U(1) Hamiltonian lattice
gauge theory studied here, the gauge-field degrees of free-
dom reside on the links between the sites of a square
two-dimensional spatial lattice with spacing a. With each
link / is associated a link variable U;, which is a lattice

version of the parallel transport matrix between the adja-
cent sites connected by the link. U, is an element of the
Lie group associated with the gauge invariance of the
theory and in U(1) is related to the gauge field A4, corre-
sponding to the link / by

iaed,; i,

U=e =e !, (3.1)

where e is the coupling constant of the theory and
0,=ae A, is known as a link phase angle. The sum of the
phase angles of the four links of an elementary square
(plaquette) in the lattice, defined with respect to the direc-
tion of circulation around the plaquette, is a gauge-
invariant quantity called a “plaquette phase angle” ¢,.
In other words, ¢,=(VX0),. The plaquette phase angle
is related to the magnetic ﬁeld B, by ¢,=a eB The di-
mensionless conjugate momentum associated w1th A, is
E;=(a/e)dA,;/dt and in the temporal gauge measures
the electric flux along link /. The (dimensionless) Hamil-
tonian of the theory is given in terms of these quantities
by [46]

H——EE,Z-I—BZ(I—cos:ﬁp (3.2)

where B=1/g? and g?>=e%. Both B and g are dimen-
sionless. An important feature of the above Hamiltonian
is its local gauge invariance.

This theory is quantized in the temporal gauge by im-
posing the canonical commutation relations

[6(n,7),E(m,1)]

=i[8(m,n)8(1,7)—8(n+aj,m)sd,—7], (3.3)
where in the above, the directed link / =(n, 1) is specified
by its site of origin m and its direction 1—+ex,ie
These commutators  take into  account tl;l\at
6(n,j)=—0(n+aj,—j) and E(n,j)=—E(n +aj,—j).
Since 4°=0 is not a complete gauge-fixing condition, the
theory contains spurious degrees of freedom. The physi-
cal states are identified as those which satisfy Gauss’s
law:

E(0,D)|¢pys) =0 (3.4)

18
i

(V-E )yl dppys) = z

i=

or, in other words, those states which are gauge invari-
ant.

A convenient basis in which to calculate PEM mo-
ments is the set of eigenstates of the electric-flux opera-
tor. Each state |{n}) in this so-called E representation is
specified by a set of integers {n} corresponding one to
one with the links of the lattice. The total space of states
is a tensor product of individual link state spaces. In this
basis the operators E,; are diagonal and the link variables
U, and U, are stepping operators. The state annihilated
by every E, is called the strong-coupling vacuum and is
the state in which n; =0 for all /.

Another convenient set of states is defined in the
plaquette-flux representation. Electric-flux configura-
tions {n} which satisfy

n1=-‘(VXm)1 ’ (3.5)
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where {m} is an integer-valued field, automatically satis-
fy Gauss’s law. The set of integers {m ] corresponding
one to one with the plaquettes of the lattice can be used
to label states in this representation. Every state |{m}) »
in this set is gauge invariant. In two dimensions with
free-boundary conditions, Eq. (3.5) uniquely determines
the m,, and the states |{m} ), are orthogonal and form a
complete set [47]. Note that this set of states is overcom-
plete (and thus nonorthogonal) in three dimensions and in
two dimensions if periodic-boundary conditions are im-
posed.

The continuum limit of the U(1),,, lattice theory is
taken by varying the coupling g as a —0 in such a way
that some physical quantity is held at a fixed value. If the
mass gap is held fixed as ¢ —0, then g—0 and the con-
tinuum limit exists [7], leading not to familiar Maxwell
electrodynamics, but to a theory of massive glueballs.
The string tension in units of the physical mass squared
goes to infinity in this limit. Ordinary free electrodynam-
ics is recovered by holding the unrenormalized electric
charge e?=g?/a fixed as a—0. It is not presently known
whether or not the massless continuum limit obtained by
fixing the string tension as a — 0 exists.

IV. CALCULATION OF THE MOMENTS

A. Finite cluster method

The combinatorial complexity of PEM moment calcu-
lations in infinite lattice systems necessitates the use of an
efficient and systematic computational approach. A pro-
cedure which is simple to implement and which provides
ways of detecting errors is highly desirable, especially
when calculating in the bistate contraction scheme. A
method which readily satisfies these requirements is the
finite cluster method (FCM). This method was first put
forward by Domb [48] in the application of the Mayer
cluster integral theory to the Ising model. A formal
proof of the method for the Ising and Heisenberg models
was given by Rushbrooke [49] in 1964. The method was
later generalized by Sykes et al. [5S0], who showed, using
only lattice constant theory, that the method could be ap-
plied in the calculation of any quantity, regardless of the
type of interaction, as long as that quantity is extensive in
nature.

The finite cluster method relies heavily on graph
theory. A graph G is a collection of vertices and bonds
connecting the vertices. Any two vertices in a graph may
be connected by at most one bond, and bonds which con-
nect a vertex to itself are not permitted. Since the calcu-
lations in U(1),, ; HLGT performed here use the gauge-
invariant plaquette-flux basis, the plaquettes are
represented by graph vertices and the bonds represent the
interplaquette electric mixings. A graph is termed con-
nected if it contains at least one path of bonds between
any two given vertices. A graph H is a subgraph of G if
all of its vertices and bonds correspond to vertices and
bonds of G. If & is a subset of the vertices in G, then a
subgraph of G consisting of the vertices in & and all the
bonds in G which connect the vertices in & is called a sec-
tion graph. Any subgraph F' of a graph G which is iso-

morphic with a graph F represents an embedding of F in
G in the weak sense. Any section graph F of G which is
isomorphic with a graph F is an embedding of F in G in
the strong sense. Clearly, a strong embedding is also a
weak embedding, but the converse is not necessarily true.
The number of distinct weak embeddings of G, in G, is
denoted by (G;G,) and is called the weak-embedding
constant of G, in G,; the strong-embedding constant of
G, in G, is denoted by [G,;G,]. For example,
[G4;G¢]=0 and (G,;G¢)=4, referring to the graphs of
Fig. 1. On a square two-dimensional lattice L,
[G45L]=14 (defined per site) and (G45Lyy)=18; the
embeddings of G, in L, in which the end vertices occu-
py nearest-neighbor sites of the lattice are allowed only as
weak embeddings.

The usefulness of the FCM depends greatly on the
property of extensivity. A quantity is extensive if, when
evaluated on a disconnected graph, it is the sum of that
quantity evaluated separately on the connected com-
ponents of the graph. An extensive matrix element
A (L) defined on a regular lattice .L of infinite extent is
calculated in the FCM by summing specific contribu-
tions, called the “FCM weights,” to 4(.L) from all con-
nected finite-sized graphs G which can be embedded in .L.
The procedure is prescribed by writing

(¢c)

AL)= 3 [G;L]¢ 4(G) (4.1
GCL
and, similarly for all subgraphs,
1 2 6 14
G, G, Gq G,
4 1 34 20
1o g ooooo A,
Gg Gg G, Gg
8 1 82 4
Go Gio Gy Gyz
52 32 12 4
! 1 Ko ¥ odge
Gyg Gy Gys Gig
16 4 8 2
8 ofoe "1, 113
Gy Gig Gio Gao

FIG. 1. All connected graphs consisting of up to six pla-
quettes which can be embedded on a square lattice. The circles
represent plaquettes, and the line segments connecting the cir-
cles represent the links of the lattice shared by adjacent pla-
quettes. The values in the upper right-hand corners are the
strong-embedding constants per site for the graphs in a square
two-dimensional lattice.
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(c)
A(G)= 3 [F;Gl¢ ((F),
FCG
where ¢ 4(G) is the strong FCM weight for 4 on G and
the (c) above the summation signs indicates that these
sums include only connected subgraphs since A4 is exten-
sive. By rewriting Eq. (4.2) in the form
(c)

6 4(G)=A(G)— 3, [F;Gl¢ (F),
FCG

4.2)

(4.3)

the FCM weights may be evaluated recursively using Eq.
(4.3) on the connected subgraphs of .L in order of increas-
ing size. Although these equations have been written in
terms of strong-embedding constants, weak-embedding
constants may also be used. When using strong con-
stants, the size of a given graph G is the number of ver-
tices in G; for weak constants, the size of G is the total
number of vertices and bonds in G.

B. Ground-state energy density

Although the vacuum energy per plaquette is neither
an interesting nor physically relevant quantity, its evalua-
tion is important for three reasons: It is the simplest
quantity which can be calculated and so provides a first
test of the reliability of any computational algorithm; any
nonanalyticity in this energy with respect to the inverse
coupling B signals a phase transition; and interesting
quantities, such as the mean plaquette, specific heat, and
mass gaps, are obtained from manipulations of the
ground-state energy PEM function.

The PEM function €y(t) for the ground-state energy
per plaquette is most easily calculated if each trial state is
a tensor product of identical plaquette or link states. If
one trial state |¢,) lies entirely in the physical vacuum
sector of Hilbert space, then the other ( Xol need not
since the Hamiltonian in the projector does not mix
states in different sectors. This aspect of the bistate con-
traction scheme is particularly important in non-Abelian
lattice gauge theories (which one ultimately wishes to
study) where the strong-coupling vacuum is the only
gauge-invariant state which is also a tensor product of in-
dividual link states. In such theories this scheme allows
the introduction of variational parameters and arbitrarily
large loops of chromoelectric flux without sacrificing the
simplicity of calculation afforded by the use of tensor-
product states.

Two PEM functions for the vacuum energy per pla-
quette are studied here. The first €§i(¢) is given by

<¢’0|ﬁe _—ZBH'|(P0)
(@ole =P @)

eft)=

b

where A is the Hamiltonian per plaquette and |g,) is the
strong-coupling vacuum. The second function €3(¢) was
chosen specifically to examine the effectiveness of the bi-
state contraction scheme and is given by

ﬁ —2BHt
ed(t)= (@l e—ZBHt P20
(@ole l@re)

’

where |@,,) is one of the simplest tensor-product states
which can be formed:

|@1o? =TI (1+Acosg, +iwsing,)|@,) ,
P

with p labeling plaquettes. This state was chosen since it
contains arbitrarily large loops of electric flux, yet is sim-
ple enough to permit the evaluation of at least the first
ten or so terms in the ¢ expansion of the vacuum energy
and photon mass gap. In order to obtain reasonable esti-
mates of continuum limit mass ratios, the effects of long-
range correlations must be accurately deduced by the ap-
proximate means of analytic continuation used in the
series analysis. This can only be accomplished if a
sufficient number of terms in the ¢ expansion are known.
In other words, one must not sacrifice too many terms in
the expansion in order to improve the independent-
plaquette trial state. Note also that this state cannot be
obtained from the action of any finite power of the Ham-
iltonian on the strong-coupling vacuum.

The calculation of a PEM moment H, in any ground-
state energy expansion is accomplished in the following
sequence of steps. First, H(G;) on the smallest connect-
ed graph G, is calculated. This is done by setting up an
appropriate basis of states for the graph and constructing
the Hamiltonian matrix H(G,) and trial state |¢y(G,)),
as well as |xo(G,)) when using the bistate contraction
scheme, in terms of these basis states. H;(G,) is then
calculated using Eq. (2.4) with O=H and simple matrix
multiplication. The FCM strong (or weak) weight
¢,:(G}) is then determined using Eq. (4.3). Next, the

n

(4.4)

above process is repeated for the second smallest connect-
ed graph G, and then for successively larger connected
graphs. On a given graph G, ¢,,.(G) can be nonzero only

if n is sufficiently large to permit mixings among all of
the plaquettes of G. Thus, for a given n, a graph G, is
eventually reached for which the FCM weight is zero; the
weights for all larger graphs also vanish. If one is able to
calculate the weights for all graphs smaller than G, then
H; on the infinite lattice can be determined using Eq.
4.1).

These calculations are performed using the symbolic
manipulation package MAPLE. The use of such a
language is crucial since it allows one to manipulate sym-
bols, such as the coupling constant and variational pa-
rameters, and to treat numbers exactly, eliminating both
round-off and overflow problems. The removal of
overflow difficulties is very important because the com-
binatorics encountered in PEM lattice calculations can
lead to very large numbers. The absence of round-off er-
rors eliminates the problems which occur whenever
differences between large nearly equal numbers are taken.

The dimension of the basis of states required to evalu-
ate PEM moments using the finite cluster method in-
creases rapidly with the order of the moments. When
calculating higher-order terms, one must consider not
only large connected diagrams, but also a larger number
of states on the individual plaquettes. This growth in
basis size limits the number of calculable terms in an ex-
pansion. However, many of the basis states needed to
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naively compute FCM weight on a large graph partici-
pate only in contributions to the weight, which are subse-
quently canceled by subgraph subtractions. This fact can
be exploited in order to significantly increase the number
of PEM coefficients which can be determined. The easi-
est way to eliminate the unnecessary basis states is to im-
pose a maximum plaquette-flux magnitude. This max-
imum flux magnitude should be chosen as small as possi-
ble to minimize basis size, yet large enough in order to
compute exactly the required weights. A FCM weight on
a large graph can be computed using this basis truncation
scheme only if all subgraph weights subtracted from it
are calculated using the same truncation scheme.

The first 19 coefficients in the power-series expansion
of €g!(¢) and the first 12 in €2(z) were obtained. The first
several terms in these series are given below:

AB e = (" 4B
€ (=3 5 & (4.5)
n=0 N

where

ef=(1—1/2)8,
ed=(1-A22)8-2A8,
=LA /2—AB+(—6A?— 40> +4)3°—8AB ,

ed =B,
A_ 23
81 _B ’
£2A=4[33 R

ef=168"—3p8",
ef'=64B’—408" ,

4.6)
e =40B'"—208B7+2563° ,
ed=11208"1+25608"+1024/3° ,
ef1=12544p" — 115585 +97 79287 +4096/3°
edl=—554408"5—46 0808'! + 1 996 8005’
+163845° ,
e5'=57456B'°— 1071 840B'°—3 071 4883"!
+34317 31287 +65 5363°
and
@.7)

e8=(6A?—30*—3)B7+(—24A% — 320> +201)B° + ( —48A2— 80w*+ 16)B° — 32A8 ,
e2=(30A>— 1245 —201)B° + (— 120A* — 2401 %> + 160A> + 800> — 40)[3’

+(—320A° — 1312A0% + 1041)8°+ ( —256A2 — 11040> + 64)B° — 128A8 ,
eZ=(180A*—60A°— 16512 +40)B 4 ( —720A° — 19201 *w? + 1320A° + 144010* — 5601 )°

+(—24001% — 16 416A*0> — 11200* + 196812 +2912w* — 208’

+(—2112A3—33 184Aw?— 12801)8°+ (3242 — 13 12002 +256)3° — 51218 .

The connected diagrams needed to compute these mo-
ments are shown in Fig. 1. In this figure plaquettes are
represented by circles, and the line segments connecting
the circles represent the links on the lattice shared by ad-
jacent plaquettes.

C. Photon mass gap

PEM functions for energy gaps are not extensive, but
can be obtained from functions which are. To calculate
an energy gap in a sector (a) which does not contain the
ground state, first evaluate the extensive ratio

_ Cufleug)
Cole )

where [¢$)=Q,|¢,) and Q, is an operator with the fol-
lowing properties: If |4,) lies entirely in the vacuum sec-
tor of Hilbert space, then Q,|¢,) lies entirely in the (a)
sector; €1, is an extensive local operator; i.e., it satisfies

R (1)

Alll (4.8)

—

Q(G,UG,)=0Q,(9,)+Q,9,),
[Q,(8),H(S,)]=0, 4.9)
[Q(8,),H(8)]=0,
where 9, and 9, denote the embeddings of connected
graphs G, and G, in £ such that ;N §,=@. Q, is usu-
ally chosen to project out a state of definite momentum

and angular momentum. The energy gap in the (a) sec-
tor is then obtained using

oy O
Af(1)=——"InR (1) (4.10)
_ SutlHe T My§) (ol He ™9y i
(ygle ™ ™wf)  (dole ™gg) '

The ground-state energy of a lattice system is propor-
tional to Nj, the (infinite) number of sites in the lattice,
whereas energy gaps are finite values, independent of N
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as N;— . The second ratio in Eq. (4.11) tends to the
ground-state energy as t — o and thus is proportional to
N,; the first ratio is a sum of a function proportional to
N, which tends to the ground-state energy as t — «, and
a function independent of N, which tends to the energy
gap as t becomes large. In choosing |¢¢) as suggested
above, the O (N,) terms explicitly cancel for all values of t
in the difference of the ratios in Eq. (4.11). This explicit
and exact nullification of vacuum noise in energy-gap cal-
culations is an attractive and important feature of the
projector expansion method.

The bistate contraction scheme can also be used to for-
mulate a nonvacuum-sector energy-gap expansion in
which the O (N,) contributions explicitly cancel. If the
tensor-product state |y, ) lies partially in the vacuum sec-
tor and partially in the () sector, then the extensive ra-
tio
(xole ~"y§)
{xole "H|yy)

yields the appropriate energy gap via Eq. (4.10). The
coefficients in the Taylor-series expansions of R ,.(#) and
1

Ry.(0= 4.12)

R ’;a(t) are calculated in the same manner as the H;, mo-
1

ments. After the contributions to these coefficients from
the connected subgraphs are summed as in Eq. (4.1), the
energy-gap moments are obtained from the logarithmic
derivative using Eq. (4.10).

The photon mass gap is an important physical quanti-
ty. It is given by the difference between the energy of the
vacuum and the energy of the lowest state which is an-
tisymmetric under lattice reflections and invariant under
all lattice translations and 7 /2 rotations. The inverse of
this mass gap yields the correlation length of the lattice
theory in terms of the lattice spacing. The photon mass
may also be used to renormalize the theory; all other
physical quantities, when expressed in terms of this mass,
tend naturally to their physical values as the continuum
limit is taken.

Two PEM functions for the photon mass M are studied
here. The first M 4(¢) is defined by

MA= (p\[He *PHg,) (@olHe ~%H!| g )
(@ile "?#H g, ) (@ole "2PHt|@y)

(4.13)

ME=Ap/2+2/8,
ME=(A2—1)8/2+6A8,
ME=(\3-30/2)B°+(18A*+80?—6)B°+32A8,

MB=(3A*—6A%+5/2)87+ (7203 + 641> — 601 )B° + (256A%+ 232> + 8)B° + 14478 ,

where |@,) is the strong-coupling vacuum and

|<P]>= 2sin¢p‘¢0) (4.14)
p

is a zero-momentum state in the photon sector. The
second function M 2(¢) is a bistate contraction given by

(@, |He ~2H| g, ) _ (ol He " @y,,)

ME()= —
(@ile g, )

’

(@ole ~%#H!|p, )

(4.15)

where |@,,) is the tensor-product state defined in Eq.
(4.4). The coefficients in the power-series expansions of
M “4(t) and M3(t) were calculated using the finite cluster
method and the basis truncation procedure described in
the previous section. The first 15 terms in M 4(¢) and the
first 11 terms in M2(¢) were computed. Several of these
terms are listed below:

MAB ()= i (=1)" pram

3 M (4.16)
where
Mg=2/8,
Mi=-p/2,
Mi=—65,
M{=58"/2+8p%,
M{=1008"+576° , 4.17)
M#=8728"—-758'"1/2+91528° ,
MZ=9928"—31508"1+119 4248 ,
M3#=11278"—68 8808'! + 150 14453’
+14727688° ,
M =162288B"5—813 8888 +15 594 49657
+1783449683° ,
M§ =63329288"—569108"— 10023 6808"!
+785082 62457 +214 664 1923°
and
(4.18)

M2 =(1215—30A3+201)8° + (360A*+ 480A%w* — 480A% — 160>+ 100)5’
+ (192043 +4016Aw> — 584A)8° + (272072 +3696w> + 576)B° + 608A8 ,
ME=(60A°—180A*+ 16512 —75/2)B'1 +(2160A°+ 384043 w? — 3960A> — 2880Aw>+ 16801 )3°
+(15360A*+ 51 4081%w% + 32000* — 11 56812 —913600> + 872)87
+(36 6241+ 127 568 >+ 20001 )B° + (25 05642 +45 536002 +9152)B>+2496A8 .
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V. SERIES ANALYSIS

D-Padé approximants [37,38] are used in the analysis
of the series studied here. Ideally, one would prefer to
use more than one method of series analysis; however, no
other method has yet been found which is sufficiently ac-
curate to provide a useful check of the D-Padé estimates.
Instead, confidence in the PEM function reconstruction
must stem from agreement among many of the [L /M]
D-Padé approximants and from adequate convergence in
the approximants as L + M increases.

Series analysis results are presented here as the aver-
ages and standard deviations of selected approximants.
High L +M approximants which occur in a cluster are
typically chosen. The standard deviation in the values of
the chosen approximants yields an estimate of the uncer-
tainty in the extrapolation. It should be stressed that
such “‘error” estimates are in no sense rigorous and
represent only a subjective assessment of the rate of con-
vergence of the available approximants.

In the bistate contraction scheme, the problem of
choosing best values for the variational parameters in the
trial states must be addressed. If many terms in the
power-series representation of a PEM function are
known, then the values chosen should be immaterial.
However, if only the first ten or so terms are available,
one must expect that certain values of these parameters
will yield better estimates than others. Note that the bi-
state PEM function for the ground-state energy does not
provide an upper bound on the true energy and that D-
Padé approximants are also not guaranteed to lie above
the exact energy.

In the evaluation of the ground-state energy and other
vacuum expectation values, one expects that improve-
ment in the starting states will lead to better convergence
in the D-Padé approximants and more reliable series
analysis results. Hence a separate application of the vari-
ational principle to each trial state is a good starting
point for the bistate series analysis. If adequate conver-
gence of the approximants is observed using these varia-
tionally optimal parameter values and if the average of
the selected approximants does not change appreciably
under small variations in the parameters about these
chosen values, then the bistate series analysis is complete.
However, if these conditions are not met, one of the sim-
plest ways to proceed is to search parameter space for a
region of good convergence by freely varying one of the
parameters, determining all others by the variational
method. Often, physical insight can be an important
guide in this search.

A. Ground-state energy per plaquette

The results of the D-Padé analysis of €gl(¢) and €5(z)
are presented in Table I. The €§! estimates are averages
of the following 18 approximants: [2/8-11], [3/8-12],
[4/9-13], [5/10-12), and [6/11]. The bistate €5 averages
include the following eight approximants: [1/6-9],
[2/6-8], and [3/7], and values of A and @ which mini-
mize the expectation value of the Hamiltonian in the
state |@, ) are used; this minimum occurs at =0 and

TABLE 1. Ground-state energy density estimates compared
with those of the guided random-walk (GRW) algorithm on an
88 lattice and strong- and weak-coupling perturbation theory
(PT).

B e es GRW (8X38) PT
0.25 0.246095(6) 0.246095 1(1) 0.246 10(1) 0.246 095
0.50 0.46892(5) 0.468 93(2) 0.46891(3) 0.468 90
0.75 0.6471(1) 0.6474(2) 0.6467(1)

1.00 0.7675(4) 0.7689(9) 0.7676(7)

1.25 0.8344(3) 0.836(3) 0.8330(19)

1.50 0.8681(5) 0.869(3) 0.8726(31)

1.75  0.8860(5) 0.887(4) 0.8896(31)

2.00 0.898(1) 0.898(5) 0.8984(56) 0.9007
2.25 0.906(2) 0.905(5) 0.9165(63) 0.9071
2.50 0.912(1) 0.911(5) 0.9122
3.00 0.921(1) 0.9194) 0.9198
4.00 0.931(3) 0.928(5) 0.9294

for real values of A as shown in Fig. 2. The series analysis
results were insensitive to the values of A and w in this re-
gion of parameter space. Agreement between the bistate
and unistate estimates is excellent. The results compare
favorably to those of the guided random-walk (GRW) al-
gorithm on an 8 X8 lattice [31] [which are presently the
best estimates of the U(1),,;, HLGT vacuum energy den-
sity from any stochastic method] and agree well with
strong- and weak-coupling perturbation theory. No evi-
dence of a phase transition appears.

B. Mean plaquette

The smoothness in the dependence of the average pla-
quette {cosg,) on B in the crossover region between
strong and weak coupling is of interest here, since a
discontinuity in this dependence indicates a phase transi-
tion. [For example, in (3+ 1)-dimensional U(1) HLGT,
there is a second-order transition near B=~1 from a
confining massive phase in strong coupling to a massless
Coulomb phase in weak coupling.]

Two PEM functions whose large-¢ limits yield (cos¢p )
are investigated here. The power-series expansions

1.50

1.25

1.00

A 075

0.50

0.25

TllT‘]‘llj]lllr‘1lTT|III(TII1I

111]11]11’L11111LL1LL!11|

0.00

w
-

0 1

FIG. 2. Values of A which minimize the expectation of the
Hamiltonian in the state lCwa>~
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(cosg, ) 4(¢) and (cos¢), )2(¢) are obtained by manipulat-
ing the ground-state energy density series €§i(¢) and €2(z),
respectively, using the Feynman-Hellmann theorem

(cos¢p)“(t)=1—5%[ﬁeg(t)], a=A,B , (5.1)
where p=p’ and the validity of the termwise
differentiation with respect to 8 of the ground-state ener-
gy PEM power series has been assumed.

The D-Padé estimates of the mean plaquette are given
in Table II. The averages in the first column include the
following 14 approximants: [3/8-12], [4/9-13],
[5/10-12], and [6/11]. The bistate averages in the
second column include the following seven approximants:
[1/6-7], [2/6-8], and [3/6-7]. The variational parame-
ter values used in these averages are the same as those
used for the ground-state density. Agreement of the uni-
state and bistate estimates with each other and with
strong- and weak-coupling perturbation theory is excel-
lent. The results again compare favorably to those of the
GRW, particularly for large 8. There is no evidence of a
phase transition.

C. Specific heat

In statistical mechanics the specific heat is the second
derivative of the free energy with respect to temperature,
Cy=—T(3?F/3T?),. The analogue of the free energy
in Euclidean lattice gauge theory is the ground-state en-
ergy [46], and the coupling constant is the analogue of
the temperature. Hence the quantity

62
ap?

is here referred to as the specific heat.

This quantity is interesting for two main reasons:
First, discontinuities in C(f) with respect to B reveal
phase transitions in the lattice theory; and second, C(S)
peaks in the crossover region between strong- and weak-
coupling behavior [38], providing valuable information

cB)=-— €(B) (5.2)

TABLE II. Comparison of mean plaquette (cosg,) esti-
mates. The results are compared with those obtained using the
guided random-walk (GRW) algorithm on an 8 X8 lattice and
strong- and weak-coupling perturbation theory (PT).

B (cosg,)*  (cosg,)®  GRW (8X8) PT
025  0.03124(4)  0.0313(2) 0.027(3) 0.03123
0.50  0.1238(2) 0.123(2) 0.121(2) 0.123 81
075  0.2682(4) 0.267(3) 0.275(3)

100 0.4333(3) 0.437(3) 0.439(10)

125 0.5723(9) 0.575(2) 0.575(10)

150  0.663(3) 0.666(6) 0.664(15)

175 0.719(2) 0.722(10) 0.720(9)

200 0.757(4) 0.760(11) 0.777(12) 0.761
225 0.785(5) 0.788(13) 0.808(10) 0.787
250  0.807(5) 0.811(15) 0.808
3.00  0.840(5) 0.839(14 0.840
400 088103 0.882(13) 0.880

1.2
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FIG. 3. Specific heat C4in U(1),,; HLGT.
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concerning the location in B at which the onset of contin-
uum limit scaling may be expected.

The D-Padé estimates of the specific heat using only
the series C “(z) obtained from €g(¢) are shown in Fig. 3.
These estimates are averages of the following 14 approxi-
mants: [3/10-14], [4/10-13], [5/10-12], and [6/10-11].
Again, there is no evidence of a phase transition. The
specific heat peaks near B=~0.8, suggesting that weak-
coupling behavior may set in for 3 near unity.

D. Photon mass

The weak-coupling behavior of the mass gap is not ex-
actly known. Gopfert and Mack [7] showed that the lat-
tice photon mass in the Villain (periodic Gaussian) action
defined on a (2+ 1)-dimensional Euclidean lattice is given
exactly by

M?*=387Bexp[ —27mBV(0)], (5.3)

where V(0)=~0.252731 is the lattice Coulomb Green’s
function at contact. In the Hamiltonian formalism in
which only the spatial dimensions are discretized,
V(0)=~0.321441 is the analogous Green’s function at
contact. It is often claimed in the literature that the Vil-
lain action is a high- approximation of the Wilson ac-
tion so that Eq. (5.3) should also give the mass gap in the
weak-coupling limit of the Wilson formulation of the
theory. However, Suranyi [20] has disputed this, assert-
ing that a natural series of models, beginning with period-
ic Gaussian and approximating the Wilson model with
arbitrary precision, does not exist. His argument is based
on the fact that periodic Gaussian models are special
forms of Wannier-function expansions.

Several calculations have also provided evidence that
the mass gap in the Wilson formulation of U(1),,,
HLGT does not fall off in the weak-coupling region in ex-
actly the same manner as in the Villain model. The re-
sults of these calculations are summarized in Table III.
These results are obtained by fitting to the form
M?=Bexp(—ayB+a,) in the weak-coupling region.

The results of the D-Padé series analysis of M 4(¢) and
M3(¢) are shown in Fig. 4. The M 4 estimates, indicated
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FIG. 4. Lattice photon mass gap. The squares indicate the
bistate contraction estimates M2, and the circles denote the M 4
estimates. The dashed curve is the result from strong-coupling
perturbation theory, while the solid curve is a straight-line fit to
the bistate estimates for 1<8<2 and the M * estimates for
1 <B=1.4. The results of Hamer and Irving are shown as a dot-
ted curve, and the dot-dashed curve shows the results of Heys
and Stump.

by circles, are averages of the following 12 approximants:
[3/5-10], [4/6-9], and [5/7-8); the M? estimates,
shown as squares, are averages of the [2/5-7] and [3/6]
D-Padé approximants. In the bistate estimates M2, the
variationally optimal values of A and w calculated previ-
ously were used [note that although the projection of
|@,,) onto the photon sector is proportional to w, the
limit ®—0 can be used since this proportionality factor
appears in both the numerator and denominator in the
first ratio in Eq. (4.15)]. The smallest spread in the select-
ed approximants occurs in this region of parameter
space. The results interpolate smoothly between strong-
coupling behavior, shown by the dashed curve, and an ex-
ponential decay in the weak-coupling region. Agreement
between the unistate and bistate estimates is excellent for
B < 1.5. At this value of the inverse coupling, the spread
in the M 4 approximants begins to grow and their average

TABLE III. Results for the coefficients a, and o, appearing
in the weak-coupling formula M2?=Bexp(—ay8+a,) for the
photon mass gap. In the Villain result, the lattice Coulomb
Green’s function in the Hamiltonian formalism has been used.

Source Qg a,;

Villain (Hamiltonian) 6.345 4.369
Suranyi [20] 5.7(1)
Hamer and Irving [12] 5.3(5) 6.15(43)
Heys and Stump [19] 4.97(5) 6.21(6)
Lana [36] 4.1(2) 4.98(10)
Dabringhaus, Ristig,

and Clark [34] 4.80(6) 6.26(2)
This work 5.23(4) 5.94(5)

starts to deviate from the exponential decay. The bistate
estimates continue to exhibit the expected weak-coupling
behavior until near S~2. For larger 8 more terms in the
t expansion are apparently necessary. A fit of the bistate
estimates for 1<B8<2 and the M* estimates for
1<B<1.4 to the form M?=Bexp(—ayB+a,) yields the
weak-coupling mass-gap behavior given in Table III.
This fit is shown in Fig. 4 by a solid line. The results of
Hamer and Irving (dotted line) and Heys and Stump
(dot-dashed line) are also shown. Agreement with the re-
sults of Hamer and Irving is particularly remarkable.

E. Mass gap in the vacuum sector

The quantity of interest here is the ratio of the mass
gap in the vacuum sector, M,, to the lattice photon mass
M as B— . In this limit the ratio Rg =M,/M is expect-
ed to tend smoothly to its continuum limit value. In
practice, this limiting value is found by increasing 8 from
strong coupling until the mass ratio R,(B) levels off in
the weak-coupling region. From the previous studies of
the photon mass and specific heat, one would expect the
scaling of R, to set in for B> 1. If the continuum theory
admits a stable bound state of two photons (a glueball),
then the weak-coupling limit of R, will lie between unity
and two. If the continuum theory is simply a free-field
theory of massive scalar photons, as in the Villain model
[7], or if the glueball remains in the continuum theory
only as a resonance, then a ratio R, =2 should be ob-
served as 3 becomes large. Alessandrini, Hakim, and
Krzywicki [10], wusing strong-coupling perturbation
theory, examined this ratio and tentatively concluded
that a stable glueball in the vacuum sector did not exist in
the continuum limit. Hamer and Irving [12] found
Rg =2.1%0.5 in the weak-coupling limit. However, their
estimate was based solely on a single Shafer extrapolation
of the strong-coupling perturbation series. Lana [36] also
found R, =2 using a block renormalization-group tech-
nique.

Two power series for the ratio R, are studied here.
The first series R 4(t) is determined using [38]

/MA(t).

The second series R Z(¢) is obtained from the bistate con-
traction and is given by
/ M2 .

The results of the D-Padé series analysis of R “(t) are
shown as circles in Fig. 5. These estimates are averages
of the following 12 D-Padé approximants: [1/7-12] and
[2/6-11]. The L=0 approximants are not used since
they do not reproduce the behavior of the Taylor series
for all values of ¢ lying in the range 0 <t <t¢,,, where ¢,, is
the largest value of ¢t for which the truncated Taylor
series exhibits sufficient convergence to be judged a reli-
able representation of the PEM function. These L=0 ap-
proximants decay much too quickly and agree with the
Taylor series only for 0<? <t,, where t,<<t,,. In the

(5.4)

_9 4
ateo(t)

RE=—-L 9

28 3 (5.5)

9 B
T 60([)
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FIG. 5. Ratio of the mass gap in the vacuum sector to the
photon mass gap. The single-state contraction estimates R, are 2.00 T TTTrTTTTTI T3
shown as circles, and the bistate contraction estimates Rg” are i
displayed as squares. The solid curve is the result from strong- 1.75 H H
coupling perturbation theory. HHH{ H i
1.50 |— HH}E‘;&IQ} H
strong-coupling region, most of the approximants agree Rz E {ﬂ E
very well with one another and with strong-coupling per- 125 — 1
turbation theory (solid curve), but as B is increased, a r Y
sharp change in their behavior is observed. For g>1.2 oo b I
the approximants with L > 2 suddenly begin climbing in L. ? { H
value and disagree radically with one another. The R 4 L “11H
estimates exhibit slight evidence of scaling. They almost 0.75 o L1l lols O 11 L 11 15 L1 21 s 5

level off at an overly large value of Rgz2.3 near B=2
just before the spread in the selected approximants sud-
denly grows. The key observation here is that there is no
evidence of a stable glueball in the continuum limit.

This conclusion is confirmed by the results of the
analysis of the R B(t) series. These bistate estimates, indi-
cated by squares in Fig. 5, are averages of the following
13 approximants: [0/6-9], [1/5-8], [2/5-7], and
[3/5-6]. In order to take advantage of any cancellations
which might occur in R 3(¢), the same values of A and
are used in both the numerator and denominator of Eq.
(5.5). In the strong-coupling region, most of the approxi-
mants agree very well with one another. Parameter
values near the variationally optimal ones yield the least
amount of spread in the selected approximants and aver-
ages which are insensitive to the values of A and w. Thus,
for $<0.8, the variationally optimal values of A and @
are used. Agreement between the bistate and unistate es-
timates is excellent in this region of the coupling.

As B is further increased, the variances in the bistate
estimates obtained using the variationally optimal param-
eter values begin to grow quickly, similar to the R “ esti-
mates. However, a region of averages with much smaller
variances suddenly appears for w’<0 and satisfying
1<|w|<2. Hence, for B>0.8, the bistate estimates are
obtained in the following manner: First, » is varied,
keeping w? real [this ensures that all coefficients in R (¢)
are real, simplifying the series analysis since the require-
ment lim,_, . ImR %(¢)=0 is automatically satisfied]; for
each value of o, the parameter A is then chosen by
minimizing the ground-state energy in the state |@,,);

iw

FIG. 6. Average bistate estimates of R, for (a) $=0.8 and (b)
B=1.3 as a function of iw. The parameter o is freely chosen
and is imaginary; A is then chosen so as to minimize the expec-
tation value of the Hamiltonian in the state |@,,,).

the estimate with the smallest standard deviation is final-
ly selected. This procedure is illustrated in Fig. 6. For
B=0.8 the minimum in the standard deviation of the
selected D-Padé approximants occurs for =0 [see Fig.
6(a)]; for B=1.3 the best convergence of the approxi-
mants occurs for w=11.65i [see Fig. 6(b)]. For various
values of B in the region 0.8 <f<2.5, a large search of
parameter space was undertaken and all other parameter
values which were tried produced estimates which either
were consistent with those obtained using the above pro-
cedure or had much larger variances.

The bistate estimates provide much stronger evidence
of continuum limit scaling than do the R “ estimates.
The ratio R, determined from the bistate contraction be-
comes nearly constant for f>2 and seems to be ap-
proaching a slightly high value of 2.2, providing further
evidence that no stable scalar glueball exists in this
theory.

VI. CONCLUSION

The ground-state energy per plaquette, the average pla-
quette, and the specific heat in U(1), ; HLGT were accu-
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rately determined on an infinite lattice for a wide range of
coupling-constant values, confirming that this lattice
theory has only a single confining phase. The results
agreed very well with strong- and weak-coupling pertur-
bation theory and compared favorably to results from
stochastic Hamiltonian methods. Two trial states were
used: the strong-coupling vacuum and a tensor product
of single-plaquette states which were linear combinations
of field configurations with zero or one unit of electric
flux circulating along the plaquette boundary. A single-
state and a bistate contraction were calculated. Although
the bistate estimates for the ground-state energy and
mean plaquette were no better than those determined us-
ing only the strong-coupling vacuum as the trial state,
they agreed very well with them, improving confidence in
the results.

The photon mass gap and ratio R, of the mass gap in
the vacuum sector to the photon mass were also studied
using a unistate and bistate contraction. The weak-
coupling behavior of the photon mass differed from that

of the Villain model, but was in good agreement with the
results of previous calculations by other authors. Scaling
in the mass ratio was observed for 8> 2, and the weak-
coupling estimates of this ratio were consistent with a
continuum limit value R,=2, providing no evidence of a
stable scalar glueball. The bistate contraction was instru-
mental in enabling the accurate determination of both of
the above quantities in the weak-coupling region. This
suggests that use of the bistate contraction technique
could lead to improved determinations of glueball and
hadron masses in lattice QCD.
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