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We study further the vacuum structure and chiral-symmetry breaking in Hamiltonian lattice gauge
theory with fermions. Attention is paid to (2+ 1)-dimensional systems. For the fermion sector, a unitary
transformation and the variational method are employed. The antiferromagnetic nature of the unitarily
transformed Hamiltonian and mesons as spin waves are presented at strong coupling, and the relevance
for high-T, superconductivity is discussed. The vacuum state of the full theory is assumed to be the
combination of the variational fermion vacuum state and the exact ground state of the modified Hamil-
tonian for pure gauge theory of Guo and co-workers. The existing problems in the modified theory are
pointed out as well. The chiral condensates in QED, and QCD, are calculated and the scaling behavior
is observed in the crossover regime.

PACS number(s): 11.15.Ha, 11.30.Qc, 11.30.Rd, 12.38.Gc

I. INTRODUCTION

Gauge theories in 2+1 dimensions have acquired in-
creasing attention [1—4], because (a) they possess many
similarities to (3+1)-dimensional QCD and are easier to
study and (b) SU(2)3 is evidently relevant to high-
temperature superconductivity [5—7]. In the new high-
T, superconductivity materials such as La-BaCu-O, it is
widely accepted that the essential physics can be de-
scribed by the Hubbard model defined on a two-
dimensional lattice (the Cu-0 planes). In the strong-
coupling regime when the system is half-filled, it reduces
to the antiferromagnetic (Neel-ordered) Heisenberg mod-
el

H = +[M„M + -+—2(B„B„+1+B„+B„)]J
X,J

g(M ——') .Jd
4 X (1.2)

Here d is the spatial dimensions and (c =1,2 are "color"
indices and g are fermion fields)

*On leave from Department of Physics, Zhongshan University,
Guangzhou 510275, People's Republic of China.

I=JgS„S„+I,
X,J

where S, is a spin- —,
' operator. The materials become su-

perconducting when they are doped with a certain con-
centration of holes. Equation (1.1) obviously owns a glo-
bal SU(2) symmetry. By making the spin-color
correspondences, Eq. (1.1) can be rewritten as [6,7]

M„=gg„,P„, ,

B.=P.,if.,2 ~

(1.3)

One sees apparently that Eq. (1.2}has a local SU(2} gauge
symmetry. As will be shown in Sec. II, the Heisenberg
model is equivalent to lattice SU(2}3 in the strong-
coupling regime. Chiral-symmetry breaking ( ( grab) %0)
in (2+1)-dimensional lattice gauge theories (LGT3) cor-
responds to the magnetization ((S )%0) in the Heisen-
berg model.

Spontaneous chiral-symmetry breaking, which should
be investigated nonperturbatively, is an important char-
acter in quantum field theory. It was conjectured that
chiral-symmetry breaking, fermion confinement in LGT,
and the process of pairing in the Hubbard model may be
closely related. LGT presents a well-defined technique in
which nonperbative evaluations of physical quantities can
be performed from first principles. LGT3 has been for-
mulated and discussed using numerical [8—15] and
analytical [16—20] methods. For a small number of fer-
mion flavors, confident evidence for chiral-symmetry
breaking in U(1)3 [11—13,15] and preliminary results for
SU(2)3 [14,16,19,20] and SU(3)3 [19,20] were obtained.
With the development of dedicated supercomputers and
algorithms, numerical simulations have become a power-
ful tool for this task, giving many encouraging results. In
order to understand the physical insights of LGT, such as
the local structure of the vacuum and wave functions,
several analytical methods [21—26] were also developed.
The lattice computations are reliable only when the
correct continuum limit is approached and the expected
scaling behaviors are observed. The answers to these
questions are far from trivial. In the Hamiltonian for-
malism, the second one may be partly reduced to the di-
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agonalization of the lattice Hamiltonian.
Recently, we developed a different approach to

(d + 1)-dimensional Hamiltonian LGT with fermions
[19,20,27 —33], which consists of a unitary transformation
and the variational method. In [27—33] our approach
was successfully applied to the Schwinger model and
QCD2. In Refs. [19,20,27] we extended it to 2+1 and
3+1 dimensions by incorporating the variational fermion
vacuum state and exact ground state of the modified
Hamiltonian of pure gauge theory proposed by Guo and
co-workers [34—36]. Preliminary results are encouraging
up to the crossover regime. However, as addressed in
[38—42] and Sec. III, there may still be some existing
problems in the modified Hamiltonian of pure gauge
theory.

This paper is organized as follows. In Sec. II a unitary
transformation and the variational method [27—33] are
used to reproduce the effective Hamiltonian at strong
coupling [43,44], its equivalence to the antiferromagnetic
Heisenberg model is presented, and the existence of pseu-
do Goldstone bosons is demonstrated. In Sec. III the
vacuum structure of the full theory (the fermionic Hamil-
tonian plus the modified pure gauge one of Guo and co-
workers) is analyzed. The existing problems in the
modified Hamiltonian are discussed as well. In Sec. IV
the chiral condensates in U(1)3, SU(2)3, and SU(3)3 are
systematically calculated. Conclusions are summarized
in Sec. V.

II. ANTIFERROMAGNETISM AND MESON
SPECTRUM IN THE STRONG-COUPLING REGIME

By discretizing the spatial dimensions and choosing the
A, =0 gauge, the Hamiltonian of (d+1)-dimensional
LGT is

H H +Hk +H +Hg

H =mph(x )g(x),
X

H1, = gg(x )y 1, U(x, k)f(x +k),1

2Q, k

(2.1)

H„= gli»(x )[f(x )
—U(x, k )P(x +k }],

2Q, k

2

H = gE (y)E (y) — QTr(U&+U 2)+-
2a

g(x)lo& =q(x)lo& =E;(y)lo& =o . (2.2)

We note that Hk, which is the only nondiagonal term in
the fermionic Hamiltonian, consists of fermion creation
and annihilation operators. In the strong-coupling limit
1/g =0, lo& is the zeroth-order approximation to the
vacuum state without color-electric flux. When g de-
creases, fermion-antifermion pairs connected by gauge
fields are created in the vacuum, which results in the di-
agonalization of the Hamiltonian. The fermion vacuum
can be described by [27—33]

where m, a, r, g, and U(x, k) are the fermion mass, lattice
spacing, Wilson parameter, bare coupling constant, and
gauge link variables. In 2+ 1 dimensions, g are still tak-
en to be four-component spinors, because y3 and y5,
which anticommute with y „yz, and y4, can be employed
to define global chiral symmetries. H is a mixture of
gauge electric and magnetic energies [f=

—,
' for U(1) and

f =1 for SU(N, )], and the dots represent some possible
terms which will be discussed in next section. The strong
coupling or bare vacuum state lo& is defined by

Inf & =exp(isf)lo&,

Sf=i+' g [8„$(x)y1, .
y& U(x, k1, ..., k2„+1)g(x+k1+ +k2„+, )

+8ne (x)yk1 yk2 U(x» 1»'''»k2»»+2)1 (x+kl + +k2n+2)] (2.3)

(2.4)

while

where summations over k; satisfy k;+k;+1%0, and 8„and 8'„are variational parameters determined by minimizing the
vacuum energy

&nlHIn &

&nflnf &

Hf =exp( iS& )Hf exp—(iSf ) (2.5)

is just the unitarily transformed fermionic Hamiltonian.
For free fermions [ U(x, k}= 1 and H =0], the unitary transformation and variational method [30] not only diago-

nalize exactly the Hamiltonian, but also give the correct vacuum energy (dispersion law). For the Schwinger model and
QCD2 (there is no plaquette energy in 1+1 dimensions), this approach results in satisfactory agreement [27—33] with
the continuum predictions.

Now let us look how the fermion ansatz works in higher dimensions. For simplicity, the Hamiltonian with naive fer-
mions (r =0) is considered here so that 8„' vanish automatically [27—33]. In the strong-coupling region 1/g ((1,8„
are so small that the one-link term (n =0) in Eq. (2.3),
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Sf=iHOQP (x)yI, U(x, k)g(r +k),
x, k

is dominant. By expanding the transformed Hamiltonian up to two-link terms, we obtain

H'=Hm+Hk+Hg )

(2.6)

(
—280 }H' ™gf(x)f(x)+( —28O)gg(x)yI, U(x, k)p(x+k)+ g $(x)yI, yI, U(x, k„k2)$(x+k, +k2)

x x, k x, kl, k2

HI' =
2

gg(x)yI, U(x, k)IItI(x+k)+( —28 ) g p(x)yI, yI, U(x, k„k )g(x+k, +k )
1

x, k x, kl, k2

2H'= g E (y)E (y)+HOE (y)gp(x) yI, [U(x, k), E (y)]g(x+k)+Hogg (x)y~[U(x, k), E. (y)]p(x+k)E (y)2a'
y.J . x, k x, k

(2.7)

+80 g l(t (x, )y„[U(x„k,),E (y)]g(x, +k, ) g g (X2)y„[U(X2)k~),E (y)]g(X2+k~) (,
x

1 I k x2, k2

where the magnetic Auctuations have been neglected. The vacuum energy is

En =(2N, Nf V)snf f

(280)d 2C (280) d
=(2N N V) ' —m[1 —(28 ) d] — +c f 0 a 2a 2

(2.&)

where V, N„N&, cz, and C are, respectively, the total number of lattice sites, number of colors, number of flavors, vac-f
uum energy density, and Casmir invariant [C = 1 for U(1) and C =(N, 1)l(2N, )—for SU(N, )]. By solving the equa-
tion Ben I(BHO) =0 Hp as a function of the fermion mass and coupling constant is obtained:f

280= 2

4ma+g C
(2.9)

In the zero- and one-link subspace, this condition also eliminates the one-link terms in H so that the matrix elements of
one-link terms in the substates vanish. This is the first step to the diagonalization of H. In the fluxless state ~0), H be-
comes the effective Hamiltonian in the strong-coupling region:

(28O)d g'C (280)'
' m [ 1 (280) d)+ 'gg(x)p(x) +

4N gg, f (x)y~g, f (x +k)g, f (x)y&g, f (x +k)
x c x, k

(2.10)

Here the color and Qavor indices of the four-fermion term are specified. This Hamiltonian represents the nearest-
neighbor interactions. Smit [43] and Greensite and Primack [44] derived very similar results in 3+ 1 dimensions by us-

ing a strong-coupling expansion method. As seen in Refs. [19,20,27 —33] and the following sections, our approach to
the fermion sector is self-consistent and can at least be extended to the crossover regime. For SU(2}3, Eq. (2.10) is

equivalent to the antiferromagnetic Heisenberg Hamiltonian [Eq. (1.2)]. To understand this further, we make a Fierz
rearrangement so that Eq. (2.10) becomes

H,s = (2N, Nf ) ' m [1—(28o) d ]+ (28O)d g Cd(28())
gf(x)g(x)+ gP (x)g(x)

4a

g C(280)
Qf (X)l ff (X +k)l/If (X)I Qf (x +k)L

32aN, I f f
where (Xq isII,qyI=yI, )

V4 Y3 V5 Y4V3 X4X5 Vq ~4Vq ~3 ~q ~ F4~3 ~ V4 q

L '1 1 1 1& 1 1& 1+25k & 1 25k ~ 1~ 1 &k q~ & k qI I

(2.11)

(2. 12)
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By making a linear approximation [45], the effective Hamiltonian can be represented by the operators {related to pseu-
doscalars and vectors)

1
&s(x)f f =,~~ ff (x)(1 —y4)yspf (x),

2(2N, }'" 2

as

1
ps(x)f f )~2 gf (x)( 1 y4—)y st (x}

2(2N, )'" 2

1
Vq(x)f f )~2 Qf (x)( 1 —y4)y gf (x)

2 2(2N )1/2

H,s=2N, Nf Van +Hs+Hs+gHf
q

Hs= g G&As(p)f f As(p)f f +G2[As(p)f f A3( —p)f f +H. c. ]gcospja
pf) f, J

Hs= p GiAs(p)f f As(P}f,f, +G2[As(p}f, , f, As( p)f f +H.c. ]gcospja
P~ )r J

(2.13}

(2.14)

'GIBq{P)f f Bq(p}f f +G2[Bq(p)f, f,Bq( —p)f f +H. c. ] gcospja —2cospqa
pf)fp . . J

en G2 g Cd{2~0) f(4a), and As(p), As(p), and Bq(p) are the Fourier-transformed operators of those

in EQ. (2.13). The antiferromagnetic nature of this Hamiltonian is obvious, which also shows that mesons behave as
spin waves. It can be exactly diagonalized by the Bogoliubov transformation:

A 3 (p ) =cosh u s (p )a s (p ) +sinhu s (p )a s ( —p )

As(p) =coshus{p)as(p)+sinhus(p)as( —p), (2.15)

B (p)=coshv (p)b (p)+sinhv (p)b ( —p),
if us(p), us(p), and v&(q) obey

26~
tanh2us(P) = — gcosP ja,6)

us(p) =us(p),

tanh2vq(p) =—2G2
gcosp ja —2 cospqa
. J

(2.16)

which is the condition of minimizing the vacuum energy as well. The Bogoliubov transformed Hamiltonian is

H', &=2N, Nf Ve, +G& g '[1—tanh 2us(p)]' a&(p)f f as(p)f f +[1—tanh 2us(p))' as(p)f f as(p)f f
pf) f2 .

++[1—tanh 2vq(p)]' b (p)f f b (p)f f
q

(2.17)

Here

+[1—[1—tanh 2us(p}]'~ ]
— +[1—[1—tanh 2vq(p)]'~ ]

C p C p, q

is the energy density of the exact ground state of H in the strong-coupling region:

~nf)=exp(iePf W~o),

with

(2.18)

(2.19)



818 XIANG-QIAN LUO AND QI-ZHOU CHEN 46

1R =exP. —g u3(P)A3( —P)f f A3(P)f f +u5(iv)A&( P—)f f A, (P)f f
pJ, X

+gv (p)B (
—p)f f B (p)f f —H. c. (2.20)

The vacuum state describes that when the bare coupling is reduced below the infinitive, fermions can move and ex-
change between neighboring mesons, which leads to meson pair condensation and generates these nearest-neighbor in-
teractions.

Using the Feynman-Hellmann theorem, we obtain the chiral condensate

(nf ~yy(x)y(x)~nf )
X

2/cd V

where, for d =2,

Bc~if
Bm m=0

4d

g 4C2
21' )VI

1 — I1 — I2
C C

(2.21)

2

I =
2(2~)

1 —1
1 —'

—,'gcospja
'

J
(2.22)

a

1 — —' gcosp ja —2 cospqa
. J

Note that H in Eq. (2.1) is chirally invariant. The nonvanishing value of (gP) indicates spontaneous chiral-symmetry
breaking in the vacuum, which results in two kinds of massless pseudoscalars. These Goldstone bosons are generated
by applying, respectively, a3(p) and a&(p) to the vacuum. Their masses are

1/g «1, m~O
=M& =6 i [1—tanh 2u3(0)]: m

8d

ag C
(2.23)

where the current-algebra relation is well reproduced. Similarly, the vector mass at momentum p =0 is

1/g «1, m~0
M =G, [1—tanh 2v3(0)]' =G,

q 1 3
ag C

2d

g Cma
a3(x)

1

2(2X, )
I'2 Pf (x)y3l/ff (x)+ g Cma

Pf, (x)r4r A'f, (x)

In the strong-coupling regime I/g ((1, the creation operators for the pseudoscalars and vector at p =0 are
1/4 1/4

(2.24)

a~(x)
1

2(2E )'
C

2d

g Cma

J

1/4

gf (x)ysff (x)+ g Cma
' 1/4

4f (x)r4rhf (x) (2.25)

1
b (x)f f i~~Qf (x)(1+&4)p~pf (x) .

2(2m, )'"

In a3(x) and a &(x) only the first terms do not vanish in
the chiral limit m ~0.

In Eq. (2.21) one sees that ~(1(tg) ~
decreases with the

increase of NI/X„which can be interpreted as the
screening of the forces that produces chiral-symmetry
breaking due to the effects of dynamical fermions or
meson pair condensation. Dagotto, Kocic, and Kogut
[12] conjectured that there may be critical value for Xf

beyond which chiral syrnrnetries would be restored. At a
small number of flavors, the effect of the Bogoliubov
transformation R is small. In the quenched limit NI «1,
Eq. (2.3) is a good approximation.

III. VACUUM STRUCTURE
OF THE FULL THEORY

Beyond the strong-coupling region, however, because
of the presence of the plaquette energy, the investigations
become very difficult. To diagonalize the Hamiltonian in
the weak-coupling regime, one has to use arbitrarily large



VACUUM STRUCTURE AND CHIRAL-SYMMETRY BREAKING IN. . . 819

Wilson loops. The complications involved have hindered
most authors in this field from further studying. In
[34—36] Guo and co-workers proposed a series modified

pure gauge Hamiltonians with exact ground states by
adding to the usual one

In this paper the modified pure gauge Hamiltonian
[34—36] of Guo and co-workers is adopted to include the
magnetic fluctuations, which is rewritten as

2

H = +exp( —S )E (y)exp(2Sg)E (y)exp( —Sg),
2a

2

Hg = QEg (y)EJ. (y) —
2 QTr(U + U~ 2—)

J.J

terms which vanish in the classical continuum limit:

2

y[EJ (y) Sg][EJ (y), Sg)
2a

(3.1)

(3.2)

(3.4)

~n &=exp(S )~0&, (3.5)

where the constant term has been neglected. It is obvious
that Hg possesses an exact ground state

where S is some function of plaquette variables such as

S =
&

QTr( U~+ Uz~)
2(g 4

(3.3)

or other variants [34—36]. Here we will use this simplest
form for Sg.

At first glance their method worked well because the
modified Hamiltonians become the usual Hamiltonian for
pure gauge theory and very nice scaling behaviors
[35—37] for the glueball masses and string tension were
obtained, being consistent with the conventional
methods. However, Roskies and others [38—40] found
that the vacuum expectation values for AH may diverge
because of high-energy fluctuations. Although the diver-
gence may be subtracted out by some renormalization
scheme [41], the resulting operator hH may generally be
relevant at the nonperturbative level. (A similar problem
appears in LGT with Wilson fermions. ) A study of the
analogous nonlinear 0 model [42] indicated that the
modified Hamiltonian was not Lorentz invariant. There-
fore the modified pure gauge theory may not be in the
same universality class as the conventional one in the
continuum limit. However, supported by the spectrum
calculations, the modified theory may still be a good ap-
proximation at least up to the crossover regime. Even
though the modified pure gauge theory has several "fun-
damental drawbacks, " it might be a better method than
the strong-coupling expansion and deserves further
study: for instance, understanding why eventually
different theories seem to give approximately the same re-
sults or how well the modified theory works.

describing magnetic fluctuations in the vacuum. We pro-
pose the physical vacuum of the full theory to be the
combination of the exact ground state of pure gauge
theory and the variational ferrnion vacuum state:

~
n &

=exp(Sg )exp(iSf ) ~
0 & . (3.6)

IV. FERMION CONDENSATES
IN QED3 AND QCD3

The energy of the proposed vacuum state Eq. (3.6) is

&n~H ~n& &ng IHf'Ing &

&n/n& &n, /n, &

(4.1)

Here one notes that the pure gauge vacuum energy van-
ishes [34—37] so that the variational parameters can be
calculated in the same way as in Sec. II. In Refs. [19,20]
the one-link approximation (only the first term in the fer-
mion ansatz Sf )

~ n, i, &
=exp(Sg )exp( i HOSf ) ~

0 &

was considered. The vacuum energy was

(4.2)

One may also discuss the operator mixing and renor-
malization problem [41]. But it is too complicated for a
practical calculation and will not be discussed here.
Since LOT in 2+1 dimensions is superrenormalizable,
the renorrnalization effects would be very small in the
currently investigated coupling regions. In fact, this con-
jecture was supported by previous results for glueball
masses and string tension [35—37].

(2~ )2
1

" (2~ )2 +' 2C " (2'9 )2 +2

En ™g 2 t g W2n+2(x ki )
2 g 2 + 1 ~

g W2n+2(x k')+ g
~

g V2n+2(y, j,x, k; »
l I 7l g,J,x,

(4.3)

where the symbols W and V were given in Refs. [19,20,27]. For example,

g W2„(x,k; ) = ( 2Nf N, V) W2„—
x, k,-

x, k,

&0~exp(Sg )f(x)yk .
yk U( k&x, ..., k )g2( +kx& + . . +k2„)exp(Sg ) ~0&

&0~exp(2S )~0&

Nf V J [dU)exp(2Sg)Tr[U(x, k&, . . . , k2„)]
Tr(y . )

2n dU exp 2Sg
(4.4)
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1/g

0 60
0 ~ 00

0. 80 1. 0Cl l. 20 1- 40 1- 60 1- 80
I l

0 40

(b)

0 80)

20

60
X

2 00

x b
x x x

FIG. 1. Factorization of a Wilson loop.

from which one sees that after contractions of fermion
fields, various shapes of Wilson loops with 2n links satis-
fying k, + +k2„=0 appear. The number of these

graphs, which grows rapidly, can be counted on a com-
puter [19,20]. [Actually, Eq. (4.3) is calculated until the
series converges well. ] Once W2„are known, the third
term in Eq. (4.3} is obtained. In 2+ 1 dimensions the ex-
pectation values of Wilson loops can be evaluated exact-
ly. It can be easily proven that, for a Wilson loop such as
Fig. 1(a}, its expectation value factorizes in a product of
those for loops A and 8 in Fig. 1(b):

(Tr W)s = (Tr W„)s(TrWz }s,
C

(4.5)

(4.6)

where (TrW& ) has been calculated in Refs. [35,36] us-

ing recurrence relations and

I [dU]exp(2' )Tr( U~ )
(Tr W„)s =N, Y "=N,

[dU]exp(2S )

FIG. 3. Vacuum energy density —aE&/(Nf N, V) as a func-
tion of 1/g' in SU(2)3. The meanings of the triangles and
crosses are the same as those in Fig. 2.

Iz(16/3g )Y= for SU(2),
I, (16/3g )

I" ,tz, r'
Y=

I
for SU(3},

6+I" (p, t'

(4.7)

where I are the jth-order modified Bessel functions and
& =3/(4g ). z& are given in Ref. [20]. In the chiral limit,
the vacuum energy densities aEn /(N/—N, V) of the

1 la

state [Eq. (4.2)] in U(1)3, SU(2)3, and SU(3)3 versus 1/g
are represented by the triangles in Figs. 2, 3, and 4, re-
spectively. One sees that the vacuum energy is lowered
by the inclusion of fermions. According to the
Feynman-Hellmann theorem, the corresponding chiral
condensate is given by

with n „ the number of elementary plaquettes surrounded
by this loop and

I, (1/g )Y= for U(1},
Io(1/g )

1/g

0- 8CL
0

1 20 2 00
0. 90 1 10 1. 30 1 50 1 70 1- 90 2 10

0 80~

! 20)

1 60' x
x

x xx x x x x

0 40„

0. 80)

I 20)

60

2 00

x x x
x

FIG. 2. Vacuum energy density —aE&/(Nf N, V) as a func-
tion of 1/g in U(1)3~ The triangles stand for the data of the
one-link approximation to Sf, while the crosses represent those
of the three-link approximation.

FIG. 4. Vacuum energy density —aE& l(Nf N, V) as a func-

tion of 1/g' in SU(3)3. The meanings of the triangles and

crosses are the same as those in Fig. 2.
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1 20 1 00

00

0 80

0 ~ 60

0 ~ 40

0 20 X X X X X X X
X X

x x

0 ~ 80

0 ~ 60

0 ~ 40

0 20

X x x X

0 00
0 ~ 80 1 ~ 20 1 ~ 60 2 ~ 00

0 ~ 00
0 ~ 60 0. BQ 1-00 1 20

I

l. 40 1. 60

FIG. 5. —(pp)„«,„/(2Nf N, Vg ) as a function of 1/g in

U(1)3. The meanings of the triangles and crosses are the same as
those in Fig. 2.

—(gp)I,«,„/(2NfN, Vg ) as a function of 1/g2 jn
SU(2)3. The meanings of the triangles and crosses are the same
as those in Fig. 2.

g =e Q (4.9)

and by dimensional analysis, the lattice chiral condensate
( Pg&l, «,„should scale as

(Q]jg lg„g(x)g(x)IQ]jg & - (28,)'"
8'3„ . (4.8)

2N, Nf V—(QI j, lQIl & „o (2n)!

Its relation to 1/g can be obtained by substituting the
determined 8o(1/g ) into Eq. (4.8). To extract useful
continuum information from LGT, one has to compare i't
with the scaling behavior. By using the relation between
the bare coupling constant and the continuum charge

(4.10) in this state in U(1)3, SU(2)3, and SU(3)3 as a func-
tion of 1/g are plotted in Figs. 5, 6, and 7, respectively.
It is noted that there are obvious deviations from the ex-
pected scaling behavior. These indicate that in the cross-
over region Sf stretching over only one lattice spacing is
not enough. In order to extend the results to weaker cou-
pling, operators with wider separation of fermions in Sf
have to be used. These operators correspond to fermion-
antifermion interactions at longer distances, which be-
come important at weaker coupling. Let us consider fur-
ther the three-link approximation to Sf [the first two
terms in Eq. (2.3)]:

Sf 8Pf +8]Sf
T r lattice 2 T ~ continuum

g4 e4

where the factor 2 results from the species doubling of
naive fermions. Because LGT3 is superrenormalizable,
the right-hand side (RHS) is a constant. The LHS of Eq.

Sf =i+'p (x)y„yk yk U(x, k„k2,k3)
x, k,.

XP(x +k, +k2+k3) .

The chiral condensate is

(4.11)

(Q3j lg f(x)f(x)lQ3l
2Nf Ng V( Q3lg I Q3lg &

(28o) " '(28, )'g g'W2„jl(x, k;, q; ),
x, k. q.

0 1

(4.12)

where

X X ~2 —l, l(x k;, q;, )=( 2N, Nf V)~2—
x, k,. q,0 1

= X X'«Iexp(S )f(x)yk yk y y U(x k] ~ ~ ~ k2 j q] ~ ~ ~ q3j)
x, k,. q,.0 1

xf(x+kj+ +k2„j+qj+ +q )e3jp(sx)l0s&/(Olexp(2s )l0), (4.13)
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FIG. 7. —(gf)t,«;„l(2NfN, Vg ) as a function of I/g~ in

SU(3)3. The meanings of the triangles and crosses are the same
as those in Fig. 2.

with

Wq~o W2~ ~

W) )= —8Y,

W3, =4( —9+22Y—6Y ),
IVc 2=4( —9+8Y—6Y ),
8'~ ~ =4(70—98Y+70Y —24Y +4Y ),

(4.14)

The results for the vacuum energy density and chiral
order parameter in the three-link approximations [Eq.
(4.11)] are shown by crosses in Figs. 2 —7, respectively.
One sees that the vacuum energy is further lowered and a
nice scaling behavior for the fermion condensate is ob-
served in U(1)3, SU(2)3, and SU(3)3. The plateaus extend
to the crossover and weak-coupling regions. The nonvan-
ishing values for the fermion condensates suggest that
chiral symmetries (related to y3 and ys) be spontaneously
broken. It is predicted that

up to the three-link approximation to Sf. In the present-
ed regions 0.8 & 1/g & 2.2 for U(l)3, 0.6 & 1/g & 1.6 for
SU(2)3, and 0.9&1/g &2.0 for SU(3)3, the first two
terms in Sf are enough for obtaining the scaling behav-
ior. As the continuum limit 1/g ~~ is approached,
fermion-antifermion pairs of all lengths should be includ-
ed because they are related to long-range correlations.

V. CONCLUDING REMARKS

In the preceding sections, the vacuum structure and
chiral-symmetry breaking in (2+1)-dimensional lattice
gauge theories with fermions have been investigated.
Some major results may be recapitulated here.

(1) As a first attempt, the effective Hamiltonian in the
strong-coupling regime has been obtained and diagonal-
ized exactly. It is shown that this Hamiltonian in strong-
ly coupled SU(2)& is equivalent to the antiferromagnetic
Heisenberg model, which is relevant to superconductivi-
ty. It has also been illustrated that spontaneously broken
chiral symmetries lead to two Goldstone bosons and one
vector particle. Their masses have been calculated as
well. The fermion condensate, which corresponds to
spontaneous magnetization in the Heisenberg model,
seems to decrease with the increase of fermion flavors.

(2) The ground state in the crossover regime is assumed
to be the combination of the variational fermion vacuum
state and the exact solution to pure gauge fields of Guo
and co-workers. Several limitations in the modified
theory of Guo and co-workers have been addressed. Be-
cause AH is relevant and breaks Lorentz invariance, the
exact ground state would differ essentially from that of
the conventional one in the continuum limit. For long-
wavelength configurations [41,46] and superrenormaliz-
able theories such as LGT3, the modified Hamiltonian
seems to work well in the presented regime.

(3) The chiral condensates in U(1)&, SU(2)3, and SU(3)3
have been systematically evaluated. Up to the crossover
regime, good scaling behavior has been observed after the
inclusion of fermion pairs of longer distances. It is fair to
say that some further work is required on the effects of
multilink terms of n 2, renormalization, and dynamical
fermions.

(if if ) continuum
2 X ( 0 05 )

e4 U(1)3

=2 X (
—2 X0.0275 ),

e4 SU(2)3

& &),.„„„„„ =2X( —3X0.072),
4 SU(3)3

(4.15)
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