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Finite-element quantum electrodynamics: Canonical formulation, unitarity,
and the magnetic moment of the electron
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This is the first in a series of papers dealing with four-dimensional quantum electrodynamics
on a finite-element lattice. We begin by studying the canonical structure of the theory without

interactions. This tells us how to construct momentum expansions for the Geld operators. Next
we examine the interaction term in the Dirac equation. Vfe construct the transfer matrix explicitly
in the temporal gauge, and show that it is unitary. Therefore, fermion canonical anticommutation

relations hold at each lattice site. Finally, we expand the interaction term to second order in the
temporal-lattice spacing and deduce the magnetic moment of the electron in a background field,

consistent with the continuum value of g = 2.

PACS number(s): 11.15.Ha, 11.15.Tk, 12.20.Ds, 13.40.Fn

I. INTRODUCTION

The finite-element lattice approach to quantum field
theory has been under development for several years now

[1—9]. Its principal advantage is that, of all possible
discretizations of the operator equations of motion, the
finite-element prescription alone is unitary, in the sense
that if the canonical commutation relations hold at some
initial time, they continue to hold exactly at each later
time on the lattice. This is in addition to its numeri-
cal advantage, well known in classical contexts [10], of
providing the most accurate approximation. Linear fi-

nite elements have a relative error, after N time steps, of
N z, rather than of N i for an arbitrary finite-differenc
scheme. A third remarkable feature was observed early
on: the species-doubling problem for fermions does not
occur [4).

By the finite-element approach we mean a formulation
based on a representation of the field equations as op-
erator difference equations on a Minkowski space-time
lattice. In addition to being unitary, this formulation is
causal, in the sense that fields at a given time are deter-
mined in terms of fields at earlier times only. In principle,
then, the difFerence equations may be solved for fields at
an arbitrary time in terms of fields at some initial time,
i.e., in terms of appropriate boundary conditions consis-
tent with the canonical commutation relations. Physical
quantities are then extracted from relations between ma-
trix elements of suitable operators. Evidently, this gen-
eral approach is quite difFerent from the line of attack of
conventional lattice gauge theory, where Euclidean func-
tional integrals are approximately evaluated by Monte
Carlo simulation, a procedure subject to statistical fiuc-
tuations.

More than six years ago we showed how to implement
Abelian gauge invariance on a finite-element lattice [6].
This led to an interaction term in the lattice Dirac equa-
tion which explicitly exhibited the point-splitting im-
plicit in the continuum formulation. We solved the equa-

tions for two-dimensional massless electrodynamics (the
Schwinger model) and obtained an excellent approxima-
tion for the axial-vector anomaly:

g2

M i(Pr)E' (1.1)

where jf is the axial-vector current, e is the charge of
the electron, E is the electric field, and M is the num-
ber of spatial-lattice sites. The quotation marks are a
reminder that the derivative is taken according to the
finite-element prescription: a forward difference in the
direction of the derivative, an average over adjacent lat-
tice sites in the other directions. As expected, the rel-
ative error is of order M z. This same result was later
found by using a method [2, 5] in which one expands
in the temporal-lattice spacing, h, and computes matrix
elements by a variational technique, thereby deriving a
dispersion relation [7]. This method will be followed in
this paper.

More recently, we showed how to extend the gauge-
invariant equations of motion to the non-Abelian regime
[8]. Now there are nonlocal interaction terms in Yang-
Millp equations as well as in the Dirac equation. The field
strength is expressed locally in terms of the potential, in
terms of nested commutators. The transformations of
the gauge potentials are similarly determined to be given
by a series of nested commutators.

These formulations, for simplicity, were stated in 1+1
dimensions. The generalization to four dimensions is
trivial for the Abelian case. (There are nontrivial as-

pects of this generalization for the non-Abelian case,
but the generalization is straightforward [11].) It is the
purpose of this paper to begin the study of the finite-
element formulation of gauge theories in four dimensions.
Here we discuss the basic framework in terms of finite-
element electrodynamics. Further investigations, speeif-
ieally involving nonperturbative evaluations of form fac-
tors (which should reveal something of their analytic
dependence on the fine-structure constant) will provide
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both a familiar context in which to study technical is-
sues, and a confirmation of the validity of the method.
In the future, the finite-element technique will be applied
to non-Abelian theories such as @CD, Chem-Simons the-
ories, and models of symmetry breaking.

The plan of this paper is as follows. In Sec. II we study
the noninteracting equations of motion and examine the
canonical structure in the radiation gauge. We will see
that appropriate canonical variables are the fields aver-
aged over adjacent spatial-lattice sites. We derive the
momentum expansions for these field operators. In par-
ticular we find the lattice form of the electron spinors.
In Sec. III we rewrite the interaction term in the Dirac
equation as a transfer matrix, which expresses Q„+i in
terms of Q„, where n is the lattice time. We prove that
the transfer matrix is unitary, and therefore that the
Dirac fields are canonical at each lattice time. Finally,
in Sec. IV we expand the transfer matrix in terms of a
complete set of Dirac matrices, and derive a simple set
of equations for these expansion coefficients. By expand-
ing in powers of h, the temporal-lattice unit, we are able
to derive the lattice analogue to the continuum of the
dispersion relation

V E=O, F +VxB=O.
t (2.4b)

&'7 &p0+ p4 = 0. (2 6)

A. The photon sector

Let us now write down the finite-element equations of
motion in the absence of interactions in a gauge where
A = 0. We use the notation that m = (mi, rnid, ms)
denotes the spatial-lattice coordinate, n denotes the
temporal-lattice coordinate, 6 is the lattice unit in a
space direction, and h is the lattice spacing in the time
direction. Then the electric field E is constructed from
the vector potential A according to

Similarly, in the fermionic sector, we have canonical
equal-time anticommutation relations:

8'( t) @( t))=0 8( t) 0'( t))=ii~( — )

(2.5)

which are consistent with the free Dirac equation

2 = p,2+II~ —eo' (1.2) 1
Fm, vr = —(Am, ~+i —Am, ~), (2 7)

and thereby derive the g = 2 value for the electron. Ra-
diative corrections to the magnetic moment will be given
in the second paper in this series.

II. CANONICAL FORMULATION
IN THE RADIATION GAUGE

We begin by recalling the canonical formulation of con-
tinuum electrodynamics in the radiation gauge. Without
interactions, we take the potentials to satisfy

A =0, V A=0. (2.1)

We regard the spatial components of the potentials to be
the canonical coordinates, and the canonial momenta to
be given in terms of the electric field

&k =E~

Thus, the canonical equal-time commutation relations
are

Here an overbar represents a forward average over that
coordinate:

-1
&——= -(& +i+& )2

(2.O)

In (2.8) the notation m~ means that all spatial coordi-
nates but rn~ are averaged. Summation is to be under-
stood over repeated indices. The field equations corre-
sponding to (2.4b) are

1—[(E,),.+i,~„-„—(E;),,ra„„]= O (2.1o)

and

1—[(E,)—,„+i —(E;)—,„]

while the magnetic field B is given by

1
(Bi)mr = &ij k[(Aic)mi+l, m~, m (Ak)m~, m~, m] ~ (2 8)

[A,(x, t), A~(y, t)] = 0, [E.;(x, t), E~(y, t)] = 0, (2.3a)

and

1+ &ijic[(+k) z+mme, n (&k)m mi~, m] = 0.

—[E;(x,t), A, (y, t)] = ib,, (x —y), (2.3b) (2.11)
where

d3kd k i.i ) kk
(2.3c)

It is easy to show that these equations are consistent with
the equations of motion:

Our goal in this section is to examine the canonical
structure of the lattice theory and establish that the spa-
tially averaged fields satisfy canonical commutation rela-
tions. To do this, it seems simplest to expand in the time
lattice unit h. We do not, however, expand in powers of
b, . That is, we relate variables at time n+ 1 to those at
n by expanding in a Taylor series in h:

BAE=
Ot ' B=VxA (2.4a)

A,„+i=A „+h~,„+h 8 „+ . , (2.12a)

Em, ~+i = Em, ~+ h&m, ~+ h'~, „+, (2.12b)
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1
8mn = —Cmn

(2.13a)

(2.13b)

Similarly, (2.12a) and (2.12c) when substituted into (2.8)
give

Bm,n+i=B „+6& +h g,„+ . (212c)

The operators A, 8, C, 27, W, and g are to be deter-
mined by the equations of motion (2.7), (2.8), (2.10), and
(2.11). Thus, substituting (2.12a) and (2.12b) into (2.7),
and equating powers of h, we find

where we have introduced a variational parameter pk.
Here L = M6 is the length of the (cubic) spatial lattice.
We must now impose the radiation-gauge condition, the
lattice analogue of (2.1). We solve for the unaveraged
fields using the identity

M+m —1

) (-i)'+ *-,,
t=m

(2.i8)

valid for periodic fields, zm+M = z, with M odd, a
condition that we will henceforward assume. Thus the
condition

1
(Br)m, n = —'jk[( ),i, ~, —( ),, „], ( i)m, +1,m~, n (Ai) mm~, n= 0 (2.19)

(2.14a)

1
(gi)m n = tij k [(Ak)mr+1, m~, n (A k) mrmi, n]

(2.14b)

1
(Qi)m, n = &ijk[(8k)mr+1&mi, n (Bk)mr, mi, n] ~

(2.14c)

implies the constraint

ak tk =0, (2.20)

[ak, ak, ] = 0, [ak, ak, ] = 6kk f' (k), (2.21)

where (tk), = tank, )r/M. The commutation relations
then satisfied by the creation and annihilation operators
ak a"dt

When (2.12b) is substituted into (2.10) we find

1—[(E;),+).,m, —(E;),,m, ] =0,
1—[(C,),.+1,—,—(C,),,—,] =0

Finally, from (2.11) we find

(2.i5a)

(2.15b)

(2.15c)

fij(k) = 6
(tk)i(tk)j

(tk)' (2.22)

[~m, n & m', n] S m, m' & (2.23)

where

Then it follows that the canonical commutation relation
between A and E is

1
(Ci)m n = eijk [(Bk)mr+1,m»n (Bk)mr, mi, n]&

Pi) ) ik (rn-m')2&r/Mfij(k)
m, m —

M3
k

(2.24)

(2 16a) The potentials, at equal times, commute with each other,

1
(+i)m, n 4jk [(+k)mr+1, mi, n (+k)mr, mi, n] ~

(2.16b)

[A—' „,A), „]= 0,

provided that

Qk = QM k, M = (M, M, M).

(2.25)

(2.26)

Evidently, given the canonical variables at the initial
time, Em„and Am„, we can find the other quantities
in (2.12) as follows: (2.13a) gives A, (2.14a) gives B,
(2.16a) gives C, (2.13b) gives 8, (2.14b) gives X, (2.16b)
gives 17, and (2.14c) gives g. The remaining equations
(2.15) are constraints.

We solve these equations by adopting a Fourier de-
composition for the fields. We take, as the canonical
variables,

B—„=—) pk( ak x tke'"
k

-ak x ke&
—ik rn2&r/M) (2.27)

Note that the constraint (2.20) follows also from
(2.15a). This is a small consistency check.

Now from (2.14a) we find that the magnetic field has
the form

M
ik m2m/M i t —ik m2m/M

k

M
(2.i7a)

ik m2~/M + at g
—ik m2~/M/ 2 L3 k

k;=1

(2.17b)

From (2.16a) we find

) ~ ( a t2 ik.rn2&r/M4

k

+at t2~ —ik m2m/M

Our first test of unitarity is satisfied, in that

[A' „,C', „]=0,

(2.28)

(2.29)
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this being the entire O(h) contribution to

[A—'„+i,E~~, „+i]because A is identical to E.
Similarly, from (2.14b) we find

) —( ak X«tke
1 . 1 tk m27I/I

h, L3

x tk&-ik m2rr/M) (2 30)

(&IE,n+il0) =exp(i~ih)(&IF, nl0)

]' Cu2h2']=
I
I + i~i& — '

I (&IEm,nl0&.
2 )

On the other hand, we have, from (2.12b),

(ilE—,„+,Io) = (ilE=,-I0) + ~(~lc—,-Io)
+h2(ll&~, „IO) +

(2.33)

(2.34)

Equation (2.14c) gives

gm n ) ~k( ak X tk t2eik m2 /rrM
4i

k

t2e ik -m2rr/M)—akX k ke (2.31)

4
2~L3 g2 7 k'

Using (2.32) we deduce, from the order h2 terms,

(2.35)

By comparing (2.17b) and (2.28) we have the relation
coming from the O(h) term

while (2.16b) gives
34, 4 . , (k~']

[A]k ——
~2 tk = ~2 ) tan

)
(2.36)

) ( R t2 ik m2rr/M
m, n =

~2L3 ak

ai' t2 e
—ik m2rr/M)

k k (2.32)

which is the familiar massless finite-element dispersion
relation. [We see that this has the correct continuum
limit because the lattice momentum is (pk), = 2irk, /L. ]
Combining (2.36) and (2.35) we find

Note that constraints (2.15b) and (2.15c) are satisfied by
C and 27 given in (2.28) and (2.32), by virtue of (2.20).

Before we check all the commutators to O(h2), we de-
termine the variational parameter pk. We consider a rna-
trix element between the vacuum and a one photon state
of momentum /. Because such a state is an energy eigen-
state, we have, approximately, on the one hand

2= 1
~k (2.37)

which is the obvious four-dimensional generalization of
the two-dimensional result given in Ref. [5].

Now it is easy to check that the canonical commutation
relations hold at time n+ 1. We first examine

IAm, +x A—,xl = IA', A—' [+&(IA', A-' I+IA', A—' I)
+h' ([A'„,B~, „]+ [B A', „]'-+—„[,A—'„,A', „I)+ (2.38)

The order h terms vanish because the two (nonzero) commutators cancel due to the symmetry of b+ in its indices.
The order h2 terms vanish individually because each commutator is zero in view of (2.26). In just the same way the
[E' „+i,E~~, „+i]commutator can be shown to be zero. We have already seen in (2.29) that the order h term in

[Am , +a B~,.~il = IA',.B', I+ & (IA' ...B',.I+ IA' ...4, , I)
+h' ([A—'„,rr—', „]+ [B'„,B', „I+ [A—' „,—C'-, „))+ " (2.39)

vanishes. And it is easy to see, from (2.13a), (2.13b), (2.28), and (2.32), that the three nonzero commutators in the
order h2 term combine to give zero. We expect that this proof of unitarity of the lattice Maxwell equations can be
carried through to all orders in h.

Of course, this consistency can be verified without using the momentum expansion (2.17a), (2.17b), but the demon-
stration is somewhat more elaborate.

B.The electron sector

The finite-element lattice Dirac equation is

i7'
(&m, n+i &m, n) + ~ (Wrnr+i, mA, n 4'mr, m~, n) + /A&m, K = 0. (2.40)

Let us begin by finding the momentum-space spinors, the eigenvectors of the transfer matrix. That is, write, for a
plane wave at time n,
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—ip m2x/M

and, at time n+1,
—ip m2x/M

Wm, n+1 —un+ 1e

The transfer matrix is defined by

Q~+] = TQ~.

By substituting (2.41a) and (2.41b) into the Dirac equation (2.40) we easily find that

(2.41a)

(2.41b)

(2.42)

z

~

~

~p ti ti ) p,2h2 h2 2h,+ + 2t l

1 — — 2t + —i/ p t+ph'ip
4 2 (2.43)

where

(t,), = tan p, ~/M.

Let us adopt a representation of the Dirac matrices in which

0 10~ . o, s, . oo&&
0 ; I, iP P' = o ' = i0 —i)' o'0)'

Then the eigenvalues of T are easily found:

(2.44)

(2.45)

( p2h2 h2 l ( p2h2
A= l1+ +,t2

l

1—
4

pzh2 $2 l

t +2i + (2.46)

Qy"f Qy = +1.0 (2.47)

It is easily checked that A has modulus unity, so it can be
written in the form A = exp( —iuh), where u is, of course,
a function of h. The corresponding eigenvectors may also
be found straightforwardly. They are to be normalized
according to

) .&+i/:& = +—
l /+v ~/+ ),o 1 ( o- 2p't

SPinS

(2.52)

where u+ is a four-component rest-frame spinor with(0) .

pc eigenvalue of +1. Therefore, in terms of the spinors

6+(p) = u+(p), u (p) = u (—p), we have the complete-
ness relations

They are

/+[(~+ &)/2&~'"~ t/t l

I(~ + p)/2pl"' )
(2.48)

0 2tP= (2.53)

which in the continuum limit reduces to k(p p p p)/2p.
We have the same result on the lattice, provided we define

where y is a two-component, rest-frame spinor, normal-

ized by pic = 1. Here w is an abbreviation for

All of this tells us that the momentum expansion of
the Dirac Geld has the form

2

2+P, , (2.49)
Srp

(b & eipm2 / iiM
P,S P)S

which is the massive analogue of the dispersion relation
(2.36). Thus, with

(2.54)ip m2i//M)-
p, S P)S )

we have

/'0»
10)

(2.50)

where we now use the standard notation u = ip5u, v =
ip56+, with the usual interpretation that d creates a
positive-energy positron, while 6 annihilates a positive-

energy electron. The canonical lattice anticommutation
relations

/- )1/2 cJ t / td —p (p)
S/2

+its Qy
1

(Hm, , 4—', ) = ~sb, ~ (2.55)

(2.51) will now be satisfied if
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(4,. t, .)—
(2.56)

Prs) p', s' 3 P,P' s,s' )

and all other anticommutors of these operators vanish.
The unitarity of T is suKcient to establish the unitarity

of the fermion sector in the noninteracting theory. We
now turn to the effect of interactions, at least with a
background field.

III. UNITARITY OF THE DIRAC EQUATION
IN THE TEMPORAL GAUGE

The incorporation of interactions into Abelian elec-
trodynamics in such a way as to preserve lattice gauge
invariance was carried out in Ref. [6]. We will merely
quote the lattice Dirac equation with interactions here,
expressed in terms of the spatially averaged electron field:

2ipog&
~(Am, +~ —Am, ~)—

m' =mj+1

mj —1

m'=1

+ (~, +&+~,.)+2 ) n"i. .„,Q —.-„=0, (3.1)
I

m2

where a sum over the repeated index j is understood. (We recall [6] that with M odd, g is periodic on the spatial
lattice. ) Here, we have adopted a temporal gauge, A = 0, and expressed the interaction in terms of (only the jth
index is explicit and the spatial coordinates refer to the jth direction)

Mo;, = -(—1) + sec( ) sgn(m" —rn)sgn(m" —rn') (e '~ " —1)
mll =1

We have used the abbreviations

M

x exp i ) sgn(rn"' —rn) sgn(m'" —rn") sgn(rn" —m)(~ i

mill —1

(3 2)

and

A'

+1, zo0,
sgn(z) = 1' ( 0'

mj ——1

(3 3)

(3.4)

We can now carry out the sum over m" in (3.2):

Ma, = ie (—1) + —1+cos
~ ) sgn(m" —rn)sgn(m" —m')I," ~ sec/

ml/=1

M
—(—1) + sin ) sgn(rn" —m) sgn(rn" —m')(~l sec (,

m"=1
(3.5)

where
'

1, m'&m,
0, m'=m,

—1)m & m.
(3.6) U+Ut =2. (3 9)

I

The condition that T is unitary translates into the fol-
lowing condition on U:

It is obvious that a(&) is Hermitian.
Let us write the Dirac equation (3.1) in the form

U0 +i = VS' . (3 7)

From (3.1) the matrix U is explicitly

Um, m' =6m, m' + r r ( 1) + &E~

It is apparent that V = 2 —U, so the transfer matrix is

(3 6)

imp, po i hyoid& (,)
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Therefore, the unitarity condition (3.9) is equivalent to
the condition that o.ol be Hermitian: U=1 — 1+—p p. 17,

ih pro h

2
(4.2)

(j)t (j)

which is satisfied as noted above.

(3.11) where 27 = / +i' is given by

(4.3a)

IV. EXTRACTION OF THE MAGNETIC
MOMENT OF THE ELECTRON

We now want to write the transfer matrix (3.8) in
terms of the complete set of gamma matrices:

T = 2U ' —1 = ap + /3„p p" + bpops

+ p, p f5+ + 2 pp, vQ

Let us write (3.10) in matrix form as

(4.3b)

pi = ppi& and Ti = 2t-'ijA;pjk (4.4)

In dyadic form, P, p, e, and 7 satisfy a remarkable series
of equations:

We note that 217/b, is the lattice version of the covari-
ant derivative. It is then straightforward to work out
equations satisfied by the parameters in (4.1). We define

(hl ( h2p~) ( hp 5 h h ( hp )I1+
I

&&—& IP+ pI = —X)x + —2I1+
2 ) b, Z q 4 (4.5a)

(h) ( h2ps) (
I
1+i~r i

hp l h

2 r b,
~I= —17xP, (4.5b)

and

2 22
I

—
I I1+

I

&~-& p-~»i 4r
hp ) h h ( h~p~ t

) & & & 4 )P I

=-—2&x~ ——hpl 1+ (4.5c)

(h) ( h2p2& ( hp )
I
1+

I
&& —&

I

7'+ e
I
= —»& p«r E 4r (4.5d)

ihp h 1

1+hsp2/4 2A Ap
(4.6a)

and

The remaining parameters are given in terms of these by p=0,
7 =0,

(4.7c)

(4.7d)

1 h~p~

1 + h~p2/4 4

h h2p~——17 P- E Pb, 2b,p

(4.6b)

ihp/2 h 2

1+h2p, 2/4 6 hp
(4.6c)

1 h

1+h2ps/4 h.
(4.6d)

It is particularly easy to solve these equations if we
regard h as small. To order h2 we have

o" = lhp,
h' p,

' (h l '
Po =1 — + 2

I

—
I

&'

=0,
eo ——0.

(4.8a)

(4.8b)

(4.8c)
(4.8d)

This leads to a very simple form for the transfer matrix
(4 1):

T = 1+5 zap 0 2 0

2
+h2 ——+ 'D2+ cr (17 x 17) + O(h ).

2
2h———Z7

s=2I —
I
axe,(hl'

&&)

(4.7a)

(4.7b)
Here we have used the identity

"f5 'Y = ~'7 ~.

(4.9)

(4.10)
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We compare (4.9) with the leading terms in the expansion
of exp( —i~h). Equating powers of h, we have

as the effective lattice magnetic field strength, we see that
we recover the form of the continuum dispersion relation,

cu = p +II —ecr H,2= 2 2 (4.15)

and

u2 = p + II +io (II x II). (4.12)

Here we have written the lattice covariant momentum

2i

which tells us that the g factor of the electron is 2. The
formalism developed in this section, particularly the re-
sult (4.9), will provide the starting point for the calcula-
tion of the radiative corrections to the magnetic moment
of the electron.
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