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Restrictions imposed on relativistic two body interactions by classical relativistic field theory
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We show that various relativistic potential models (all sharing exact relativistic two-body kinematics
and a common nonrelativistic limit) can be distinguished by agreement or disagreement with relativistic
corrections produced by classical field theory. We find that the only one of these models whose rela-
tivisic corrections duplicate those of classical field theory is the minimal Todorov equation. Conversely,
we derive the Todorov equation from the semirelativistic dynamics of classical field theory, thus expos-
ing the classical field-theoretic origins of its characteristic minimal potential structures and dependences
on effective one-body variables.

PACS number(sl: 11.10.Qr, 11.10.St

I. INTRODUCTION

The nonrelativistic Schrodinger equation for two parti-
cles permits introduction of interaction through poten-
tials whose forms are restricted only by a proper
definition of the quantum-mechanical wave function.
Thus, physicists have profitably studied its properties for
interactions (such as the harmonic oscillator) selected for
pedagogical or phenomenological purposes. However, its
first and most important application was to a system, the
atom, whose potential (Coulomb) arose as a solution to
the relevant classical field equations (Maxwell's equations
for the electromagnetic field). In the same spirit, investi-
gators have used field-theoretic potentials obtained from
chromodynamics [1,2] in the Schrodinger equation to cal-
culate spectra of bound quark systems composed of heavy
quarks. Thus, throughout the history of applications of
the Schrodinger equation, physicists have regarded its
fruits as fundamental or as merely useful depending on
the field-theoretic pedigree of its interactions.

Just like the Schrodinger equation, relativistic quan-
tum wave equations for two interacting particles permit
the introduction of interaction through potentials whose
forms are restricted only by a proper definition of the
wave function. Thus, relativistic treatments have includ-
ed those of phenomenologically or pedagogically useful
interactions such as the many versions of the relativistic
harmonic oscillator [3—5]. Recently, however, physicists
have begun to use Schrodinger-like two-body relativistic
quantum wave equations to treat systems of relativistic
particles such as quarks or electrons [6—17] whose in-
teractions arise from a relativistic quantum field theory.
Thus, the interactions appearing in such two-body rela-
tivistic wave equations are distinguished by origin in rela-
tivistic field theory or lack thereof.

When presented with a relativistic wave equation plus
potential just how are we to determine whether or not the
potential is "field-theoretic" ? Two methods immediately
suggest themselves. One is to carry out the complete

derivation of the dynamical description, relativistic wave
equation plus interaction, from relativistic quantum field
theory. For a particular form of relativistic dynamics,
the relativistic constraint approach [18—24], this has been
carried out in part elsewhere [25,14]. The other (whose
consequences are the subject of the present paper) is to
insist that the correspondence principle be respected for
the system of interest. That is, the classical mechanical
description complete with interaction must agree with
that provided by the relevant classical relativistic field
theory. For each form of relativistic dynamics and in-
teraction one tests this agreement by checking the
system's expansion in inverse powers of the speed of light
around its nonrelativistic limit against that provided by
classical field theory. At the very least, these expansions
should agree in the first (semirelativistic) order above the
nonrelativistic limit.

As the authors of a recent paper have pointed out [13],
a number of relativistic wave equations for the two-body
system containing a vector interaction that are often
treated as equivalently good actually possess inequivalent
forms in the semirelativistic (slow-motion, weak-
potential) approximation. On the other hand, as we have
shown elsewhere [26,27], one of them, the Todorov form
[6] that follows from relativistic constraint mechanics for
the electromagnetic interaction, is canonically equivalent
in the semirelativistic approximation to the time-honored
Darwin Hamiltonian of electrodynamics. Do other
forms share this agreement with classical electrodynam-
ics or does the correspondence principle single out the
Todorov form at the semirelativistic order of approxima-
tion?

In fact, as we show in the first section of this paper,
classical relativistic field theory selects one of these wave
equations, the minimal Todorov equation, as the
"correct" one. We do this by first demonstrating that
each of the relativistic wave equations discussed in Ref.
[13] is actually a special case of the relativistic two-body
mass-shell condition with a characteristic relativistic po-
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tential evaluated in the c.m. system. Then we derive the
semirelativistic corrections implied by each. We show
that, of the relativistic wave equations considered in Ref.
[13], only the Todorov equation possesses a total c.m.
Hamiltonian that is canonically equivalent to the total
c.m. Hamiltonian obtained from classical field theory
through order 1/c, including relativistic kinematic
corrections along with electromagnetic and scalar
Darwin interactions [28—29].

In the second section of this paper, we show that the
agreement between the semirelativistic dynamics of clas-
sical field theory and that of the minimal Todorov equa-
tion is no accident. We derive the minimal Todorov con-
straint equation (in the semirelativistic approximation)
from the semirelativistic dynamics of classical field
theory assuming only the generic constraint form (exact
two-body relativistic kinematics) and that the quasipoten-
tial is an analytic function of the total c.m. energy w

through the relative internal energy (w —m
&—m2)/(m &+m2). As a by-product of our derivation, we

learn the origin of two important properties of the
minimal Todorov equation in the semirelativistic dynam-
ics of classical field theory. First, we observe the emer-
gence of the minimal Todorov equation's characteristic
minimal coupling forms of interaction for scalar and vec-
tor potentials in its semirelativistic form. Second, we find
that one additional assumption, that the minimal struc-
tures persist to all orders in 1/c, extrapolates the semire-
lativistic Todorov constraint to the fully relativistic To-
dorov equation. In particular, we demonstrate the origin
in classical field theory of the role played by Todorov's
kinematic relativistic reduced m„mass and energy e in
the dynamical structure of the minimal Todorov equa-
tion.

II. RESTRICTIONS IMPOSED BY CLASSICAL FIELD
THEORY ON THE CONSTRUCTION OF RELATIVISTIC

POTENTIAL MODELS WITH EXACT RELATIVISTIC
KINEMATICS

p +2p U =2pe&, (2)

where p is the relative momentum, p is the reduced mass,
and ez is related to w through

Eg =W m1 P7l2 (3)

Here we will consider only those relativistic systems
whose nonrelativistic limit is governed by two potential
terms, U=V+S, in which V is generated by the time-
like component (parallel to the total four-momentum P")
of a Lorentz four-vector potential and S arises from a
Lorentz scalar. For a one-body problem the relativistic

We begin by establishing our notation in order to re-
view various relativistic potential models in a common
format. Let w be the total c.m. energy with square given
by

w = —(p, +pz) = P—
in which p; is the four-momentum of particle i. For the
nonrelativistic case

p +4(r, w)=b (w), (5)

in which b (w) is the relativistic kinematic form

b (w)= [w —2(m&+mz)w +(mf —m2) ],1

4w

which is equal to the square of the on-shell value of the
relative momentum in the c.m. system. We remind the
reader that in Eq. (5} the three-dimensional forms r2 and

p are the c.m. restrictions of invariant four-dimensional
forms. In particular

2= 2r =&& c.m. ~

where

x~ =(g""+p"p "}(x&—xz), ,

with pl'=P~/w. This vector has a zero time component
in the c.m. system. The relative four-momentum conju-
gate to this position four-vector is

pp =(gp~+p pp ~}p

where

2P1 61J2

(9)

(10)

with e, +e2=w and e;=e;(w) guaranteeing that
[x„,p, ] =g„,. The e s are the c.m. values of the time
components of the p;. The form (5) is then the c.m.
(P=0) version of the Lorentz-invariant form [30]

pj+4(+xf, w)=b (w) .

Such a generalized Schrodinger-like form can be derived
from more general principles using constraint mechanics
[18—23,31] (see also the Appendix). The constraint form
provides a covariant Hamiltonian formalism (with one
parametric time) that can be easily quantized and adapt-
ed to phenomenological studies. The effective general-
ized mass-shell condition displays exact relativistic two-
body kinematics with an effective potential that is covari-
ant but otherwise arbitrary.

For convenience we will work in the c.rn. frame. In
this frame the solution of (5) for the total energy leads to

w=(p +m +e}' +(p +m +e}' (12)

This equation is in general an implicit equation since N
may also depend on w. The simplest equation treated by
the authors of Ref. [13] is the relativistic Schrodinger

version of V enters through minimal subtraction from
the particle's energy while S/c appears as an addition to
the particle's rest mass. All of the classical forms that we
shall examine possess the nonrelativistic limit:

2

w =m, +F2+ +V+S (4)

when p /2p, V, and S become small compared to the
particle rest ~asses.

The authors of Ref. [13] consider several relativistic
wave equations whose classical versions each take the
form (in the c.m. system)
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equation obtained by reinterpreting the potentials of the
nonrelativistic limit as relativistic potentials,

@=2p(V+S), (13)

p +(m +S) (e' ——V) =0, (14)

in which e =(w —m) —mz)/2w, m =m)m2/w are
the relativistic energy and reduced mass of a particle of
relative motion [6,27] whose energy and momentum satis-
fy the Einstein mass-shell condition. In terms of these
effective particle variables, b (w)=e —m . Then (14)
implies that, for the Todorov equation,

@=2m S+2e V+S V— (15)

In a wave equation recently proposed by Lichtenberg
[34],

in Eq. (5) with the unapproximated relativistic b (w) of
(6) ensuring that the resulting equation possesses correct
two-body relativistic kinematics. Notice that this form
for 4 does not distinguish between scalar and vector po-
tentials and is thus destined to produce relativistic
corrections to the dynamics that disagree with classical
field-theoretic corrections which do. The authors of Ref.
[13] next treat the minimal Todorov equation
[6,14,32,33]. This equation takes the effective one-body
form

discussed, we find in each case that the c-independent
term reproduces the common nonrelativistic limit, Eq.
(4). In addition, by construction, these equations share
the same kinematics to all orders in 1/c . However, each
differs from the others in its dynamical O(1/c ) parts.
One finds (after restoring units) that each takes the form
[13]

2

w(i)=m)c +m2c + +S+V
2p

1 p 1 1

c2 8 m3 m3
1 2

The simple Schrodinger model yields

+w'2'(i) . (20)

w' '(S)= 1

c2

2—"P (V+S) ' + '
2 m m

1 2

p (V+S) 1 1

2 m m1 2

(21)

Note that, as anticipated, V and S are not distinguished.
The Todorov equation gives

(2)(T) 1 pV pS 1 + 1

c m1m2 2 m1 m2
2 2 2

4=2pS+2eV+p (S V), — (16)
(V+S)

2M
(22)

in which e=e,ez/w, e; =[m; +b (w)]', e, +e2=w,
p=(m, +m2)/M, and M =m, +m2. The Todorov
equation and that of Lichtenberg share the same heavy-
particle limit (m2~oo) in which each reduces to the
single-particle Klein-Gordon form

p +(m, +S) (e, —V}—=0 . (17)

The authors of Ref. [13] go on to consider two other
wave equations. One, the spinless Salpeter equation,
takes the classical form

w =(p +m )' +(p +m )' +V+S . (18)

This equation differs from the spinless Salpeter equation
in that it distinguishes between S and V. As the authors
of Ref. [13] point out, neither of these equations reduces
to the Klein-Gordon equation when one of the particles
becomes very heavy.

The common form, Eq. (12), leads to a generic
O(1/c ) expansion for w, the total c.m. energy. When
we evaluate this for each of the relativistic interactions

[Note that the form for 4 that would be obtained from
this equation would not distinguish between scalar and
vector potentials and thus, just like Eq. (13), is destined to
produce relativistic corrections to the dynamics that
disagree with classical field-theoretic corrections which
do distinguish between those potentials. ] The other takes
the classical form

w =[p +(m +—'S) ]' +[p +(m +—,'S} ]' +V

(19)

so that V and S are distinguished. The new phenomeno-
logical equation of Ref. [34] yields

(2)(L )
— pp 2S

2

1

c2
1 1

m m1 2

1 2(V —S )(m —m )

2M
(23)

so that (just as in the Todorov equation) V and S appear
differently. The spinless Salpeter equation gives

w' '(SS)=0 . (24)

Finally, the modified spinless Salpeter equation (called
the "two-body loein-Gordon equation" [35] in Refs.
[13,15,34]) gives

w' '(EC)= 1

C
2

p s 1 1

4 2 2
1 2

(25)

Classical relativistic field theories have exact covariant
dynamics built in through the field equations and the par-
ticle equations of motion and, like constraint dynamics,
display exact two-body kinematics. However, unlike con-
straint dynamics, these theories do not have an associated
covariant Hamiltonian structure. Nevertheless any clas-
sical field theory determines its own classical expression
for the semirelativistic (slow-motion, weak-potential)
one-time Hamiltonian that governs the corresponding
two-particle system. If we compare that Hamiltonian for
the relevant field theory to the dynamical descriptions
provided by the 1/c expansions [Eqs. (21)—(25)] of the
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relativistic constraint descriptions we have just listed, we
can determine which of these equations are actually cap-
able of treating perturbative field-theoretic dynamics (i.e.,
yield the appropriate spin-independent terms beyond the
nonrelativistic potential). This procedure can be carried
out for any (weak) field-theoretic interaction for which
the potentials are known. Here we restrict our treatment
to massless vector and scalar fields coupled to two parti-
cles. By matching the well-known nonrelativistic Hamil-
tonians generated by field theory to the common form,
Eq. (20), we first fix V and S. We then compare the
higher-order terms generated by classical field theory to
those appearing in Eqs. (20)—(25).

The field-theoretic semirelativistic correction terms are
those first derived by Darwin [28]. For particles of
charges e, and e2 interacting through half-advanced,
half-retarded fields the total c.m. energy through terms

I

of order 1/c is [28,29]

e2e2
m =m1c +m2c + ~ +

2p r

pz z

cz 8

1 1

m m1 2

p eiez (p r} eiez

2m1m2r 2m, m2r c

Comparison of the common nonrelativistic limit of the
relativistic wave equations for the case S =0 yields
V=e, ez lr Th. e corresponding classical field-theoretic
expression for total c.m. energy with scalar interactions
alone is [29]

w =m1c +m2c + — +
2 gigz 1 ( 2)2

2p r c 8

1 1 P N182

m m1 2

1 1

m m1 2

gigz z gigz (p r) +0 1

2rm1m2 2m1m2 r c
P 3 4 (27)

Comparison with the nonrelativistic limit of Eqs. (15), (16), (18), and (19) for V=O yields S = gigzl—r For c.ombined
scalar and vector interactions, the interaction terms simply add (at this order) yielding

e 1 e2 ~12 1
m =m1c +m2c + + — +

p r r c
(pz)2

8

p e, ez (p r) eiez+ + +
1 2 2m1m2f 2m1m2

P 812
2

2r
1 1 gigz z gigz (p r) 1

m1 m2 2rm1m2 2m1m2 r c
2+ 2 p 3 4

Note that at the semirelativistic 0(1/c ) level no cross
terms between scalar and vector interactions appear.
[Such cross terms appear in 0(1/c } and higher [36].]
At first sight, when we insist on the nonrelativistic
identifications V=e, ezlr and S= g,gzlr, none o—f the
c.m. energy expressions in Eqs. (20)-(25) agrees with the
result of the field-theoretic expression at the level of the
dynamical 0(l/c ) terms. This is the sort of disagree-
ment that one would expect if the only criteria for intro-
ducing relativity to the two-body problem were correct
two-body kinematics and correct heavy-particle limits.
Note that the only parts that do agree naively with the
field-theoretic results are the scalar 0(1/c ) pieces of Eq.
(22) and Eq. (23) that do not vanish in the mz ~ ao limit.
The parts that do vanish in the m2~ ~ limit do not ap-
pear to match the field-theoretic results. Note particular-
ly that the field-theoretic forms depend not only on the
momentum [as do the terms of Eqs. (20}—(25)] but also on
the angular momentum since (p.r) =r p —L . As was
originally shown by Schwinger [37], and subsequently
used by us [27] to show the connection between Todorov

1 2 ~1~2r r'= 1 — + r,
2Mrc 2 2Mrc 2

P~P =P 1 2 g lgz 1 rXL
2Mc 2Mc r

(30)

(where M=m, +mz) in order to transform the field-
theoretic result to the angular-momentum-independent
forms possessed by Eqs. (21)—(25). Since [r;,p; ] =8;, we
find

[r,',p,'J =5, +0 1
(31)

where we have used [ r;,Li I
=e,&r and.

[p, , 1 lr J
= r, Ir to show that the 0(—1/c ) terms can-

and Fermi-Breit equations for electromagnetic interac-
tions, such terms can be eliminated at this order by a
canonical transformation. Thus, we perform the trans-
formation
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cel. Thus, through order 1/c, these new variables are
also canonical. Since these two sets of canonical vari-
ables differ from one another by terms of order 1/c, the
transformation will only change the forms of those terms
[through order 1/c in Eq. (28)] that survive in the non-
relativistic limit. Under this canonical transformation

1 1 1 1 2 glg2 1+ 222Mc r c
(32)

e 1 e2 g lg2 2 1
p —+p =p + L+0

2MC r c
(33)

p2 e1e2
w=(m, +m2)c + +

2p r

(p2)2

8

1 1

m m3 2

+ 1

c

g1g 2

Since L =r p —(r p), the field-theoretic c.m. energy ex-
pression becomes

e1e2
w' '(1.)= (m, —m2)

c 2Mr
w' '(SS)=0,

(37)

w"'(T)=
2 2 2

1 P 12 12+
C m 1 m2r 2Mr

(39)

Consider the most general canonical transformation
through 0 (1/c ), which we parametrize as

1+
2 +pr p, +0

4Mc Mc c
(40)

hp~p =p 1+ +rr p +0
Mc Mc c

(41)

The terms a,fj, and h are functions of the three in-

dependent variables x =r /2, y =r p, and z =p /2. The
requirements that I r,', r '

I
=0=

Ip,',p ') and that

I r,p'} =5," through order 0 (1/c ) yield the equations

P 1 2 g1g2P

m1m2r 2r
'2

1 2 g lg2+

1 1

m m1 2

+0 1

c
(34)

1+y j= —2z
B . Bf

By Bz

(42)

(43)

Comparing this result with our list of candidates
(21)—(25), we see that the canonical transformation pro-
duces the Todorov form, and only that form.

However, the fact that we have found a canonical
transformation (the Schwinger transforination) that
demonstrates the classical equivalence of field-theoretic
dynamics and Todorov dynamics through 0(1/c ) does
not rule out the possibility that each of the other relativ-
istic equations might possess its own (heretofore un-

known) canonical transformation producing it from the
field-theoretical form. In that case some or all of the
descriptions provided by Eqs. (21)—(25) would be canoni-
cally equivalent through 0(1/c ). To simplify our inves-

tigation of this issue, we assume the absence of scalar in-
teraction. Then

2 2 P ele22

wFT=m1c +m2c + +
2p r

1+y h =2xB B

By Bx
(44)

Now a,j,f, and h must have units of energy. They
must also vanish as e, e2~0 if they are to yield models
that have the same (correct) two-body relativistic kine-
matics as HAFT. Thus,

e1e2f = —a = i)(x,y, z),
r

e1e2
g(x,y, z),

(45)

e1e2
h = g'(x, y, z),

r
(47)

where i), g, and g are dimensionless functions indepen-
dent of e1e2 to this order. But the only dimensionless
combination is xz /y or y /xz:—p (so that p'~ =Zr p ).
Hence, the partial differential equations become

(p2)2

8

1 1

m m1 2

0+ 2pk' =2p~'

g+ 2p(' = —i) —2prI',

(48)

while

p e, e2 (p.r) e, e2
2 2

+ +
2m1m2r 2m1m2r

(35)

two equations in three unknowns.
Now, we perform the canonical transformation (40)

and (41) on the (classical) field-theoretic expression (35).
This yields

w'2'(S) = 1

C
2

pp e1e2

2 r
1 1

m m1 2

(36)

e, e2
w =m1c +m2c + +

2p r

p4 1 1

c 1 2

+/OFT
(2) (50)

2r m m1 2 where
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e1e2 2

I+ 2'+ ++~p
2MIMc2 4 2

e, e2+,M "~4 (51)

2n'= —.' ——,'0——,'4—'=,'0-+ ,'p-k' . (63)

Note that the relations for g' have not changed. Thus,
the g differential equation arising from Eq. (48) remains
unchanged. Hence,

(p 1 p2) I /2 (64)
The additional relation among these three functions is ob-
tained by equating wFT' to each w' '(i), i =S,T,L, SS in
turn.

First consider the Todorov model for which P 1 —
—.'p)+P2P —

—,'p') =-,'(1+-'.p) . (65)

The other differential equation arising from (49) differs
from (57) due to the presence of g in (49):

w"'( T)= e1e2 e1e2+
Mpc 2Mrc

The additional relation yields

The solution to this is
—1/2

P (k + i 1/2+ i 3/2)
]p 2 2 8

(66)

—I+2g+&+ ~P

2Mpc 2 4 2

(53)

2' —1 = —+( I+2g) =p~,
4 2

whose derivatives are

&+p '

4 2 2 2 2

(54)

(55)

Substitution of these relations into (48) and (49) yields the
uncoupled differential equations

r(2p p } PI p)

g'(2p —
—,'p')+g(1 —

—,'p) = —
—,'(1—

—,'p) .

These possess the solutions

k
—1/2

(p 1 p2)
—I/2

g
i +

(56)

(57)

(58)

But these solutions are not compatible with the right-
hand side of Eq. (54) unless k

&

=k2 =0. Hence,

Hence, we have two relations that must be simultaneous-
ly satisfied

2q+1= —1 —
—,'(p+2(p)= —3+—,'gp . (68)

(Note that the spinless Salpeter model does not generate a
/=const solution like that of the Todorov model. ) In
general these solutions cannot satisfy the last equality in
Eq. (62). Thus, no acceptable canonical transformation
(which goes to the identity transformation when e, e2 ~0)
can bring the spinless Salpeter model into agreement with
the results of classical field theory. We point out that the
spinless Salpeter equation results from approximating the
Green's function 5([z,(r, ) —z2(r2}] ) of the classical field

theory by 5(t, t2)/~—r, —r2~. Thus, it is not surprising
that the Salpeter equation contains no retarded (or ad-
vanced} effects. In contrast, the Darwin Hamiltonian,
Eq. (28), does include lowest-order retardation (and ad-
vancement) since in its derivation the O(1/c ) terms in
the Green's function are not dropped.

For the Lichtenberg model [34],we find the relations

l gp (m, —m2)
2'+ 1=——(p+2(p) = +1+

4 2 M
(67)

differing only from (62) for the spinless Salpeter model for

g by a constant that vanishes for equal masses. Thus, the

g solution is altered but again is not compatible with the
right-hand side of Eq. (54).

Finally, we examine the simplified Schrodinger model.
We restrict our attention to the equal-mass case
rn1 pl 2 2M 2p =m. Then we have

(=0,
which determines the canonical transformation

(59) The expression for rt' is again just Eq. (55), unchanged so
that the g is that in Eq. (58). Once again, the differential
equation for g possesses no /=const solution. In general
the solution to the differential equation

r'=r 1—
2Mrc 2

(60) g(1 —
—,'p)+ f'(2p —

—,'p) =
—,'(1+—,'p), (69)

e1e2p'=p 1+
2M' 2

e e—rrp
2Mc r

(61)

2q+ 1 = —
—,'(p+ 2') =

—,'gp+ 1,
whose derivatives are

(62)

which reproduces (29) and (30) without the scalar interac-
tion.

Now we attempt the same procedure for the spinless
Salpeter model. In that case we find the relations

1.e.,

(70)
p1/2

1/2+ i 3/2)
l lp 2 8

4

and the g solution are not compatible with the right-hand
side of Eq. (54).

Thus, only the Todorov form has the 0 (1/c ) dynami-
cal recoil terms generated by weak, linear classical field
theory. None of the other forms examined in Ref. [13]
possesses the correct O(1/c } field-theoretic relativistic
dynamics for either the scalar or vector interactions.
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But, what is the practical significance of our investiga-
tion, since the equations considered in Ref. [13] were to
be used only for phenomenological description of the qq
meson system? Our argument shows that of these relativ-
istic wave equations, only the minimal Todorov equation
can be used to treat spinless electrodynamics. This is due
to the fact that for the vector interaction, only the To-
dorov equation contains the dynamical equivalent of the
field-theoretic Darwin interaction of Eq. (26). Moreover,
this important structure persists for spinning particles.
We have found such equations for spinor electrodynam-
ics (coupled 16-component "two-body Dirac equations"
[38]), which we were able to solve exactly for paraposi-
tronium solutions [39], that duplicate the quantum field-
theoretic spectrum through 0(a ). In the Dirac y-
matrix representation, the squares of our first-order
Dirac equations produce a second-order wave equation
for the upper-upper component of the wave function that
contains the basic spin-independent potentials of the
minimal Todorov equation [Eq. (14)], elaborated by addi-
tional spin-dependent recoil terms of electrodynamics.
Thus the results of this paper tie the structures of those
equations, as well as the classical and quanturn-
mechanical spinless Todorov equations, to classical field
theory. Now, while the long-distance part of the chro-
modynamic interaction may be imperfectly known (and
subject to phenomenological manipulation) the short-
distance part shares the Darwin-like structure of Eq. (39)
(see Ref. [26]). We consider it highly unlikely that the
weak vector structure missing from Eqs. (36)—(38) will

emerge in some indirect fashion. Without that structure,
the S states (susceptible to short-distance corrections) are
liable to be distorted relative to the other angular
momentum states [49]. We have recently carried out a
treatment of the meson spectrum that retains the vector
structure of Todorov (and of classical field theory) [9,14].
We suspect that some of the successful features of the re-
sulting meson spectrum are due in fact to our incorpora-
tion of Todorov s version of the relativistic vector in-

teraction.
Finally, we point out to the reader that each of the

equations that we have examined in this section is fully
relativistic, possessing exact relativistic two-body kine-
matics along with covariant potentials. In this paper, we
have used expansion in powers of 1/c merely as a device
to detect dynamical inequivalence among wave equations.
When such equations are applied phenomenologically to
mesons formed from light quarks moving with high ve-

locities, we have to solve them numerically to make such
comparisons [9,14]. But we find it extremely unlikely
that structures missing from equations expanded in low
orders of 1/c (and known to be present for slowly mov-

ing heavy quarks) play no role in fully relativistic calcula-
tions for light quarks.

III. DERIVATION OF THE TODOROV EQUATION
FROM THE SKMIRKLATIVISTIC LIMIT

OF CLASSICAL FIELD THEORY

In Sec. II, we treated each of the relativistic wave equa-
tions studied in Ref. [13) as given, formed the semirela-

tivistic limit of each, and found that of these equations,
only the Todorov equation possesses a semirelativistic
limit that is canonically equivalent to that of the corre-
sponding classical field theory. But, suppose that we

proceed in the opposite direction, that is, treating the
sernirelativistic limit of classical field theory as given, we
derive the quasipotential 4 of the corresponding relativ-
istic wave equation. If we should end up with the 4 of
Todorov [Eq. (15)], we will have discovered the origin in

classical field theory of the peculiar minimal structures of
the Todorov equation (as well as the roles played in them

by the kinematic relativistic reduced mass m and energy
e„).

We begin with the semirelativistic equation for the to-
tal c.m. energy w of classical field theory for combined
vector and scalar interactions [Eq. (28)], and canonically
transform it using the Schwinger transformation to Eq.
(34) in order to remove all dependence on p.r through or-
der 1/c . On the other hand, we arrange the generic con-
straint form Eq. (5) into its (implicit) solution for w as the
sum of two square roots [Eq. (12)]. For slow motion
(small p ) and a weak potential (small 4) compared with
each mass we expand the square roots to obtain

p+4
2p

1 1 1+ (p+4) +
m' m'

1 2

(71)

Thus far, we have assumed only a particular form for
classical field theory (additive interactions of charged
point particles through massless vector and scalar fields)
and the generic relativistic constraint form [Eq. (5)]
shared (as the correspondence limit) by all the relativistic
wave equations of Ref. [13]. We now assume that the
quasipotential 4 is an analytic function of the total c.m.
energy w through the relative internal energy

(72)

so that

4(xi, b, ) =4(xi,O)+64'(xi, O)+ (73)

4(xi, O) =4NR(xi)+C&(xi) . (74)

Thus, Eq. (71) may contain three different relativistic
corrections to the nonrelativistic Hamiltonian: (i) that
arising from the second-order (1/m ) term in the
square-root expansion, (ii) that arising from the first-
order relative internal energy (6) correction to the quasi-
potential in Eq. (73), and (iii) that arising from the
difference between the zeroth order of Eq. (73) and the
nonrelativistic limit of the quasipotential.

We determine the three parts of 4 by equating Eq. (71)
with the field-theoretic Eq. (34). That is,

We assume that the quasipotential 4 has a well-defined
nonrelativistic limit in Eq. (71) and rewrite the first term
of Eq. (73) in terms of it:
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2
p +v+s+ ',
2p e

( p2 )2 1 1 p2cy Sp2
8 m1 m 2 mlm2 23+ 3

1 1 + (V+S)
~2

J

p +4NR(xj ) b4'(x~, O)+@(xg)'+
2p 2p , +, [p'+~'NR«i }]'

8 m, m2

in which

g1g2S= (76)

Since the terms of lowest order in 1/c on the right and
left must be equal, we find that

w —mf —m22 M (1+6,) —mt —m2

2w 2M(1+6 )

2M 6+2PM
1

2M

=p+h(M —p) . (84)

4NR(x j ) =2p, (V+S), (77)

and, thus, that 4NR is independent of p . In turn, Eq.
(77) determines b, [=(p /2p+V+S)/M] to lowest or-
der, sufficient for evaluation of the remaining terms of
Eq. (75). Since 4' and 4 can only contain p as still
higher-order relativistic corrections to the dynamics
above 0 (1/c ), each must be independent of p in lowest
order. Thus, the momentum-independent parts and
coefficients of p~ on the right and left of Eq. (75} must
separately be equal. This equality implies the simultane-
ous equations

and

2M V—4'(x i,0)=2p( V+S) (78)

and

4'(xi, O) =2M V —2p(V+S)

4(xi) =S —V

(80)

(81}

Thus our constraint equation (5) becomes

p +2Sp(1 b)+2V[p+h—(M —p)]+S V=b—
(82)

Therefore, the requirement that the relativistic constraint
(wave equation) agree with classical field theory in the
semirelativistic approximation, plus the assumption that
the relativistic quasipotential be analytic in w through the
relative internal energy 6, are sufficient to force a struc-
ture for 4 that is (to this order of approximation) quadra-
tic in the potentials S and V with no SV cross term.
Furthermore, if we examine the coefficients of the terms
linear in the potentials, we find that they are just
Todorov's kinematic reduced mass and energy of a parti-
cle of relative motion evaluated in lowest order in h.
That is,

P7l 1Pl2 Pm = = =p(1 —b),
w 1+5 (83)

M (S +V) —4'(xi, 0)(S +V) —M4(xi ) =2@(V+S)2,

(79)

with solutions

Then, since Todorov s variables obey the Einstein condi-
tion

—m =b (w) (85)

by construction, Eq. (82) is the Todorov constraint equa-
tion

p +(m +S) +(e —V) =0, (14')

P'=p" +c P",
M„=m +S,
w=P' vP"=p"+P "(~„—v—) .

(86)

(87)

(88)

Then the effective Hamiltonian corresponding to the
minimal Todorov form (11)or (14}is

&=A(m +M ) =0, (89)

correct to our order of approximation.
Thus, we learn two important facts from our examina-

tion of the coefficients of the first-order potential terms
along with the quadratic structure. First, the semirela-
tivistic dynamics of field theory implies the minimal
structure of the potentials in Eq. (14') to this order of ap-
proximation. Second, the unapproximated Todorov
equation (14) merely extrapolates this semirelativistic
structure to all orders in 1/c by replacing the approxi-
mate forms for m and e in the coefficients of the first-
order potential terms by their unapproximated forms on
the left sides of Eqs. (83) and (84), so as to extend the
minimal structures of Eq. (14') to all orders in b, [Eq.
(14)].

As we have seen, the structures of Eq. (14) to semirela-
tivistic order are consequences of the semirelativistic
structure of classical field theory. This means that for the
vector interaction the minimal structure is a consequence
of the interaction structure of a gauge-invariant theory
evaluated in a fixed gauge, that in which the Darwin in-

teraction appears —in our work, the Lorentz gauge (in

Ref. [41], the Coulomb gauge). Nevertheless, the poten-
tials in Eq. (14) exhibit an extra invariance, an effective

gauge transformation on the system potential. To see
how this occurs in our equations, we note that we can
rewrite (14} in an effective one-particle generalized mass

shell or Klein-Gordon form if we define
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with A, determining the scale of the parametric time. The
equations of motion are

x "=[x",&]=2A7r",

~~= [W,&j =2k, [&,vr ]sr,—2A,M ai'S

—= 2A,E" ~ —2A,M 8"S,

(90a)

(90b)

The effective field-strength tensor F" is invariant under
the change of "gauge":

V~ V~+a~q(x, ) . (92)

Further, note that because of the xi dependence the vec-
tor potential V"=P"V(xi) satisfies the Lorentz gauge
condition a„V"=P "a„v(xi ) =0. Furthermore, any
gauge transformation of the form (92) can be absorbed by
a canonical transformation on p„of the form

p„~p„+a~, x„~x„. These facts show how the
effective gauge invariance is embodied in the minimal To-
dorov constraint equation. In contrast the transforma-
tion V"~V"+P "y(xi) (which would correspond to the
change of the static part of the interaction V~V+y) is
not a gauge transformation and would change entirely
the dynamics. That is,

F~ F~ +a~yP ayP ~+F~—. (93)

Note that our argument is limited only by the form of
the interaction provided by classical relativistic field

theory and our analytic ability to construct a canonical
transformation like that of Schwinger [37]. Thus, this
method is not limited in principle to the Coulombic in-
teractions (and their relativistic corrections generated by
standard weak-coupling classical vector and scalar field

theory) that we have treated in this paper. If one knows
a relativistic exact or approximate solution for the field

produced by a point particle, one can construct a
Fokker-Tetrode action in which the electromagnetic ker-
nel 5([z&(r&)—z2(rz3)] ) of Wheeler and Feynman is re-

placed by a more general form with a non-Coulombic
static part. One can then use a transformation analogous
to Eqs. (29) and (30) to bring the resultant order-of-I/c
Hamiltonian to a form independent of L . This in turn
leads through the method of this section to a generaliza-
tion of Todorov's equation [Eq. (14)] appropriate for that
non-Coulombic interaction.

Finally, note that although the minimal Todorov equa-
tion depends on the relativistic scalar 1/r (arising from
the static Coulomb potential) in a simple way, this simple
structure contains all the classical field-theoretic dynam-
ics correct through order 1/c including the crucial
Darwin interaction (due to the spacehke pieces of the
vector potential of the classical field theory). The only re-
striction we have imposed is that the field elimination to
a relativistic dynamics of point particles be done using
half-advanced, half-retarded Green's functions (here in
Lorentz gauge). Expansion of the Green's function in

where

F~"= [p~, P~—v]+[ P~—v,p~] =a~P "v a"P—~v
—=a"v' —a"v" . (91)

powers of 1/c (1/c ) around t =t' then rewrites the fully
relativistic dynamics with retardation (and advancement)
as an infinite series of "instantaneous" terms. We retain
whatever terms contribute to the desired order [0( I/c ) ]
in this paper. Then we convert the structure through the
methods of this section (Schwinger canonical transforma-
tion) into the simple relativistic potential structure of the
corresponding Todorov equation. Even though the To-
dorov system contains no spatial part in the c.m. system
(proportional to p) [42] it contains the dynamical effects
of the field-theoretic Darwin interaction.

IV. CONCLUSIONS

In this paper, we have investigated the restrictions im-
posed on the interaction structures of relativistic wave
equations by the requirement that their relativistic
corrections agree with those of classical field theory.
This requirement serves as a double-edged sword. As we
have used it in this paper, its application in the semirela-
tivistic approximation serves to single out the minimal
Todorov equation as that relativistic wave equation that
correctly encapsulates the field-theoretic semirelativistic
results [43]. On the other hand, should we enforce agree-
ment between the field-theoretic expansion and the con-
straint structure to higher orders in 1/c, we will be led
to new relativistic wave equations [new quasipotentials in
Eq. (5)] that successively improve the minimal Todorov
equation. One starting point for such a procedure [44]
would be the use of Fokker-Tetrode dynamics provided
by the elimination of the classical field from the action, in
the role played in this paper by classical field theory.

APPENDIX: THE CONSTRAINT EQUATIONS
AND RELATIVISTIC POTENTIAL MODELS

Dirac s constraint mechanics provides a manifestly co-
variant description of two relativistic particles given by
two simultaneous generalized mass-shell constraints:

&,=p; +m; +4;(x,p„p2)=0, i =1,2 . (A 1)

Conservation of the constraints by the dynamics implies
the compatibility condition [&„JV2]=0, which becomes

2p, aC&2+ 2p2 a@,+ [4„42]=0 . (A2)

C, =42=4(xi,p„p~) . (A3)

This condition follows since the only independent
nonzero invariants involving xi are x i and x1-p
( =xi.pi ), so that P a4 is proportional to P xi —=0 while

P -pi—:0.
Equation (A3) forms the difference of constraints into

the purely kinematical constraint

&2=2P.p+ (e2 —e—, )w +m f
—m 2

=0 . (A4)

In the c.m. frame P.p = —wp =0 since, in that frame,

2 0
0 P 162 61P 2 6162 6261

p =0 (A5)

This is satisfied by the relativistic counterpart of
Newton's third law [19—23]:
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Thus, on the constraint hypersurface

m&
—m2

2 2

E'
1 2 (A6)

%2=p —e2+m &+4 —2e2P.p, (A8b)

the remaining independent combination of the con-
straints (not involving P p) then becomes

&,=p e, +—mt+4+2', P p, (A8a)

Equation (A6) and e, +e2= w give e, and e2 in terms of w

on the constraint hypersurface

e, =(w +m, —mz)/2w, ez=(w +mz —m, )/2w .

(A7)

Note that alternatively, we could assume (A6) as a strong
equality and conclude that P p =0 is a constraint. Since

2 61~=—& +—A =P b—(w)+4=w '
w

=pi —b (w)+4(x i,p j,l, w ) . (A9)

Equation (A9), when evaluated in the c.m. frame, for
arbitrary 4(x~), takes the form of Eq. (5). In that frame,
the invariant x~ reduces to r, while the constraint
P p =0 is automatically satisfied.
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