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A time-dependent projection technique is used to develop kinetic equations for simple observables in

the context of P field theory. A mean-field expansion can be written for these equations which are nu-

merically tractable in the few lower orders. The procedure is applied to the case of the spatially uniform

system in 1+ 1 dimensions, including numerical solutions.
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I. INTRODUCTION

Interest in the initial-value problem for quantum-field-
theoretical models over the last decade stems mainly
from two different areas of physics: on the one hand, the

inflationary scenario of the early Universe involves the
control of the time evolution of a driving scalar field [1];
on the other hand, properties of hadronic matter manifest
themselves through transient phenomena in globally off-
equilibrium situations in high-energy collisions [2]. In ei-
ther of the two contexts nonperturbative methods must
be employed, and any suKciently realistic microscopic
model will involve a set of mutually interacting quantum
fields, which can be thought of as interacting subsystems
forming a larger, possibly autonomous system. The
quantum state of each of the different subsystems can be
described in terms of a density operator which will in
general evolve nonunitarily on account of correlation
effects involving different subsystems [3,4]. The nonuni-
tary effects will manifest themselves through the dynami-
cal evolution of the eigenvalues of the subsystem density
matrices, so that individual subsystems behave in general
in a nonisoentropic fashion [3].

The overwhelming complexity of such a picture is con-
siderably reduced whenever one is able to find physical
grounds to motivate the mean-field-like approximation
which consists in assuming isoentropic subsystem evolu-
tion under effective, time-dependent Hamiltonian opera-
tors for each subsystem [4]. In this case, in fact, the dy-

namics of the subsystem density matrix can be formulat-
ed in terms of a Liou ville —von Neuman equation
governed by an effective Hamiltonian, e.g. , from the
point of view of the functional field-theoretical
Schrodinger picture, as proposed by Jackiw [4]. Since,
however, the resulting problem involves in general non-

linear Hamiltonians, it still cannot be handled without
further approximation. In the field-theoretical context,
this has been implemented through the use of a Gaussian
ansatz for the subsystem density functional in the frame-
work of a time-dependent variational principle supplying
the appropriate dynamical information.

It is not di%cult to see that this last approximation
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amounts to a second mean-field approximation, now at
the microscopic level of the single-field, nonlinear, isoen-
tropic effective dynamics. Actually, the Gaussian ansatz,
having the form of an exponential of a quadratic form in
the field operators, implies that many-point correlation
functions can in fact be factored in terms of two-point
functions, as is well known in the context of the deriva-
tion of the Hartree-Fock approximation to the nonrela-
tivistic many-body problem [5]. This factorization has
been in fact assumed by Chang [6] to implement the
Gaussian approximation in the context of y theory. The
dynamics of the reduced two-point density becomes then
itself isoentropic, as a result of irreducible higher-order
correlation effects being neglected.

The point to which we address ourselves in this paper
is a reevaluation and improvement of this second mean-
field approximation. In order to avoid the complications
of the many-fields problem we consider the simplest case
of a single, self-interacting real scalar field. It will be tak-
en moreover as a closed quantum system, whose dynam-
ics is governed by a time-independent Hamiltonian (see
Sec. IV below). In order to reach our goal, we follow a
time-dependent projection approach developed earlier in
the context of nuclear many-body dynamics [7,8]. This
approach allows for the formulation of a mean-field ex-
pansion for the dynamics of the two-point correlation
function from which one recovers the results of the
Gaussian mean-field approximations in lowest order. In
particular, we recover the well-known Gaussian approxi-
mation to the effective potential from constrained static
solutions of the lowest-order equations. Beyond this, we

are able to explicitly include and evaluate higher dynami-
cal correlation effects through suitable memory integrals
added to the mean-field dynamical equations. The result-
ing dynamical equations acquire then the structure of ki-
netic equations, with the memory integrals performing as
collision terms which eliminate the isoentropic mean-field
constraint.

Using our projection approach we derive microscopi-
cally exact formal expressions for the collision integrals.
An energy-conserving (for closed systems) systematic
mean-field expansion scheme for these integrals given by
Buck, Feldmeier, and Nemes [9] is adopted, with a few

usefu1 modifications, for the purpose of producing a nu-

merically tractable approximation of the formal result.
We give numerical solutions of the approximate kinetic
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equations in 0+1 dimensions {the anharmonic oscillator)
and for spatially uniform field configurations in 1+ 1 di-

mensions, adopting nonequilibrium Gaussian states as in-
itial conditions. In the case of 0+1 dimensions exact nu-

merical results are also given. We find that the elimina-
tion of the isoentropic constraint associated with the usu-
al Gaussian approximations has an important effect on
the dynamics of the Gaussian parameters which substan-
tially improves agreement with the exact solutions in
0+1 dimensions. In the case of 1+1 dimensions the
effect of the collision integrals is similar to that obtained
in 0+ 1 dimensions both qualitatively and quantitatively.

In Sec. II we describe the groundwork for the im-
plementation of our projection technique. This technique
and the approximation scheme for the collision integrals
are described in Sec. III. In Sec. IV we give explicit ex-
pressions for the dynamical equations in the mean-field
(isoentropic) approximation. The adopted renormaliza-
tion scheme and the static solutions of these equations,
which lead to the well-known [6,10] Gaussian effective
potential, are also discussed there. In Sec. V the full ki-
netic equations are given explicitly for the case of spatial-
ly uniform field configurations. Numerical solutions of
the dynamical equations are given and discussed in Sec.
VI, and points of a more technical nature concerning the
construction of projection operators and the adopted nu-

merical procedure are discussed in the Appendix.

II. KINETICS OF A SELF-INTERACTING
QUANTUM FIELD

In this section, we shall describe a formal treatment of
the kinetics of a self-interacting quantum field. Although
the procedure is quite general, we will adopt the simplest
context of a single scalar field in 1+ 1 dimensions and as-
sume spatial uniformity. This will illustrate all the
relevant points of the approach and cut down inessential
technical complications. Features of more general con-
texts are discussed in Ref. [8] and brie{ly outlined in Sec.
VI.

The general idea of our approach [8] is to focus on the
time development of observables which involve the field
either linearly [i.e., P(x),n(x)] or in bilinear forms such
as P(x){t(x'), {|(x)m(x'), etc. These are in fact the ob-
servables which are kept under direct control when one
works variationally using a Gaussian functional ansatz.
In order to keep as close as possible to the formulation
appropriate for the many-body problem, we work instead
with expressions which are linear or bilinear in the
creation and annihilation parts of the fields in momentum
space, defined in terms of an expansion mass parameter
p. We begin therefore by expanding the Heisenberg field
operators P(x) and vr(x) as

g [vk{x)rk{t)+vk {x)rk{t)]
k

(2.1)
m(x) = i g ko[v—k(x)rk(t) —vk*{x)y„(t)],

k

so that yk, yj, are annihilation and creation parts satisfy-
ing boson commutation relations at equal times:

[rk(t»rk (t)]=~k (2.2)

The vk(x) are the periodic boundary condition plane
waves

vk(x) —e~k k/{2Lko)1/2 (2.3)

I. being the length of the periodicity box. Here x is the
spatial coordinate only and

k =k +p (2 4)

The parameter p will be fixed later in a convenient way.
The state of the system (assumed spatially uniform) is

given in terms of a density matrix I' in the Heisenberg
picture. I' is therefore Hermitian, time independent, and
has a unit trace. The corresponding mean value of the
field operators is then given in terms of the quantities

I k( ) =Tryk(t)F, (2.5)

and their complex conjugates. Using them, we can fur-
thermore define the shifted boson operators

Pk{t)=rk{t) rk(t), (2.6)

which have vanishing F-expectation values.
Next, in order to handle bilinear expressions in the

field operators we consider expectation values of pairs of
shifted bosons P„,P„:
R„k,(t) =Trpk (t)p„(t)F

IIkk (t) =Trpk. (t)pk(t)F

uniform system

uniform system

S k{t»kk (2.7a)

rk(t)5k k . (2.7b)

(2.8)

and obtain from it generalized natural orbitals which in-
corporate the pairing effects by solving the eigenvalue
problem

The Hermitian matrix R and the symmetric matrix II are
in fact the one-boson density matrix and the pairing den-
sity for the shifted bosons. The corresponding matrices
for the y bosons are of course easily expressed in terms of
R, II, and of the I k(t)

An important point is that the plane waves (2.3) diago-
nalize the uniform one-boson density )R, Eq. (2.7a). They
correspond, in other words, to what is known as the natu-
ral orbitals of this one-boson density. The form of the
pairing density II in the uniform case [Eq. (2.7b)], on the
other hand, follows from a zero-momentum condition.
This latter object can actually be eliminated by redefining
the shifted creation and annihilation parts pk, pk through
a Bogoliubov canonical transformation allowing for
linear combinations of Pk and Pt k [11]. As will be
shown explicitly below, this amounts to a momentum-
dependent redefinition of the expansion parameter p. To
implement this in a compact way we first set up the ex-
tended density matrix (for a uniform system)

R„(t) Il„(t)
Ak(t)= „(uniform system),
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GAk Xk =Xk GNk,

where

1 0
G=

0 ), Xk=

Nk =
0 1+v„

(2.9)

(2.10)

operators defined in terms of a natural orbital basis
specified by the Bogoliubov parameters xk, yk. In gen-
eral, all these quantities are time dependent under the
Heisenberg dynamics of the field operators, and we now
proceed to write the corresponding equations of motion.
For the 1 k(t) one finds immediately

iI k
=Tr[1'k H]F=xkTr[rik, H ]F—yk*Tr[g* k, H]F,

(2.16)

The eigenvalues vk can be interpreted as shifted boson
occupation numbers for the paired natural orbitals de-
scribed by Xk. From reflection syrnrnetry one must have
vk v —k

Since (2.9) is a non-Hermitian eigenvalue problem, it is
useful to consider also the adjoint equation

AkGXk —XkGNk

from which one finds that

(2.11)

Xk —GXk (2.12)

and the completeness relation

XkGXk =G . (2. 14)

The adjoint vectors Xk satisfy biorthogonality relations
with the Xk which allow one to introduce the normaliza-
tion condition

XkXk —XkGXk —G, (2.13)

H being the field Harniltonian. As for the remaining
quantities, we first rewrite the eigenvalue equation (2.9),
using Eq. (2.13), as

Xk%kXk —Nk

from which it follows that

(2.17)

XkRkXk —Nk Xk%kXk Xk RkXk, (2.18)

The right-hand side of Eq. (2.18) can also be evaluated ex-
plicitly using Eqs. (2.9) and (2.10). Equating the result to
(2.19) yields

ivk =Tr[g gkkH]F (2.20)

we now evaluate the left-hand side of this equation using
the Heisenberg equation of motion to obtain

IXkAkXk—
Tr[qkgk, H]F Tr[gkg k, H]F

Tr[g krik, H]F Tr[rikrik, H)F

(2.19)

Furthermore, one can use the paired natural orbitals to
construct new boson operators gk, gk and shift ampli-
tudes Ak A,* as

and

i(x,yk xkyk )(1+2—vk ) =Tr[ri kq„,H)F . (2.21)

lk ~k

9—k ~—k
=Xk

Ak

A*k =Xk (2.15)

which can be inverted with the help of Eq. (2.14).
With the help of Eqs. (2.5), (2.6), and (2.15) (actually of

its inverse) it is an easy task to express P(x), n(x) [Eqs. .
(2.1)] in terms of gk, gk, and Ak. In doing so one finds
that the plane waves uk(x) are modified by what amounts
in general to a complex, momentum-dependent redefining
of p involving the Bogoliubov parameters xk, yk. The
complex character of these parameters is actually crucial
in dynamical situations, where the imaginary parts will
allow the description of time-odd (i.e., velocitylike) prop-
erties.

What we have achieved so far amounts to an expansion
of the fields P(x), vr(x) such that the mean values in F of
linear and bilinear observables are parametrized in terms
of the xk, yk, Ak and of the occupation numbers

vk =Trg&gkF. The last two objects are mean values of
I

Equations (2.16), (2.20), and (2.21), together with the
normalization condition (2.13), determine the time rate of
change of the relevant quantities in terms of expectation
values of appropriate commutators. They are, however,
clearly not closed equations when the Hamiltonian H in-
volves self-interacting fields, since in this case the time
derivatives of the selected quantities are given in the
terms of traces which are in general not expressible in
terms of the quantities themselves. One handy way to ob-
tain a closed approximation to the equation of motion is

by means of a Hartree-Fock factorization of traces in-

volving more than two field operators. This is what we
refer to as the mean-field approximation to the equation
of motion. It can be implemented in a particularly com-
pact and convenient way by replacing the full density F
by a truncated ansatz Fo having the form of an exponen-
tial of a bilinear, Herrnitian expression in the fields nor-
malized to unit trace [5]. In the momentum basis, Eq.
(2.3), it reads as

X (+k, k ~k, ~k, + k, krak, ~k + k, k i k, ~k
k, k,

"P X (+k k ~k j3k + k k ~k ~k + k k ~k j3k
klk2

(2.22)
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This amounts to adopting a Gaussian functional ansatz
and is usually done in a Schrodinger picture in which the
field operators are time independent, but conversion to a
unitarily equivalent Heisenberg picture is trivial. The pa-
rameters in Eq. (2.22) are fixed by requiring that mean
values in Fp of expressions that are linear or bilinear in
the fields reproduce the corresponding F averages [see
Eq. (3.2) below]. Fo is therefore in general a time-
dependent object, which acquires a particularly simple
form when expressed in terms of the boson operators
transformed to the natural orbital basis.

An important fact about Eq. (2.22) is that this density
can be written as a time-dependent projection of the full
density F. In the following section we use this fact to
derive formally exact, closed equations of motion which
are equivalent to Eqs. (2.16), (2.20), and (2.21), on the
basis of which we develop a numerically tractable, closed
approximation for correcting the mean-field approxima-
tion.

which has unit trace and is such that

FO=P(t)F, P(t)2=P(t) . (3.3)

It is important to keep in mind that P is an operator act-
ing on a linear space of densities, sometimes called
super-space. Such operators are correspondingly called
super- operators. The scalar product for any two vectors
of this space is defined as

Tryk(t)FO(t) =I k(t) =Tryk(t)F,

Trek�(t}rik,(t)FO(t) =5kk, vk(t) =Trrtk (t)rtk, (t)F,

Trrtk(t)i}k. (t)FO(t) =O=Trvik(t)rtk. (t)F .

It follows that F'(t), defined by Eq. (3.1), is a traceless,
pure correlation density. As already remarked, a crucial
point is to observe that Fo(t) can be written as a time-

dependent projection of F, i.e.,

(X, Y)=Tr(X Y) . (3.4)

III. PROJECTION TECHNIQUE
AND APPROXIMATION SCHEME

In order to develop our treatment of the equations of
motion (2.16), (2.20}, and (2.21) we begin by decomposing
the full density F as

In order to construct the projector P(t) we require
that, in addition to Eqs. (3.3), it satisfies

iFO(t) = [P(t), )L)F= [Fo(t),H ]+P(t)[H,F], (3.5)

where I. is the superoperator defined as

F=F0(t)+F'(t), (3.1}
I.=[H, ], (3.6)

1Fo=
1+vk(t} 1+vk(t)

gk (t)q& (t)

(3.2}

where Fo(t) is chosen as the exponential of a bilinear ex-
pression in the fields, Eq. (2.22). It is convenient to ex-

press this part of the density of terms of the operators gk
as

H being the Hamiltonian of the field. Equation (3.5) is
the Heisenberg picture counterpart of the equation
[r},P(t))F=O which has been used to define P(t) in the
Schrodinger picture [9]. It is possible to prove that con-
ditions (3.3) and (3.4) make P(t) unique.

The explicit construction of P(t) is a lengthy but
straightforward algebraic exercise, the relevant steps of
which are given in Appendix A. What one obtains is

P(t) = ~ 1 —g Tr( )+Qk Qk +k

k 1++k k)k2

Qki }k2 k2 k)k2 f haik t 'f/k
—v 5

Tr(rtk rtk )+ g Tr(rik )+ Tr(ilk )
vk, 1+vk, k Ic 1+@k

lk 1—k t t 1—k lk+ g Tr(rt krik ~ )+ Tr(rtkrt k
~ ) Fo(t) .

IC Vk V
IC

+V k +Vk
(3.7)

Using the scalar product (3.4), one can also obtain P (t)
which does not coincide with Eq. (3.7},i.e., P(t) is not an
orthogonal projection (see Appendix A).

The next step is to obtain a differential equation of
F'(t), which follows immediately from Eqs. (3.1) and
(3.5). It reads as

i —P(t))L F'(t)=Q(t))LF (t),. d
dt p (3.8)

where we introduced the complementary projector
Q(t) =1—P(t). This equation has the formal solution

F'(t)=I( (t,O)F'(0) —i fdt'G(t, t')Q(t')}LFO(t') . (3.9)

The first term accounts for initial correlations. In the
second term G(t, t') is the time-ordered Green's function

G(t, t') = T exp i f dr P(r)I.
t'

(3.10)

We see thus that F'(t), and therefore also F [see Eq.
(3.1)], can be formally expressed in terms of Fo(t') (for
t'~t) and of initial correlations F'(0). This allows us
also to express the dynamical equations (2.16},(2.20), and
(2.21) as traces over functionals of Fo(t') and of the initial
correlations. Since, on the other hand, the reduced densi-
ty Fo(t'} is expressed in terms of the relevant variables
alone, we see that the resulting equations are now essen-
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tially closed equations. Note, however, that the compli-
cated time dependence of the field operators is explicitly
probed through the memory effects present in the expres-
sion (3.9) for F'(t) A. pproximations are therefore needed
for the actual evaluation of this object.

A systematic expansion scheme for the memory effects
has been discussed in Ref. [9] in the Schrodinger picture.
An important feature of this scheme is that the mean en-

ergy is conserved to all orders, i.e.,

—(H)„=0,a
at

where

(H ) „=TrHFO"'(t)+TrHF'"'(t),

(3.11}

Fo"' and F'"' being the approximation of order n to Fo(t)
and F'( t ), respectively. Here we implement a modified
version of the lowest-order approximation given in Ref.
[9].It consists in approxitnating the actual time evolution
of the field operators, when evaluating memory effects, by
the simpler mean-field evolution given by

19k [ )k HO(t}l i~k+i(xk Xk J k3 k ) )k

(3.2) and (3.16). Furthermore, for the purpose of evaluat-
ing Eq. (3.16) the field operators are time evolved accord-
ing to Eq. (3.12). The resulting scheme can be interpreted
as follows. The dynamical evolution of the field is split
into a pure mean-field part, related to the contributions
to the dynamical equations involving the projected densi-
ty Fo(t), plus correlation contributions, approximated by
the contributions involving the adopted form for F'(t}.
These are nonunitary, in the sense that they change the
coherence properties of Fo(t) through the time evolution
of the occupation numbers vk(t) [see Eq. (2.20)]. In fact,
replacing F by just Fo(t) in this equation gives vk(t) =0.
Consequently, the entropy function associated with Fo(t)
will change in time as a result of the correlation contribu-
tions, which therefore perform as collision terms from
the point of view of the one-boson density. Moreover,
the correlation contributions will also modify the pure
mean-field evolution in Eqs. (2.16) and (2.21). The adopt-
ed approximation amounts to restricting correlation
effects to second order in H [as can be seen by substitut-
ing Eq. (3.15) in the dynamical equations] while taking
full account of the effective mean field [see Eqs. (3.12) and
(3.13)].

&k'Vk )nk . (3.12)

The last three terms account for the (explicit) time
dependence of the 2)k(t) related to the shift amplitudes
Ak(t) and to the pairing effects. Ho(t) is taken as the
effective mean-field Hamiltonian

HO=P H+ g rikTr[2)k, H]F'(t) +2)kTr[2—)k, H]F'(t)
k k

I —

krak

+g Tr[qk2) k, H]F'(t)
k 2 1+2vk

IV. MEAN-FIELD APPROXIMATION:
RENORMALIZATION AND EFFECTIVE POTENTIAL

We now discuss the actual evaluation of the general ex-
pressions obtained in the preceding sections for the Ham-
iltonian

(4. 1)

Tr[21„ri„,H]F'(t) .
k 2 1+2vk

(3.13)
(4.2)

Go(t, t')=rexp i f d7 P(r)}LO(r)
7

where

(3.14)

I.o. =[HO, .], (3.15)

The lowest approximation according to Ref. [9] corre-
sponds to taking just the first term in this expression.
The remaining terms, included here, represent correlation
contributions to the effective mean field. Consistent with
this approximation, the Green s function (3.10) is also re-
placed by

In the section we consider only the lowest (mean-field)
approximation, which amounts to assuming F'(t)=0.
Collisional correlations will be discussed in Sec. V.

In Eq. (4.2), m stands for the renormalized mass, and a
prescription for the mass counterterm 5m will be given
below. The last term is an external linear coupling which
will be used to allo~ for constraining the expectation
value of ((1 at equilibrium in an evaluation of the effective
potential.

Consistent with the orthogonality and completeness re-
lations (2.13) and (2.14), we parametrize the elements of
the transformation matrix Xk [see Eq. (2.15)] as

so that the correlation density is written as

F'(t)-=GO(t, t')F'(0) —i f dt'Go(t, t')Q(t') F}L(to')
0

=G,(r, r')F'(0) —i f dr' Q(r')I.F,(t'),
0

(3.16)

xk —cOSho-k +
2

l 'Tk

yk =sinho k + —,'i 7.k,

(4.3}

(4.4)

since it is easy to see that Eqs. (3.12) and (3.14) imply that
G0 acts as the unit operator in the memory integral. Ac-
cording to the approximation scheme just described the
basic dynamical equations to be solved are Eqs. (2.16},
(2.20), and (2.21), where F is expressed in terms of Eqs.

with o.
k and zk real. It is also convenient to associate o k

with a dynamic mass parameter 1Uk (t) through

[k2+ 2(t)]1/2 k (k2+ 2)1/2 (4.5)

as shown below in Eq. (4.8), ~k is related to pk(t). This
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pk(t) can be seen as an effective mass incorporating
rnomenturn-dependent mean-field interaction of the uni-
form system.

The mean-field approximation to the dynamical equa-
I

tions (2.16), (2.20), and (2.21) amounts to replacing F by
just Fo(t). Introducing the ingredients described above,
one obtains, assuming uniform condensates only, i.e.,
r„(t)=r,(tN„„

a', (y) = — ~+m'(y)+ —(y)' — (y) y —Sm'&y),1

31 4L (k2+ 2 )I/2
L

vk =0,
(k2~+2 )5/4

Pk = —2(k +P )'/
Pk

2 2 '~4 '
2 2k +p, 1 I kl k + . (k2 2 )I/2 (k2 2)I/2p k +m

k2+ 2 2 k2+ 2 k k I k I k (k2+ 2)I/2Pk Pk Pk

g &y)'
(k2+ 2 )I/2

(4.6)

(4.7)

(4.8)

1 +Sm21

(k 2++2 )I/2 4L (ki2+ 2 )I/2
(4.9)

Equation (4.7), in particular, shows that the reduced occupation numbers vk are constant in the mean-field approxi-
mation.

It is interesting to look at the static solutions (p) =((10 of the mean-field equations. They are given as the solutions of

and

X+m2yo+ g, yo'+ X .. . „,+5m2yo=o
4L '(k'+A)'"

1

4L k (k'+uk)'"

(4.10)

(4.11)

Equation (4.11) shows that Iuk is in fact independent of k in the static case. The logarithmic divergences of the sums in
Eqs. (4.10) and (4.11) are controlled by adjusting the mass counterterm as

m'= —g y 1

(k2 —m 2)'/2

The mean-field energy density, on the other hand, is easily evaluated as

(
2 ill 2'T aF, = —+~&q&+ &q&'+ —&q&'+

L L 2 2 4f 8L (k2+ 2 )I/2 (k2+ 2)1/2

(4.12)

32L2 ~ (k2+ 2 )I/2
1

(k +m )'

2
g 1

32L (k +m )'

'2

(k2+p2 )I/21

2L k
k

I
2(k +Pk)'/ 4L

(4.13)

which is rendered finite after subtracting a (divergent) vacuum energy (cf. Ref. [10]). It is straightforward to check that
this energy density is conserved under the mean-field equations of motion (4.6)—(4.9).

The mean-field effective potential V,Ir($0) is now easily obtained from Eq. (4.13) evaluated in the static case. As
shown by Eq. (4.10), the equilibrium value (p) can be adjusted through the external coupling parameter A, (which acts
as a Lagrange multiplier) so that

V,Ir($0) = — —Ago —vacuum energy density,L (y)=y

yielding, in the continuum limit (L~ ao ),

(4.14)

2 2
V (y)= y'+gy'+ g yyn +

4t 1677- 2 128~

2
P7l

ln
P

1 m m+ (IM
—m )+ ln

8m 8m P2
(4.15)

which reproduces the well-known effective potential obtained in the Gaussian approximation [10j.
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V. COLLISIONAL DYNAMICS FOR HOMOGENEOUS SYSTEMS

In order to calculate the collision terms of Eqs. (2.16), (2.20), and (2.21), one must evaluate traces of the type

Tr[O(t), H] I dt'Q(t')[H, Fo(t')],
0

(5.1)

where O(t) can be g, g g, or qg. The density Q(t')[H, Fo(t')] can be evaluated in a straightforward way using Eqs.
(3.7), (4.2},and (3.2). One obtains

e"Pl. (o'k +~k +Ok +Ok ) 1

Q(t')[H, F (r')]=
96L (k k k k )1/2 k)+k2+k3+k4, 06

k1 k2k3 k4 01 02 03 04

9k
1

Qk2 Qk3 9k4
X

(1+vk (1+vk )(1+vk )(1+vk )
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1 9k2 9k3 9k4

Vk Vk Vk Vk
1 2 3 4 ti

4 4
X 1+gvk+ Q vkvk + g vkvk vk Fo(t')

i i(j i(j&l
e"P[ —(&k +0k +Ok +ok ) ]

1 2 3 4

241. (k k k k )'~z k1+k2+ k3 —k4, 0
k1k2k3k4 01 02 03 04

9k1 fk29k39k4
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I i(j

e"P[ «k +ok +ok +Ok, ), ]
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ko
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(5.2)

The traces in Eq. (5.1) still cannot be taken directly, since the operators in Eq. (5.2) and in the first commutator are at
diferent times. To overcome this we adopt the approximation discussed in Sec. III and describe the time evolution of
the operators by Eq. (3.12). Using also Eqs. (3.13), (4.3) and (4.4), one obtains
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l'gk = k + (I 2+ 2)1/2(I 2+ 2 )1/2+ + g &y&2Pk k 4

4L (I ~2+ 2 )1/2 8L

k2+P2 I PkPk
k2+p2 2 k2+p2

1 1 1

(gi2+p2 )1/2 (g2+I2)1/2 (g2+p2 )1/2

Tk +Tk rlk =fk ( t) rl (5.3)

The operators gk at different times are thus related as

i ql, (t, t')
k(t) =e Vk(t'),

the phase yk(t, t') being given by

qk(t, t')=- J d~fk(r) .
t'

(5.4)

(5.5)

The derivation of the proposed approximation to the collisional dynamics is now a lengthy but straightforward alge-
braic exercise. The resulting equations of motion are

I g & Vk

(I 2+ 2)1/2 2L ~ (I 2+ 2 )1/2
(5.6)

V„=r„(t),
(Q2+p2 )5/4 2(Q +p )vk

Pk Vk P'k

(5.7)

(5.8)

k2+p, 1 PaPa
k2+p2 2 k2+p2
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1+2vk

(5.9)

where the collision integrals I (t) are

~( )(t) X
I 1 1

4'
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750 LIN CHI YONG AND A. F. R. de TOLEDO PIZA 46

1
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The energy density is
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In these equations use was made of the abbreviations

(5. 1 3)
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1.0

0.5

The J"are identical to I"with the sine functions re-
placed by cosines in the integrand. Energy conservation
BI (E/I ) =0 can also be checked directly by using the
dynamical equations.

' '00 VI. NUMERICAL RESULTS
AND CONCLUDING REMARKS

In this section, we give numerical solutions of the
equations of motion (5.6)—(5.9). A useful technique to
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FIG. 1 ~ Time evolution of the expectation value of the field

operator (P) (A), mean-occupation number vk (8) and dynami-
cal effective mass pj, (C). Solid line: collisional approximation;
dashed line: mean-field approximation. See text for parameter
values.

FIG. 2. Corresponding results to Fig. 1 for the case of 0+1
dimensions. Parameter values: m =@=1.1914879 (m& =1)
and g =2; q is the mean position, p, is the dynamical effective
mass and v, is the occupation number. Solid line: exact solu-
tion; dashed line: collisional approximation; dotted line:
mean-field approximation.
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treat the memory integrals in these equations is described
in Appendix B. In order to control the domain of validi-
ty of the approximations involved in the derivation of the
equations of motions (see Secs. IV and V), it is useful to

inspect also corresponding solutions for quantum
mechanics (i.e., 0+ I dimensions) [12]. We find, by com-
parison with the exact numerical solutions which are
available in this case, that the collisional approximation
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mean-square field (E) in broken-symmetry potential with m =0.05 and g =0.155. Conventions are the same as in Fig. 1.
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improves qualitatively the dynamical description of field
variables.

In what follows we use natural units. As a first case,
we take the parameters of the Hamiltonian (4.2) as
m =1.2, g =2. The static mean-field solution is then
( vr) =0, (P) =0, vk =0, and pk =JM=m. Figure 1 shows
the mean-field and the collision approximations to the
time evolution of the various dynamical variables. For
the initial condition f'(0) =0, ( P ) (0)= 1, ( m ) (0)=0,
v~(0)=0, and pk(0)=p. Periodic boundary conditions
were implemented as k=(2~/L)N with L =40 and
—6 & X & 6. A comparison with a calculation involving a
larger dimensionality indicated substantial convergence
for the variables shown. Although the mean-field and
collision approximations to ( P ) (t) [Fig. 1(a)] do not
differ much, the former does not show the damping
which is present in collisional approximation. More
dramatic differences show up, however, in the case of the
time evolution of v„(t)and pk(t), as shown in Figs. 1(b)
and 1(c). A natural way to interpret these results is that
the vk =0 constraint imposed by the mean-field approxi-
mation strongly distorts the dynamical behavior of the
extended density A„,as revealed by pk(t}. This effect
can be noted also in the results for 0+1 dimensions as
shown in Figs. 2(a) —2(c). The exact numerical solution is
also shown in this case. It shows in fact that the col-
lisional effects are necessary to describe properly the dy-
namics of p„(t).However, the collisional approximation
is seen here also to fail for large enough times, leading in
particular to an overestimation of vk(t) Numer. ical
checks in the code (involving, e.g. , energy conservation}
demonstrate that this is not due to numerical failures, but
should be seen as a limitation of the adopted approxima-
tion for the collision terms.

Figure 3 refers to results in the case of broken-
symmetry and initial conditions ($)(0)=0, (n. )(0)=0,
v„(0)=0, p„(0)=0 08, an. d @k~0(0)=0.05 =p. The k
sum is now cut off at IN I

=12 with L =420, which indi-
cated sufficient convergence. Figures 3(a) and 3(b) show
dramatic collisional effects on the time evolution of pk(t):
In fact, p k (t) initially decreases in the mean-field approxi-
mation while it increases when collisional terms are
turned on. In the mean-field approximation, the pk(t) are
the only degrees of freedom affecting the root-mean-
square field, evaluated here simply as

1+2vk
(y'& —&y)'= y,

k k+pk
and it is natural to expect that they approach the equilib-
rium value, @=0.05. In the collisional calculation, the
root-mean-square field evolves also due to the change in
time of the occupation vk(t). We see again, therefore,
that the mean-field constraint vz =0 strongly distorts the
dynamical behavior of mass parameters. Figure 3(e)
shows the root-mean-square field (P(t) ) '/ as a function
of time. It shows that the increase of pk(t) is overcom-
pensated by the change of the v„(t),resulting in the posi-
tive evolution ( ( P ) )

'/ in the case of collisional approxi-
mation. Figures 4(a) —4(c} show the corresponding results
in 0+1 dimensions. It can be seen that again the col-
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FIG. 4. Corresponding results to Fig. 1 for the case of 0+1
dimensions. Parameter values: m =0.05 and g=0.004. Nota-
tions and conventions are as in Fig. 2.

lisional approximation is able to reproduce qualitatively
the exact time evolution of v, and p„until it fails again
due to overestimation of v, for larger times.

We conclude, from these examples, that the mean-field
approximation fails qualitatively in the description of cer-
tain field variables. These failures are partially corrected
by the collisional integrals used here. However, improve-
ments of the simplest approximation to the collisional
effects, as implemented here, are needed if one wishes a
quantitatively reliable description for larger times. At-
tempts along this line are underway.
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Finally, we comment on the extension of our treatment
to nonuniform field configurations. In this case, the spa-
tial dependence of the field operator is expanded in the
general natural orbitals of the extended density (2.7).
These orbitals can be given in terms of a momentum ex-
pansion which will also evolve in time according to addi-
tional dynamical equations which are in this case ob-
tained from the Heisenberg equation of motion for ((}(x),
again in close analogy with the nonrelativistic many-body
treatment. Further details on this point are given else-
where [8].
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1 v(t)
1+v(t) 1+v(t)

'
g (t)q(t)

(A4)

The derivative of Fo(t) with respect to time is first writ-
ten as

I

iFO =, FoTrri ri[H, F]+v(1+v) ' 1+v dt 1+v

(A5)

where in the last term d'/dt acts only on the operators g
and g . In order to evaluate this term, rewrite the ex-
ponential as
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v(t)
1+v(t)

so that

g (t)g(t)
m(t)g (t)g(t) (A6)

APPENDIX A: CONSTRUCTION
OF THE PROJECTORS P AND P+

. d' „~„"m" . d
i e ""=g i —ri"ri (ri ri)"

Fo(r) =P(t)F,
P(t)P(t) =P(r),

iFO(t) = [FO,H ]+P(t)[H,F],
where Fo(t) in 0+ 1 dimensions is

(Al)

(A2)

(A3)

In order to simplify the presentation, we shall show the
technique for the case of 0+1 dimensions. The same
general procedure applies also to the case of 1+1 or
higher dimensions.

In Sec. II, we have stated the conditions to be satisfied
by Pas

+ +(g g)" 'i (g r—i)
dt

i(x'y' ——x*y")g 71

so that the last term of (A5) becomes

(A8)

Using Eq. (4.5) and the Heisenberg equation of motion,
one finds

i ri ri= [—ritri, H ] i A 'ri —i A ri i—(xy —xy )—gqdt

~ f oo 1l

[[pter, H](q g)" '+ +(ri ri)" '[ri g, H]]1+v dt 1+v „on~

n

2 Iiri(ri ri)" '+ +(g ri)" 'i']1+v „n!
(xy —xy) ji7)g(g ri)" '+ +(g"g)" 'iraq)1+v „0n!

oo n

(x "y' —x'y*)[iri+rit(ritq)" '+ +i(pter)" 'v]tgt] .
1+v „0n~

(A9)

In order to reobtain the exponential (A6), one moves the operators g, qt, rig, pter, to the right and obtains, after some
algebra,

e ""=[Fo,H ]+iA *+F0+iA Fo+i(xy —xy )(1—2v) Fo1+v dt v 1+v

+i(x*y*—x*y*)(1+2v) Fo .
2(1+v)

(A10)
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Using the dynamic equations for the extended density, Eqs. (2.20) and (2.21), one gets

iF&= FOTrrt ri[H, F]+[Fo,H]++FoTrri [H,F]+ FOTrrt[H, F]+ FOTrrt rt [H,F]

+ FOTrrirt[H, F ] .
2(1+v)

(A 1 1)

Equation (A3) is therefore satisfied by

1
P = FOTr(ritri. }++FoTr(rit )v(1+v) v

+ FOTr(ri. }+ FoTr(ri ri )v(1+v)

+ FOTr(7)rt. ) .
2(1+v)

(A12)

(A 1), i.e.,

P =P — FOTr( )+FOTr( ) .
'g 'g V

1+v
The full expression for the projector is thus

r

VP = 1 — Tr( )+ Tr(rite )1+v v(1+v)

(A14)

This object, however, fails to satisfy Eqs. (Al) and (A2).
In fact,

+ +Tr(v )+ Tr(ri )+ Tr(rig )1+v 2v'

PF= Fo .1+v (A13) + Tr(rishi ) Fo .
2(1+v)

(A15)

The projector P is, however, immediately obtained by
adding to P terms which guarantee the validity of Eq.

The construction of P+ follows immediately from the
definition of the scalar product:

r

(y, Px)=Tr[y (Px)]=Tr y 1 — Fo Tr(x)+Tr y Fo Tr(ri rix)+Tr y Fo Tr(ri x)1+v v(1+v) v

+Tr y Fo Tr(rex )+Tr yt Fo Tr(rttritx )1+v

+Tr y Fo Tr(rtrtx)=Tr[(P y) x] .
2(1+v)

From this, one obtains immediately

(A16)

VP+ =Tr Fo 1—
1+v

~ + Tr[FO(rt ri —v) ]v(1+v)

++Tr[Fori ]+ Tr[Fort ]+ Tr[Fori rt ]+ 2 Tr[Forirt ] .
1+v 2v2 2(1+v)

(A17)

APPENDIX B: NUMERICAL TREATMENT OF MEMORY INTEGRALS

In order to obtain numerical solutions for the equations of motion, we need to evaluate a memory integral of the type

I(t) = dt' 1 1

0 (k2+ 2 )1/2 (k2+ 2 )1/2 (k2+ 2 )I/2

1/2

X 1+ g v„+g v„vk (4),,sin[4k {t,t')+0k (t, t')+4 {t,t'}] .
i i(j t'
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Using the phase equation (5.6) explicitly, this appears as

I(t)= —sin f dt'[f„(t')+f„(t')+f„(t')]

1 1 1dt'
(k2+ 2 )1/2 (k2+ 2 )1/2 (k2+ 2 )1/2

Xcos f dt"[fk (t")+fk (t")+fk (t")]

3 3

1+ g vk + g vk vk (p), .
t &J

+cos t'
k

t'+
k

t'+
k

t'

x f'dt 1 1 1

(k2+ 2 )1/2 (k2+ 2 )I/2 (k2+ 2 )1/2
Pk, Pk, Pk,

XSin t"
k

t" + k
t" + k

t"

' 1/2 3 3

1+Xvk, + X v. vk,.

l &j

(B2)

In order to evaluate this a useful trick is to write a differential equation for the integral appearing in (B2). Thus

if =f„(t)+fk(t)+f„(t), (B3)

so that

1 1 1

(k2+p2 )1/2 (k2+p2 )I/2 (k2+~2 )I/2
1 kt 2 k~ 3 k3

1 1 1

(k2+ 2 )1/2 (k2+ 2 )1/2 (k2+ 2 )1/2

1/2 3 3

1+ g vk + g vk vk (P)cos(If ),
i i&j

3 3

1+ g vk + g vk vk ($)sin(If ),
i i&j

(B4)

(B5)

I(t)= —sin(If )I, +cos(If )I, . (B6)

The differential equations (B3), (B4), and (B5) can be integrated easily by standard numerical methods together with the
remaining dynamical equations.
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