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Twistorlike D = 10 superparticle action with manifest lV = 8
world-line supersymmetry
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We propose a new formulation of the D = 10 Brink-Schwarz superparticle which is manifestly
invariant under both the target-space super-Poincare group and the world-line local N = 8 super-
conformal group. This twistorlike construction naturally involves the sphere 8 as a coset space
of the D = 10 Lorentz group. The action contains only a finite set of auxiliary fields, but they
appear in unusual trilinear combinations. The origin of the on-shell D = 10 fermionic ~ symmetry
of the standard Brink-Schwarz formulation is explained. The coupling to a D = 10 super-Maxwell
background requires a new mechanism, in which the electric charge appears only on shell as an
integration constant.

PACS number(s): 11.30.Pb

I. INTRODUCTION

In supersymmetric string theory there are two essen-
tially difFerent approaches [1]. The fundamental underly-
ing symmetry of the Neveu, Schwarz, and Ramond (NSR)
approach is the world-sheet superconformal group, but
there is no supersymmetry in the target space. In the
Green and Schwarz (GS) construction it is just the other
way around: Target-space supersymmetry is manifest,
while there is no supersymmetry on the world sheet. In-
stead, in the "magic" dimensions D = 3, 4, 6, and 10 the
GS superstring possesses a mysterious fermionic tc sym-
metry [2] of unclear geometric origin. This symmetry is
crucial for the consistency of the GS superstring. At the
same time, it has proven to be a very serious obstacle for
the Lorentz-covariant quantization of the theory.

Remarkably enough, under certain conditions the
above theories are equivalent in the light-cone gauge,
which means with broken manifest Lorentz covariance.
The natural question arises: If the NSR and GS ap-
proaches are just the two faces of the same theory, is
it possible to find a new formulation that would com-
bine the attractive features of both? In other words, it
should be invariant under both the world-sheet supercon-
formal group and target-space Poincare supersymmetry.
At the same time, it should not have any K, invariance

[3]. Clearly, in such a hypothetic formulation the light-
cone gauge linking the GS and NSR approaches should
be properly Lorentz covariantized.
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The same question can be posed in the analogous, but
simpler problem of the Brink-Schwarz (BS) superparti-
cle [5] moving in a D = 3, 4, 6, or 10-dimensional su-

perspace. The BS superparticle is the infinite tension
limit of the GS superstring; being much simpler, it still
preserves some features of the GS theory, notably its K

symmetry. Recently, there has been an important devel-

opment in this direction. The pioneering step was made

by Sorokin, Tkach, Volkov, and Zheltukhin [6] (STVZ),
who proposed a new action for the D = 3 superparticle
with r. symmetry replaced by N = 1 world-line supercon-
formal symmetry. The bosonic part of the STVZ action

SsTvz = dr»[i" —@&"@]

is different from the usual massless particle action

5'= f dr/„T'" —legs]. (2)

An essential ingredient of (1) is the "twistorlike" variable

Q which is a commuting spinor of the D = 3 Lorentz

group. It is only on shell that one can show the classical
equivalence of the two theories. The Chem-Simons na-

ture of the STVZ action, i.e. , the absense of the world-line

metric e in it, was emphasized by Howe and Townsend

[7].
It is natural to try to generalize the STVZ action for

the cases D = 4, 6, and 10, where the D —2 parameters
of K symmetry could be replaced by N = 2, 4, 8 world-

line supersymmetries. Delduc and Sokatchev [8] made a
step further by constructing D = 4, 6 twistorlike super-
particle actions with N = 2, 4 world-line superconformal

symmetry, respectively [9]. Independently, Ivanov and

Kapustnikov [11] proposed a superstring action of this

type for N = 2, D = 4. As in (1), these new actions
contain a lightlike vector v" = @p"Q made out of the
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(commuting) Majorana spinor g with 4 and 8 real com-
ponents in D = 4 and D = 6.

However, the attempts to generalize the STVZ ap-
proach to the D = 10 case have hit upon an obstacle.
While D = 10 superparticle (or superstring) actions with
N = 1 or 2 world-line supersymmetry have been success-
fully constructed [12—14], it seemed very hard to imagine
an action with full N = 8 supersymmetry. The reason
for this difficulty can be explained as follows. In D = 10,
like in the lower-dimensional cases D = 3, 4, 6 there also
exists a twistorlike representation of a lightlike vector
v", vz = 0 in terms of a (commuting) Majorana-Weyl
spinor g, n = 1, 2, . . . , 16: v" = Qp" Q. The correspon-
dence between v" and Q~ is, however, not one to one: the
null vector has 10—1=9components, while the spinor has
16. The 7 extra components of the spinor cannot be at-
tributed to any gauge group acting on g, in contrast with
the cases D = 4 and D = 6, where the extra components
can be accounted for as U(1) and SU(2) gauge groups,
respectively. Instead, the 7 gauge transformations in the
case D = 10 form an algebra with field-dependent struc-
ture constants [15]. Therefore, it seemed impossible to
construct a D = 10 STVZ-like superparticle action with
a linear realization of all the symmetries.

A way to overcome this difficulty was found by
Galperin, Howe, and Stelle [16] (GHS). They gave a
group-theoretical analysis of the above D = 3, 4 and 6
actions and identified the lightlike vectors as the param-
eters of the cosets of the corresponding Lorentz groups
SO(1, D —1) by their mazinial subgroups. Then the Ma-
jorana spinors (with their gauge groups) naturally arise
as the parameters of the same cosets in the spinor repre-
sentation. However, for the case D = 10 the GHS con-
struction gives a different recipe how to construct light-
like vectors in terms of spinors. Instead of taking one
MW spinor Q one should take eight MW spinors g, ,
a = 1, . . . , 8, which are, however, properly constrained
by the SO(1, 9) conditions. This allows for linear realiza-
tions of all the symmetries and defines the "twistorlike"
variables appropriate for D = 10.

The main open problem after the work of Ref. [16]
was how to find an action, where all those symmetries
are manifest. The answer is given in this paper. We
generalize the results of Refs. [6,16] and propose an es-
sentially new action for the most interesting case of the
D = 10 superparticle. In some sense our action is the
most straightforward generalization of the N = 1,D = 3
STVZ superfield action to the N = 8, D = 10 case. At
first sight it might even seem too naive a generalization
to have any chances to work. Miraculously, however, the
various dangers are avoided and it does work. Moreover,
the group-theoretical description of the D = 10 lightlike
vectors in terms of spinors developed in Ref. [16] comes
out automatically from that action. The action possesses
manifest N = 8 world-line superconformal invariance as
well as D = 10 target-space Poincare supersymmetry. In
addition to the usual target-superspace coordinates X&
and 9 it also involves a Lagrange multiplier with its
own Abelian gauge group. The action contains a finite
number of auxiliary fields, some of which appear in tri-

linear combinations. This allows us to break the "N = 8
barrier" that one might anticipate in such a theory.

We emphasize that only the classical theory of the su-
perparticle is discussed here. The quantum theory will
be the subject of a future publication.

The paper is organized as follows. In Sec. II we intro-
duce the action and discuss its symmetries and kinemat-
ics. In Sec. III we study the equations of motion for X
and 8, their group-theoretical meaning and their solu-
tion in the light-cone gauge. We show that the on-shell
dynamics of the superparticle naturally gives rise to a
Lorentz-harmonic (twistorlike) description of the sphere
Ss. The large N = 8 superfields X and 0 are reduced
on-shell and in a conformal supersymmetry gauge to the
usual dynamical variables of the superparticle. In Sec.
IV we analyze the equations of motion for the Lagrange
multiplier and fix a Wess-Zumino gauge for its Abelian
gauge invariance, in which only a single constant vector
(the particle momentum) survives. We also demonstrate
the on-shell equivalence to the BS superparticle, and dis-
cuss the origin of z symmetry in the latter. In Sec. V
we couple the superparticle to a D = 10 supergravity
and super-Maxwell background. The Maxwell coupling
might seem impossible by dimensional reasons. Its ex-
istence is due to an unusual phenomenon: the electric
charge appears in the theory only as an integration con-
stant. The consistency of the coupling puts constraints
on the D = 10 background. Finally, in Sec. VI we com-
pare the D = 4 and D = 6 analogues of our action with
the results of Ref. [8] (in the case D = 3 our action co-
incides with that of STVZ [6]). It turns out that in our
formulation the complex structures of the D = 4, 6 the-
ories, which were put in the basis of the construction of
Ref. [8], manifest themselves only on shell. We conclude
the paper by formulating further problems that may be
solved along the lines developed here.

II. THE ACTION AND ITS INVARIANCES

We propose the following action for a superparticle
moving in D=10 Minkowski superspace:

S = dr d rIP,~(D,X" —iD,8p"8). (3)

Note the natural SOt (1, 1) x O(8) automorphism of the
D algebra. The dynamical variables P(r, g), X(r, g), and
8(r, rl) are N = 8 superfields. The anticommuting su-
perfield P~& (which we shall call a Lagrange multiplier)
carries a world-line O(8) index a and a ten-dimensional
Lorentz vector index p. X~ and 6 are the coordinates
of N = 1,D = 10 target superspace, 0 is a Majorana-
Weyl spinor, which has 16 real components in D = 10.

It is an integral over the N = 8 world-line superspace
(r, rl, ) (a = 1, 2, . . . , 8), which contains one even and
eight odd coordinates. D are the N = 8 supercovariant
derivatives

D~ —et~ + irI~Or, (D~, Db) = 2i6~bB (B~ —0/ctrl ).
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The action (3) has a number of symmetries. First of
all, it is manifestly invariant under N = 1 D = 10 rigid
target-space supersymmetry:

b8 =e, bX" =i8p"e, bP„=O
and under the orthocronous ten-dimensional Lorentz
group Ot(1, 9).

The action also has two types of gauge invariances.
The first one is the N = 8 world-line superconformal
group which can be defined as the subgroup of the general
diffeomorphism group r ~ r'(r, rI), il ~ il'(r, q) that
transforms the flat world-line spinor derivatives D (4)
homogeneously. The defining constraint and the trans-
formation law are

D~r —irlbD~rlb = 0 ~ D~ = (D~gb)Db.

For infinitesimal transformations the constraint in (6)
can be solved in terms of an unconstrained world-line
superfunction A(r, rl):

As we shall see in what follows, this Abelian gauge in-
variance of P is crucial for the consistency of the action.
Since it relies on the p-matrix identity (13), which is
valid in 3,4,6, and 10 space-time dimensions, it is clear
that superparticle actions similar to (3) can be written
down in all those special dimensions. In fact, in the case
D = 3 the action (3) is just the action of STVZ [6].
Note, however, that the case D = 3 is exceptional, be-
cause there one has N = 1 world-line supersymmetry and
the right-hand side of (12) automatically vanishes. The
cases D = 4 and 6 will be discussed in Sec. VI.

It should be emphasized that all the above symme-
tries, the rigid D = 10 super-Poncare group, the local
N = 8 superconformal group, and the Lagrange multi-
plier invariance, are off-shell, independent of each other
and linearly realized.

To complete the definition of the action one should
postulate the following kinematical properties: the vector
0 X" is strictly nonvanishing and the matrix D 0 is of
the maximal rank, i.e. ,

8 X" g 0, rank ~~D, O ~i
= 8. (14)

(7)

Then the superconformal transformation law of the co-
variant derivatives can be rewritten in the suggestive
form

bD~ = D' —D, = ——BrA Do, + [D„Db]A—Db,
1

a a

where the first term corresponds to scale transformations
and the second to 0(8) ones. The Weyl parameter 8 A

appears also in the world-line supervolume transforma-
tions

Geometrically, this means that the superparticle trajec-
tory X" = X"(r,g), O~ = 0 (r, q) is a nondegen-
erate (1,8) surface in ten-dimensional Minkowski super-
space. At the same time, it means that the supercon-
formal group (7) is spontaneously broken; i.e., it can be
compensated by the superfields X and O. This require-
ment will also make possible choosing a light-cone gauge,
where one component of X& and eight components of O~

will be identified with r, il, (see the next section). In ad-
dition to (14), one should require that the tensor of the
gauge groups (11) and (12),

b(drd rl) = —3 8 A(drd q). (9) pP ~1" sD . D P"al '''
av aS&

The ten-dimensional coordinates Xr and 0 are world-
line scalars

X'(r', rl') = X(r, rl), 0'(r', il') = 0(r, rl). (10)

6P," = —B,A P,"+—(D„Db]A Pb",

The supereonformal invariance of the action (3) is
achieved by the following transformation of the Lagrange
multiplier:

do not vanish. As we shall see, this D = 10 vector plays
the role of the superparticle momentum, which should be
strictly. nonvanishing in Chem-Simons-type actions such
as (1) and (3).

In Secs. III and IV we will prove the classical on-shell
equivalence of the action (3) to the Brink-Schwarz action.

III. GEOMETRY OF THE SUPERPARTICLE
MOTION

(7 )(np('Yp)p)6 = 0. (13)

which compensates for the derivative and volume trans-
formations (8) and (9).

Second, the Lagrange multiplier P has a large Abelian

gauge invariance:

bP" = Db(( b,P"D,O),

where the parameter ( b, (7, rl) is a (commuting)
Majorana-Weyl spinor and it is totally symmetric and
traceless with respect to the 0(8) indices a, 5, c. To check
this invariance one integrates Dt, by parts and uses the
0(8) properties of ( b, and the ten-dimensional p-matrix
identity

In this section we shall study the superparticle equa-
tion of motion following from the variation of the action

(3) with respect to the Lagrange multiplier P":

D X"—iD Op"0 = 0. (16)

We shall show that this equation, together with the su-

perconfromal group (7) allows one to express all the com-

ponents of the N = 8 superfields X"(r, il) and 9 (r, g)
in terms of their lowest-order components x"(r)
X~~&—p, 0 (r) = 0 ~&

—p, which are the usual dynamical
variables of the superparticle [17]. We shall also exhibit
the geometric meaning of the motion of the superpar-
ticle on an N = 8 super world line. In particular, we

shall emphasize the double role of the commuting spinors
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DO,B ~&
—0 as superpartners of 8~ under N = 8

world-line conformal supersymmetry, on the one hand,
and as twistorlike variables parametrizing the sphere S,
on the other hand.

We begin by deriving an important consequence of Eq.
(16) [19]. It is obtained by hitting it by another spinor
derivative Db and taking the symmetric traceless part in

a, b:

1
D,BP"Db8 = S~bD—,BP"D,B.

1
D~B& DbBA = b~—bD, B& D~B&, (21)

1
D,Bag&~DbB~ + (a ~ b) = -h', bD, Bg(P')~&D, Bri,4

the SO&(1, 1) subgroup (in what follows we shall often
omit the SOT(1, 1) weights, if this will not cause confu-
sion). Using a suitable representation for the p matrices
[22], we can write down the three light-cone projections
of (17) as

There is a remarkable analogy between (16) and (17)
and the finite N = 8 superconformal transformations.
Hitting the defining constraint (6) by D, and taking the
symmetric and traceless part in a, c, one finds

1
D~ 4DbBA =

8

(22)

(23)

D rib D kalb
= b~, D-~rib D~rlb (18)

This means that the matrix D'gb takes its values in
SO~(1, 1) x O(8), where SOt (1,1) is represented by the
positive root A = (D&rlb D&rlb/8)'~ and O(8) by
D' rib/A.

There is a clear similarity between (16), (17) and (6),
(18). In fact, Eqs. (17) and (18), together with the non-
degeneracy condition (14) and the superconformal trans-
formation law [see (6), (10)]

D' 8'~ = D~rjb DbB (19)

have an important geometric meaning. It turns out that
the rank-8 matrix D~O, constrained by (17) and con-
sidered modulo the SOt(1, 1) x O(8) gauge transforma-
tions (18), (19) parametrizes the sphere Ss. This is not
surprising, since the lightlike velocity i" of a massless
D = 10 particle does describe an eight-sphere. Indeed,
ii'i„= 0 ~ (ii)z+ + (is)z = (ic)z. This, together
with the physical assumption io g 0 and up to SO&(1, 1)
(scale) transformations, is the definition of Ss. To be
more precise, in our case the eight-sphere emerges as the
following coset space of the D = 10 Lorentz group [21]

Pin(1, 9)
[SO~(1, 1) x O(8)]8K'

(20)

Here Pin(1, 9) is the double covering group for
the orthocronous Lorentz group O~ (1,9) [analo-
gously, Spin(1, 9) covers the proper orthocronous group
SOT(1, 9)]. The denominator group is its maximal sub-
group, K' are the conformal boost transformations [in
fact, D~B~ is that half of the Pin(1, 9) 16 x 16 matrix
which transforms only under SO&(l, 1) x O(8) and is K'
inert, see Ref. [16] for details].

To see why the matrix D~B~, subject to the algebraic
constraint (17) and considered modulo the transforma-
tions (19), corresponds to the sphere Ss, it is conve-
nient to use light-cone coordinates. Given a D=10 vector
v" = (v, v', v ) one defines v++ = vo + vs ~ vi'v„=
—v++v + (v') z; a Majorana-Weyl spinor 0 is decom-
posed into a pair (8&, 0 ), where A and A are indices
of the 8, and 8, representations of the O(8) subgroup
of the Lorentz group and the weights + correspond to

The nondegeneracy of D~B~ (14) implies that the
right-hand sides of (21) and (23) cannot vanish simul-

taneously. This corresponds to the two charts needed to
cover Ss: on the first chart

D,BAD, BA g 0;

on the other chart

(24)

D,BgD,B~ $ 0. (25)

Suppose that we deal with the first chart (24) and con-
sider the superconformal transformation (19):

D,'B~ ——D,'rib DbBg. (26)

DaBA = baA ~ (27)

This gauge identifies the O(8) and SO&(1, 1) subgroups
of the superconformal group with the O(8) and SOt (1, 1)
subgroups of the Lorentz group O&(1, 9). In particu-
lar, the indices a, b, . . . now correspond to the 8, rep-
resentaion of O(8) and the world-line coordinates and
derivatives carry the following SOt (1, 1) weights: r -+r, il, ~ il, , D ~ D+, 8 ~ 8++.

Next, we substitute the gauge (27) in the transverse
projection (22):

1
7'~DbBB + (a +-+ b) = -6 bp' D,B~. .(28)

The matrix D~B& describes a reducible O(8) represen-
tation [23], 8, x 8, = 8„+56„or D Bz ——p' Y'+

j Y'~". Only the 8„part solves (28), so we find

D B~ ——p' Y'. (29)

Inserting this into (23) we see that it is solved as well.
Thus, on the first chart the general solution to (21)—

(23) (modulo gauge transformations) is parametrized by
eight coordinates Y'. A similar analysis for the second
chart (25) leads to another set of coordinates:

Clearly, the parameter D~rlb has the same content as
D~B~, see (18) (this means that the superconformal
group is spontaneously broken). The conclusion is that
on the first chart the matrix D 8~ can be gauged into
the unit matrix
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Da0~ &a~Z, Dao~ ~a (30) The first one, Eq. (35), has the obvious solution

Now we should relate these two sets of coordinates in the
overlapping area, i.e. , when both conditions (24) and (25)
are satisfied. To this end consider the vector appearing
in the right-hand side (RHS) of (17),

X =2~ (38)

where we have fixed the possible constant term in the
RIIS by means of the translation from (33). Hitting (36)
with D, and using (27), (29) one obtains

1v" = —D Op"D O.
8 Y' = —(X' —iOp'r/), (39)

This is a lightlike vector, v v„= 0 due to the identity
(13) and Eq. (17). It is 0(8) invariant and has a nonvan-
ishing SOt (1, 1) weight. Hence the ratio of any two of its
components is gauge invariant. The two charts described
above correspond to v g 0 and v++ g 0, respectively.
Using (27), (29)—(31) one finds

D,O~ = —p'~(X' —iOp'i/), (40)

where the overdot denotes 0/Br . Combining (29),
(36), and (39) one finds

Vi Vi
Y' =, Z'=

v v++ (32)
D~X' = ip'~O~ + p"~p)—~r//, (X" —iOp"r/). (41)

& = p + ir/gE~, &/g, = E~

The general solution to (27) is given by

(33)

(34)

where we have used the constant world supersymmetry
parameter (33) to fix the possible constant term in (34),
thus identifying the rigid N = 8 world-line supersymme-
try with one half of ten-dimensional supersymmetry.

The above results allow us to considerably simplify the
original equation (16). In the light-cone gauge it has the
three projections

D X —2ig =0, (35)

aX ~& BOB —xDaOB~BBQB —0, (36)

D X++ —i(D O~)e~ ——0. (37)

In the overlapping area Y' = Z'/(Z~)2, so Y' and Z' can
be considered as stereographic coordinates of the sphere

8

In conclusion we can say that the eight commuting
spinors ("twistor variables" ) D 0 ~„0 have a double
role. On the one hand, they are the superpartners of
the Grassmann coordinates of target superspace, 8
0 ~„0 with respect to N = 8 world-line supersymme-
try On .the other hand, they are Lorentz-harmonic co-
ordinates on the sphere Ss, regarded as the coset (20).
The requirement of double supersymmetry (worldline
and targetspace) establishes a natural link between these
two concepts [6,11,8,16]. We stress also that the sphere
Ss and the related lightlike vector (31) appear on shell

only, while off shell the eight Majorana spinors D 0
parametrize a larger manifold.

Having clarified the geometric meaning of the super-
particle equation of motion (16) and of its gauge group
(18), (19), now we come back to the analysis of the con-
tent of that equation. In what follows we shall deal with
the first chart on Ss, so the gauge (27) is implied below.
This gauge completely fixes the superconformal group,
up to a constant translation and a supertranslation:

This allows us to conclude that all the components of
X' and Oz are expressed in terms of their lowest-order
components z'(r) = X'~z —0 and 8&(r) = O&~„0. It
is clear from (37) that the same applies to X++ [the
solution to (37) will be given later, see (66)]. It is rather
remarkable that the content of Eq. (16) is so simple, given
the original complexity of the N = 8 superfields under
consideration.

The careful reader may have noticed that (16) does not
restrict the r dependence of the world-line fields z'(r)
and 8&(r). The on-shell equations for these fields will be
found in the next section.

IV. EQUATIONS OF MOTION AND GAUGE
FIXING FOR THE LAGRANGE MULTIPLIER

D PA=0, (42)

(g„D 0) P" = 0. (43)

Because of the complexity of the N = 8 superfields the
analysis of Eqs. (42) and (43) and of the gauge transfor-
mation (12) is rather involved and it is worthwhile to first
sketch the procedure. We decompose these equations in
the light-cone frame and use the light-cone gauge (27).

In the previous section we studied the equation of mo-
tion (16) obtained from the action (3) by varying with
respect to the Lagrange multiplier P". Usually, employ-
ing a Lagrange multiplier is not a safe trick, since in
addition to the desired propagating modes in X and 0,
it could also give rise to a number of extra ones, com-
ing from the equations for the Lagrange multiplier itself.
One of the most unexpected features of the action (3) is
that this danger is miraculously avoided. Indeed, now
we shall demonstrate that the equations of motion for
the Lagrange multiplier P" following from the variation
of X" and 0, together with the powerful abelian gauge
invariance (12) reduce P/' to a single constant D = 10
vector p" [see (15)), which is just the on-shell momen-
tum of the superparticle. They also imply the correct
dynamical equations for x'(r) and 8~(r).

The equations under consideration are
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D,p" = 0 ~ Q = const.

This follows from the relation

(44)

Then we study the (——) projections of (42) and (15) to
show that P is reduced to a single constant component
in a suitable Wess-Zumino (WZ) gauge for the invariance
(12). Next we consider the transverse projections of (42)
and (15) and the a = A projection of (43) to find the
WZ gauge of P' on shell. Finally, we take the (++) pro-
jections of (42), (15) and the a = A projection of (43) to
find an expression for P++

Before proceeding further, we mention that as a conse-
quence of (42) the invaraint of the Abelian gauge trans-
formations p~ = e~'"'~'D~, D„P,", (15) is a constant,

For the transverse projection P' the gauge transforma-
tion (12) can be written in a way similar to (47):

bP' = Ds(,'s,

where

(49)

Cs = ((as)«~ + (as.VAPID. e~)

((.'s) «~ —= (.s.W,'~.
(50)

Note that ('s consists of two terms, of which only the
first one is field independent, i.e., can be used to gauge
away parts of P . This additive term is constrained as
follows:

Dap" = ~as, -.s,Ds, Ds, Dc&.", (45) 7~g((as)«~ ~++(csa 0. (51)

which can be proved using the identities

Da~D[g~ ' ' ' D~~] = D[a~ ' ' ' Dg~]
4-i (k —1)6„(„D„D,„]8„

(46)

= Ds(( s.Deca) = Ds(.s (47)

where (,s = ('s, is an arbitrary symmetric traceless
superfield. On shell, the only invariant of the gauge
transformation (47) is the p component of Q. This
can be proved as follows. The component content of
an N = 8 world-line superfield can be extracted by
the derivatives D~, D(„D„], . . . , D~~, D, D,] at
q = 0. Now, the lowest-order component P is shifted
by an arbitrary parameter Ds( s and can therefore be
completely gauged away. The next component, D,P
is shifted by D,Ds(~s, which is an arbitrary traceless
parameter and hence only the trace D P survives,
but the latter vanishes on shell (42). Proceeding in
this manner we find that up to the level of six deriva-
tives the only gauge invariant components are the deriva-
tives of the tensor D~P, i.e. , D~P, DsD~P
D(s, Ds,]D~P~, . . ., Dp„.Ds,]D~P~, but all of them
vanish on shell (42). At the level of seven derivatives
the component D(s, Ds, ]P~ contains the O(8) repre-
sentations 8, x 8, = 1, + 28 + 35„while the param-
eter D(s, . . . Ds,]Ds(,s contains 35, only. The surviv-
ing representations 1, and 28 correspond to p and
D I'p 1 D$6 ) DQ P 0, respectively. So, we conclude
that on shell and in the ( Wess-Zumino gauge described
above the superfield P contains one constant compo-
nent only:

1
t
&ab1" b7$6$ $57P, P = COnSt.

~ ~

(48)

D[sq ' ~ D~z]D~~ = D[az ' ' ' Day Daq]

+i(k —1)D(„D„,b „],8,.

Let us first study the (——) light-cone projection of
(42). Using the light-cone gauge condition (27) one finds
the following gauge transformation (12) for P

It is easy to see that this is the only condition on the ad-
ditive part. Indeed, the parameter ('s is symmetric and
traceless with respect to the O{8) indices a, b, therefore it
contains 35, x 8„=56„+224». At the same time, the
LHS of (51) contains 8, x 8, = 8„+56„, so (51) kills the
56 in ((~s)«d. Thus the latter corresponds to the irre-
ducible representation 224,„,which cannot be restricted
any more.

The restriction (51) implies the existence of another
"tensor"

T~ ——p~~P (52)

= 0. (53)

The o, = A projection of this equation is given by

p'~(P,' —Y'P, ) = 0 ~ T~ = p'~Y'P, (54)

Studying the WZ gauge for P', one finds that up to the
sixth order all the derivatives D[~, D~„]Ps, (k & 6)
are expressed in terms of derivatives of D~P~ and T& and
therefore vanish on shell and in the WZ gauge (48) for
P~ . The seventh order is less trivial and we give some
details for the inquiring reader. First, the additive part
of the gauge parameter at this order is D(, . D,]Ds('s
and it contains 8, x 56, = 8„+56„+160„+224,„
[with the restriction (51) taken into accountj. However,
among the latter 28 x 8 = 8„+56„+160„vanish
due to the relation D[~, .D~,]D~Ds('s ——0. Hence
the seventh-order parameter contains 224» only. Sec-
ond, the seventh order in P', i.e., D~~, D~,]Ps con-
tains 8, x 8, x 8„= (8„)~ + (56„)~ + 160„+224,„,
where the 224,„ is a pure gauge. Third, at the sev-

Though noninvariant under the second, field-dependent
term in (51), T& is invariant under the (('s)«g trans-
formations, so it cannot be gauged away. Instead, it is
expressed in terms of the other fields by means of the
second equation for the Lagrange multiplier {43).In the
light-cone frame the latter reads

1 ++ — 1
2(~++D.e)-P= 2(~ D-e)—-P+++ (~'D-8)-P
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enth order there are the following tensor components:
D[a, Da, ]DbPb ~ 28 X 8„= 8„+56„+ 160„,

matches the gauge-invariant content of D~, D,~Pb
except for one extra 8„. Hence there should exist a re-
lation among the three 8„ in D[„.D„]DbPb, p' and

D[„D„]T&.It is given by X++ = x++ + i'.p' e x' x++ = -(x*)'. (66)

The conclusion is that (15) is a nondegeneracy condition
for the Chem-Simons action (3), similar to the condition
e P 0 on the einbein in the ordinary relativistic particle
theory (2).

We mention that Eq. (37) can now be solved too:

bA &aq" azbD[az Day] T~

7 '. 2. 3+ 7bA 7 A&bcaq" as D[az Dac]Dd, P~, (55)

The final expressions for the other world-line superfields
are

X-- = 2~--, X' = x'+ ig.p'„8„,
up to some fifth-order terms, which were already shown

to vanish on shell and in the WZ gauge. Using (42) and

(54) we find
1e = ~, e„=e„+-~.~ „*.a

bA'&aq" aqbD[aq ' . Daq] (VcAY
"Pc )' (56) The superparticle velocity is given by (77)

Substituting (39) and (48) in (56), we arrive at the im-

portant equations

i"= (x,i', i++) = (2,i', zi(x')z).

Comparing (63) and (68) we find

(68)

1 '--p' = —z'p, p 8~ ——0,
2

(57) 1--
pP — p ~P

2
(69)

which will be discussed later on, see (65). To finish with
P', its on-shell expression in the WZ gauge contains only
one constant O(8) vector:

Note that the right-hand side of (69) is proportional to
DaOp" DaO[„, cwhen co—mputed in the light-cone gauge
In fact, the relation

~
~ab1 ~ ~ by gb1 gb7 p p (58) p" D ep"D 0 (70)

The (++) projection of Pa is an auxiliary superfield.
This can be seen from the o. = A projection of (53):

is gauge independent. It can be derived from the gauge-
invariant equation

P~ P~~yb~Y" Pb —0. (59) p"(p„D 0) = 0, (71)

With the help of (39), (57), and (58) this implies

++ 1 ++Pa —
)

)&aby" bpgb1 ' ' ' 'gbyP )
~ ~

where

(60)

which is a consequnce of the equations of motion (17),
(42), and (43).

So, we have solved all the equations of motion following
from the action (3). The results should be compared with
those from the Brink-Schwarz action

++ '4 'l '4 2p++ = x'p' = (i')-p =-const.
2 4

(61) SBs = d7 [p„(x"—i Bp"e) —2ep„p"]. (72)

Combining Eqs. (48), (57), (58), (60), and (61) we find

1
Pa ~)~t&ab1 "by lb1

' ' ' IbyP
~ ~

(62)

where p" is a constant D = 10 vector [see (44)] with the
light-cone projections

The latter is invariant under world-line diffeomorphisms
~ ~ ~'(~) and under the r transformations

bp„=0, 6B = p„(p") ~Kp,

bx" = —i8p"b8, be = —4i8 K .

p" = (p p' p++) = p (1 -'*' -'(*')').

This is the momentum of the massless superparticle:

(63) The equations of motion following from (72),

p„= 0, p = 0, x" —iep"B —ep" = 0, p„(p"B) = 0,

p"p = —p p++ + (p')' = o. (64) (74)

Now we are in a position to justify the kinematical re-

quirement (15). On the chart (24) of Ss the condition
p" g 0 is equivalent to p g 0. Given this, from (57)
one derives the on-shell equations for the superparticle
variables:

x' = 0, 8~ ——0.

can be easily solved in the reparametrization and K-

symmetry gauges 2: = 2w and 8A ——0. Thus one can
identify the physical modes corresponding to the N = 8
supersymmetric action (3) and the Brink-Schwarz action
(72).

As we have pointed out earlier, in the action (3) K sym-
metry is completely replaced by local world-line N = 8



46 TWISTORLIKE D = 10 SUPERPARTICLE ACTION WITH. . . 721

supersymmetry. Now we can show the on-shell relation
between these two symmetries. Suppose that we do not
fix the superconformal group completely, as in (27), (33),
but instead keep only the N = 8 supersymmetry param-
eter local, e~ = 6' ~„—0. The N = 8 supersymmetry
transformation of 8 = 8 ~„c is given by

(75)

where Q = D 8 [„0. Let us substitute in (75) the
field-dependent parameter c, = p Q, r~ (7 ) and make
use of the relations

A

6+sG = ~&~ ri ((abctid)aDDE
2

x —D E~DgE~T.".—2D E~DgE"T."-
wP

+D E DgE"T."- (80)
4h

Here T- - and ~&& are the background supergravity
torsion and I orentz connection. It is clear that the sec-
ond and the third terms in (80) can be compensated for
by the following variation of the Lagrange multiplier:

6Pb„=(-( b,yPD, E)[D E T."- —zD E T„-"-].

1i"—iBp"8 = -Q p"Q, .
8

(76)

(77)

(82)

As to the first term in (80), it vanishes due to the p-
matrix identity (13) and the symmetry of (~b„provided
we impose the following D = 10 supergravity torsion
constraint [24]:

T"-- = (&")--.
~P ALP

Equation (76) can be proved with the help of the gauge
(27) and Eq. (29) (but it is valid in any gauge), Eq. (77)
is obtained from (16) by hitting it with D, . Putting all
this in (75) we find the rc transformation of 8 (73). The
conclusion is that e symmetry emerges as a result of an
almost complete gauge fixing of the N = 8 superconfor-
mal group and a partial use of the equations of motion.

V. COUPLING TO A D=10 SUPERGRAVITY
AND MAXWELL BACKGROUND

The action (3) describes a free superparticle theory.
Therefore it is of interest to see how it can be coupled
to background D = 10 fields. Introducing a supergravity
background is straightforward. It is sufficient to replace
the flat D=10 superspace vielbeins in (3) by curved ones,

E~+(Z+). Here ZM = (X&,8~) and A = (ij„a) are the
tangent-space vector and spinor Lorentz indices. After
that (3) becomes

dsa = ~ f d~d'q P dD P"

l% A

where we used the notation D~E~ —= (D~ZM)E~+.
Note that the Lagrange multiplier is now a tangent-space
Lorentz vector. The invariance of the action (78) under
N = 8 world-line conformal supersymmetry, target-space
diffeomorphisms and tangent-space Lorentz transforma-
tions is manifest. As we saw earlier, the consistency of the
superparticle action crucially depended on the Abelian
gauge invariance (12) of the Lagrange multiplier. This
invariance is not automatic in (78), and we have to make
sure it still works. The obvious generalization of (12) to
the curved case is

6AM = BMA(Z). (84)

We emphasize the absence of a Maxwell coupling con-
stant (electric charge) in the action (83). Instead, there
we find a new world-line superfield P (7, q), which plays
the same role of a Lagrange multiplier for the Maxwell
term as P „- plays for the first term. In what follows
we shall show that on shell the only surviving compo-
nent of P~ is just the electric charge of the superpar-
ticle. The superflied X(~,q) can be interpreted as an
additional Kaluza-Klein bosonic coordinate of target su-
perspace. Indeed, the action (83) is invariant under the
Maxwell transformations (84) provided

The conclusion is that the consistency of the superparti-
cle action requires constraints on the background. This
phenomenon is well known [25]. In the Brink-Schwarz ac-
tion one demands compatibility of the background with
r. symmetry, and that leads to the constraint (82). In
our case x symmetry is replaced by world-line conformal
supersymmetry, which is manifest in (78). Instead, we
had to make the background compatible with the La-
grange multiplier gauge invariance (79), which lead us to
the same constraint.

The next issue we would like to discuss is the coupling
of the superparticle to a Maxwell supersymmetric back-
ground. This can be done in the framework of a Kaluza-
Klein scenario. Namely, we extend the action (78) by
adding two new terms:

SSGyM = ~f d7' d q (P „D,E"+ P,D,A +. P DX) . ,
(83)

Here D A—:D Z AM(Z), where AM = (A„,A )
are the Maxwell background connections defined modulo
Abelian gauge transformations:

6P ~ ——(6P Db+ DbE u)~„") ( b (P„-).pD-E~ bP. =0, bX= —A. (85)

(79)
It is not hard to obtain the variation of (78) with respect
to (79):

Then the Maxwell superfield AM can be treated as part
of the supervielbeins EM in a D = 11 target space, ac-
cording to the standard Kaluza-Klein philosophy. The
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action is also world-line superconformally invariant if we
take X to be a scalar, and P to transform in the same
way as P „ in (11).

As in the case of supergravity, we have to make sure
that the Maxwell terms in (83) are invariant under the
following Abelian gauge transformations of the Lagrange
multipler P [cf. (47)]:

6P~ = Db(~b, (86)

where (~b(r, ri) is an arbitrary symmetric and traceless
parameter. The variation of (83) is easily shown to be

P

&&sa+M = — drd rr( b( D Z Ds&

+2DE DbE F~ ) (87)

where Fzz is the Maxwell field-strength. Once again,
the second term in (87) can be compensated for by

A

6Pbv = (abDaE Fog, (88)

and the first term vanishes after imposing the D = 10
Maxwell constraint [25]

F.
p

——0. (89)

Note that (89) is at the same time the integrability con-
dition for the equation obtained from varying (83) with
respect to P, :

D,X = D,A. — (90)

dr ei "A„(z), (92)

In other words, because of (89) Eq. (90) allows us to solve
for X(r, q) in terms of the other fields (up to a constant),
without imposing any new restrictions on them.

Now we come to the important point about the origin
of the electric charge in the action (83). Varying it with
respect to the Kaluza-Klein field X, one gets D P = 0.
Repeating the arguments of Sec. IV, we see that this
equation, together with the gauge invariance (86) leave

just one constant component in P, [cf. (47) and (48)]:

1
Pa =

~ t
eab1 "b7pb1 ' ' ' gb„e, e = const.

7!8~

Substituting this into (83) gives, in particular, the com-

ponent term

N = 8 invariant coupling bitinear in the Maxwell fields
and the target-space coordinates [as required by (92)].
The striking property of the Maxwell coupling (83) is
the absense of an off-shell electric charge. Instead, it is
trilinear in the fields, and only on shell, where one of the
fields (the Lagrange multiplier P ) reduces to the con-
stant e, the action becomes bilinear.

The mechanism explained above may suggest a loop-
hole in the various "no-go" theorems [27] that forbid the
existence of off-shell supersymmetric actions for theories
such as D = 10, N = 1 or D = 4, N = 4 super-
Yang-Mills, etc. The point is that those theorems always
assume bitinearity in the fields. As we have seen, this
assumption could be wrong off shell, although it should
definitely hold on shell (or rather upon elimination of the
auxiliary fields) [28].

VI. COMPLEX STRUCTURES
AND GRASSMANN ANALYTICITY

IN THE CASES N = 2, D = 4 AND N = 4, D = 6

The analysis of the superparticle action (3) carried out
in the most complex case N = 8, D = 10 can easily be
adapted to the simpler cases of the superparticle mov-
ing in D = 3, 4, and 6 superspaces [where the identity
(13) holds]. To this end one should consider 8 as real
(Majorana) spinors in those dimensions, and the world
line should have N = 1, 2, and 4 conformal supersymme-
try, correspondingly [29]. As we already mentioned, the
N = 1, D = 3 analogue of (3) is just the STVZ action
[6]. An essential feature of all these actions is the absense
of any complex structure: all superfields and gauge pa-
rameters are rea/ functios of reat variables. However, the
N = 2, D = 4 and N = 4, D = 6 cases allow for a differ-
ent treatment [8], which utilizes the concept of cornpLex
structures inherent in four and six dimensions, and the
related concept of Grassmann analyticity. In this section
we shall show how those two alternative treatments, the
real and the complex ones, are related to each other.

In four dimensions the Majorana spinor O~ has four
real components. However, one can think of it as a com-
plex two-component Weyl spinor (and its conjugate). In-
deed, using the matrix ps [which is an example of a com-
plex structure, (ps)2 = —1] one can construct projection
operators that split 0 into two complex halves. In other
words, one can introduce the well-known two-component
spinor notation

which is the usual Maxwell coupling for a charged parti-
cle. Thus, we conclude that the integration constant e is
indeed the electric charge of the superpartiele [26].

We would like to point out that the existence of the
Maxwell coupling (83), which is invaraint under the
N = 8 superconformal group and under D = 10 su-

perdiffeomorphisms, is a highly nontrivial phenomenon.
Suppose that we were given the electric charge e, the
Maxwell superfields A„,A, the superparticle coordi-
nates X~(r, i)), 8~(r, i)) and their derivatives. Then
by simple dimensional arguments we would immediately
conclude that it is impossible to construct any off-shell

(X", 0) ~ (X, 8, 8), (93)

where now a and ci take two values. Note also that
the matrix p generates a U(1) automorphism of the
D = 4 supersymmetry algebra, which commutes with
the Lorentz group SO(1, 3) SL(2, C). In the two-
component formalism Eq. (16) has the form

D X —i(D 8 )0 —i(D 8 )0 =0. (94)

Here a = 1, 2 (we recall that in the case D = 4 the world
line has N = 2 supersymmetry). Further, Eq. (17) now
becomes
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D,8 Db8 +Dg8 D~8 = b~bD, 8 D,O . (95)

Introducing the complex notation

D = Dg+ iDg, D = Dg —iDg,

one can rewrite (95) as

D8 DO =0.

(96)

(97)

This equation has two possible solutions: DO = 0 or
D8 = 0. Both of them cannot vanish at the same
time, since this would contradict the basic nondegeneracy
condition (14). Without loss of generality we can choose
the solution

DO = 0 -+ De = 0. (98)

These are nothing but chirality conditions for the super-
fields 8 and 8 . Thus we see that the natural complex
structure of the D = 4 spinors (represented by p ), to-
gether with the Lorentz-harmonic defining condition (17)
induce a complex structure in the world-line superspace
of the superparticle. Further, Eq. (94) implies chirality
of X as well. Indeed, introducing the notation

X =X +iO 8 X =X —i8 8L ) R

we can rewrite (94) as a chirality condition:

DXI ——0 or DXR ——0.

(99)

(100)

-(Xr, —X~ )+8 8 =0.
2

The latter can be obtained from the action

So, in the case N = 2, D = 4 the physical content of
the superparticle is encoded in the chirality conditions
(98), (100) and the definition (99). Actually, as it was
explained in Ref. [8], one can reverse the argument as
follows. Off shell one does not impose the relations (99).
Solving the chirality conditions (98), (100) in suitable
chiral bases in the world-line superspace, one considers
Xz~ and 0™as unconstrained chiral superfields. They
become the basic dynamical variables. Then one treats
Eq. (99) as a definition of the real coordinate X~™
2(XI + XR ), as well as an equation of motion,

dex and a pseudoreality condition [30]. This SU(2) group
is an automorphism group of the D = 6 supersymmetry
algebra which commutes with the D = 6 Lorentz group
SO(1, 5) ~ SU'(4) = SL(2, H). Thus in this case there
are three complex structures (in other words, a quatern-
ionic structure) corresponding to the three generators of
the SU(2) group. The world-line Grassmann coordinates
rI~ (a = 1, . . . , 4) are now SO(4) = SU(2) x SU(2) spinors,
so they also have a natural SU(2) structure. Using all
this, one can show that the basic superparticle equation
(16) and its consequence (17) lead to the concept of SU(2)
harmonic analyticity [31]. From that one can derive the
alternative N = 4, D = 6 superparticle action proposed
in Ref. [8]. Note, however, that the harmonic action
of Ref. 8 uses infinite sets of auxiliary fields (coming
from the harmonic expansions of the world-line super-
fields), whereas the new action (3) involves only finite
sets. Also, SU(2) harmonic analyticity appears in the
new formulation on shell only, while in the approach of
Ref. [8] all the off-shell dynamical variables are by def-
inition analytic. Again, the on-shell content of the real
and the SU(2)-analytic formulations coincide.

A remarkable feature of the action (3) is its univer-
sality: it equally well describes all the magic cases D =
3, 4, 6, 10 with the corresponding maximal N = 1, 2, 4, 8
world-line supersymmetry. In the lower-dimensional
cases D = 4 and 6 it reproduces the specific proper-
ties of analyticity on shell. The latter reflect the exis-
tence of complex structures there, which are in turn re-
lated to the automorphisms of the supersymmetry alge-
bra in D dimensions commuting with the Lorentz group
SO(1, D —1). At the same time, the action (3) does
not require any analyticity and/or complex structures og
she/t.

In ten dimensions the real 16 component spinors are
both Majorana and Weyl. There exists no automorphism
of the supersymmetry algebra (D~, Dp) = p"&8„ that
commutes with the Lorentz group (except for the irrele-
vant scale transformations). This probably explains the
failure of many attempts to generalize the notion of com-
plex structure to the case N = 8, D = 10 and to find
"octonionic analyticity. " The action (3) escapes from
this problem in a very simple way: it does not refer to
any complex structures at all.

S= drd r1P
~
-(Xl —X& )+8 8no; (102) VII. CONCLUSIONS

This is an alternative form of the N = 2, D = 4 action.
The essential difFerence between the two actions is that
(3) is substantially real, while (102) makes use of the con-
cept of chirality (holomorphicity) inherent in this case.
Note also that the Lagrange multiplier P ~ in (102) has
the same dimension as the superparticle momentum and
it does not possess any Abelian gauge invariance such as
(12). The on-shell contents of these theories are, however,
identical.

The case N = 4, D = 6 can be treated in a similar
way. There the Majorana spinors have eight real compo-
nents. At the same time they can be considered as four-
component Weyl spinors with an extra SU(2)-doublet in-

In this paper we have presented a new formulation of
the D = 10 superparticle theory. The new action (3)
propagates the same modes as the Brink-Schwarz one
(72). At the same time they have essentially difFerent
symmetries. While the r. symmetry of the BS action
forms an algebra only modulo the equations of motion,
all the symmetries of the new action are realized linearly
and close ofF shell. In other words, the problem of finding
auxiliary fields for D = 10 BS superparticle was solved.
The rc symmetry of the BS action (72) can now be un-
derstood as an on-shell and partially gauge-fixed form of
conformal world-line supersymmetry.

Note that in the new formulation the specific role of e



724 A. GALPERIN AND E. SOKATCHEV 46

symmetry in constraining the Yang-Mills or supergravity
background is played not by the superconformal group
(which is manifest), but by the Abelian gauge group of
the Lagrange multiplier (12). The latter, however, is not
directly related to z symmetry. For instance, in the N =
1, D = 3 case the right-hand side of (12) vanishes, while
z symmetry is nontrivial.

It should be emphasized that in this paper we studied
the classical theory of the superparticle. After having
understood the structure of its symmetries, it should now
be possible to attack the problem of Lorentz-covariant
quantization of this theory.

In a future publication an N = 8, D = 10 superstring
action of the type (3) will be presented. The specific
Wess-Zumino term in the superstring action is in many
respects analogous to the Maxwell coupling of the super-
particle, with a two-form Abelian gauge field instead of
the Maxwell field. This term will involve a separate La-

grange multiplier, which will produce the string tension
on shell as an integration constant (such as the electric
charge in Sec. V; see also references cited in [26]).

Another direction of possible development is related
to constructing oK-shell formulations of the D = 10
super-Yang-Mills and supergravity theories. The non-
linear structure of the Maxwell coupling (87) may shed
new light on this old problem.
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