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Gravitational radiation in black-hole collisions at the speed of light. III. Results and conclusions
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This paper summarizes results following from the two preceding papers, I and II, on the gravitational
radiation emitted in the head-on collision of two black holes, each with energy p, at or near the speed of
light. The radiation (in the speed-of-light case) near the forward and backward directions 0=0, m., where
8 is the angle from the symmetry axis in the center-of-mass frame, is given by the series
cp{7 8)=g„" paz( r/p) isn "8 for the news function cp of retarded time 7 and angle 8; successive terms

can in principle be found from a perturbation treatment. Here the form of a2(~/p) is presented.
Knowledge of a& allows the new mass-loss formula of paper I to be applied, giving a calculation of the
mass of the (assumed) final Schwarzschild black hole. Since the "final mass" resulting from the calcula-
tion exceeds 2p, the assumptions of the new mass-loss formula must not all hold. The most likely ex-

planation is that there is a "second burst" of radiation present in the space-time, centered for small an-

gles 8 on retarded times roughly ~8p 1n8~ later than the "first burst" described above. A more realistic
crude estimate of the energy emitted in gravitational waves is given by the Bondi expression, taking only
the first two terms ao and a2 in co,' this gives an efficiency of 16.4% for gravitational wave generation.

PACS number(s): 04.30.+x, 97.60.Lf

I. INTRODUCTION co(~, 8=y 'P) —g y '"Qz„(r, lb),
n=0

(1.2)

In the two preceding papers, papers I and II [1,2], the
axisymmetric collision of two black holes was studied in

the case that the black holes approach at the speed of
light, each with energy p in the center-of-mass frame. A
perturbation approach was used, in which a large
Lorentz boost is applied to the incoming data, so that the
energies k, v of the resulting incoming shock waves obey
A, «v. The subsequent evolution is described by a singu-

lar perturbation problem, with small parameter (A, /v).
%hen one boosts back to the center-of-mass frame, suc-

cessive terms of the perturbation series provide informa-

tion on jrravitational radiation which propagates at small

angles 0 from the symmetry axis t9=0, near the curved
shock 2 which has been distorted and deflected in the col-
lision. (By symmetry, the same holds for radiation near

the backward direction 8=sr. ) The gravitational radia-
tion is described by the news function [3], which is ex-

pected to have the convergent expansion

cp(&, 8)= g az„(r/{M) sin "8,
n=0

(I1.3')

where ~ is a retarded time coordinate. First-order pertur-
bation theory gave au(rip) in paper I, in agreement with

the results of a calculation [4] of radiation emitted near
the forward direction when two black holes approach,
each with large Lorentz factor y in the center-of-mass
frame, and collide. In that case, the news function has an

asymptotic expansion

valid as y~ pp with r, f fixed. The function ac(r/p) is

found from the limiting form of Qc(r, p) as tt)~ pp.

For the speed-of-light collision, the higher-order per-
turbation theory in (1/v) can be considerably simplified

following the analysis in paper II. There is a conformal
symmetry at each order in perturbation theory, and
hence all metric perturbations can be expressed in terms
of functions of two variables, rather than the three vari-

ables which would be expected given only axisymmetry.
This leads to an integral expression for az(r/{p), using

second-order perturbation theory, which is numerically
tractable.

In Sec. II of the present paper we evaluate the time in-

tegral f" az(r/p)dr, which appears in the new mass-

loss formula of Sec. VI, paper I. This formula gives an

expression for the mass of the 6nal black hole resulting
from the collision, assuming that at late times there is

only one Schwarzschild black hole at rest, and that the
gravitational radiation obeys a certain uniformity condi-
tion [Eq. (I6.12)]. The new mass-loss formula gives a
"final mass" exceeding 3.5 p. The most probable ex-

planation is that the uniformity condition fails. This is

expected to happen if, as seems likely, there is a "second
burst" of gravitational radiation, generated near the
center of the space-time, which will be delayed relative to
the "first burst, " described by Eq. (1.1), by an amount

b, r=~gpln8~ for small angles 8. The requirement of
matching of the late-time radiation pattern of the "6rst
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burst" with the early-time pattern of the "second burst"
shows that the radiation at such times is given by a sum
of terms proportional to ej ~ "sin "8, where j and n are
positive integers. Thus the presence of a "second burst"
will be signaled by exponential growth of this type at late
times in the news function (1.1), where the "first burst"
occurs near T—0. Such exponential behavior is indeed li-
able to occur because of the singular nature of the pertur-
bation problem, in which the initial data become large at
late times on the characteristic initial surface just to the
future of the strong shock 1. It only fails to occur in
az(rip, ) because of the cancellation between exponential-

ly growing volume and surface contributions to a2.
In Sec. III the result of the numerical calculation of

az(rip) is presented (Fig. 4), following the analytical
simplifications of paper II. A crude estimate of the mass
loss in gravitational waves can be found by keeping only
the first two terms in the series (1.1), i.e., approximating
cp(~, 8) by ap(T/p)+az(alp, )sin 8. With this truncation,
an energy loss of 0.328 p was found from the convention-
al Bondi formula [3], corresponding to an efficiency of
16.4' for gravitational wave generation. Further discus-
sion is given in Sec. IV.

II. PREDICTION OF NEW MASS-LOSS FORMULA

+f [4az(r/p) ap(r/p))dr—+o(1),

(2.1)

(I6.20')

which was derived in Sec. VI of paper I for the high-
speed axisymmetric black-hole collision. Here ap(r/(((, )

and az(r/p) are the first two coefficients in the sin 8 ex-
pansion for the news function on angular scales of order 1

in the center-of-mass frame:

cp(r, 8)= g az„(r/p)sin "8+O(y ') .
n=0

(2.2)

The metric function c(~,8), whose retarded time deriva-
tive is the news function, has a corresponding expansion

In this section we insert the calculated values of the

relevant quantities into the mass-loss formula in the limit

g~ Qo;

ms„„=—f [ap(r/p)] dr

+ f [4az(r/p) ap(r!p)—]dr+ o(1)

bz„(x)=p f az„(y)dy+const .

Hence

(2.4)

ms„,)
= + [4bz(r/p) bp(—

rip�)]

i „+o(1), (2.5)

where, again, the o(1) correction denotes a term tending
to zero as y ~ Oo. For convenience, as will be seen short-
ly, we have left bz and bp in the combination (4bz —bp),
although it was shown in Sec. VI of paper I that
b p I — —2p.

In the boosted frame we have computed d' '+e', as
described in paper II, from which the notation is taken,
where

Q
(2) —r 2 sin28( D (2) +E(2)

)

d(2)+~(2)=r sin 8
g p

(2.6)

(here r is the radial coordinate}. As described in Sec.
VIII of paper II, it is assumed that the (lnr)/r part of the
transverse second-order metric perturbations has been
subtracted off by a gauge transformation, before
(d' '+e' ') is evaluated. By (d' '+e' ') we mean simply
the remaining order-1 part of this quantity as rheo.
Since c = ,'lim„—„—(h&&lr sin 8) (in a Bondi gauge), the
e term in c in the boosted frame is [using Eq. (II6.26)]

ve 0 8c' '= — — tan —sec —[d' '(g)+e' '(g')], (2.7)v'2 2 2

where

g=(r/v)sec (8/2) —8 ln +8 ln8 —8 .2 2 tan8/2

Further, as explained in Secs. VI and VIII of aper II, we
choose the supertranslation state so that d' (g)+e' '(g)
contains no In~ /~ term in an expansion about /=0. Using
Eqs. (I4.24), (I5.3) and c =c /E, where K (8 }= cosha+ sinha cos8 (see Ref. [3]),it is easy to show that
bp(r/p)+bz(r/p) sin 8 transforms to

c(~,8)= g bz„(r/p) sin "8
n=0

+ time-independent terms+ 0(y
' ), (2.3}

where clearly

e sec —bo —sec —+e tan —sec —4b2 —sec ——bo —sec ———sec —
ho

—scc-—a 20 T 2~ —3a 2~ 2~ T 20 T 2~ T 20 r T 2~
2 v 2 2 2 v 2 v 2 v 2 v 2

(2.8)

in the boosted frame. Hence
T

4b2 —sec ——b
20

v 2
28—sec-

v 2
2~ T 2~ +e (2) T 2~ (2) T 2——sec —b' —sec —= — — d' ' —sec —+e' ' —sec-

v 2 v 2 v'2 v 2 v 2
(2.9)
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Note also, following the remarks above, that this implies
that b2(rip) contains no in~a/IM~ term in an expansion
about ~=0. Therefore

'T 7
4b ——b

p p

(d(2I+~(2)) R„(ln )

nn=1
(2.11)

as g~ oo, where the R„are polynomials. Terms of this
form appear in the first-order news function, as one can
check by a detailed asymptotic analysis of the integral ex-
pression (I4.22) for ao(r/Iu), there denoted by Ho(r/p, ).
One can reasonably expect them here too, in which case
lim „(d' '+e' ') =I~. We have only computed
d' +e' ' out to /=49. 5, since, as explained in Sec. IX of
paper II, it is not possible to go to larger values of g be-
cause there are large cancellations between the source
and surface term contributions to d' '+e' '. In fact the

(2)source and surface contributions to d' '+e' ' separately
have parts which grow exponentially at late retarded
times, at rates exp(lw/Sp) for suitable integer 1. In the
case of the surface contribution, these arise from the ex-
ponential growth of the initial data for the second-order
metric perturbations at large negative coordinate v on the
characteristic initial surface u =0 (the strong shock 1).
This late-time growth of the characteristic initial data is
responsible for the singular nature of the perturbation
theory for this space-time, as discussed at the end of Sec.
III of paper I; in particular, see Eq. (I3.27). The very ac-
curate numerical cancellation between the source and
surface contributions [as seen in Figs. 1(a) and 1(b)] leads
one to expect the late-time behavior of Eq. (2.11) for
d' '+e' '. To determine ~ accurately, we must do a
least-squares fit of the form (2.11) to the computed
d '+e . However, because there is no way of telling
which terms are actually present in Eq. (2.11), this
method proves incapable of determining x very accurate-
ly. We find ~= —6.3, with an estimated error of 5%.

Fortunately, a rough estimate is quite sufficient for our
needs. Since the change in d' '+e' in going from (=25
to (=50 will be of roughly the same magnitude as in go-
ing from /=50 to g= ~, inspection of Fig. 1(b) shows
that a will certainly be less than —4&2. Hence

QG

A

4b2 ——bo (2.12)
P P

)4p,

and substituting this into Eq. (2.5) we find

m f,„,) )3.5p . (2.13)

—[d (g)+e (g)]l" (2.10)v'2

As g—+ —co,d' '+e' '~0. This may be verified by
noting that the integration region in the source integral
(II5.20) tends to zero as g~ —ao. Inspection of (II5.19)
shows that the contribution from the surface term is also
zero in this limit. The asymptotic behavior of d' '+e' '

for large positive g is shown in Figs. 1(a) and l(b). It is
expected to be of the form

Thus Eq. (2.1) predicts that the final mass will be consid-
erably greater than the initial energy 2p. This result can-
not, of course, be correct —energy must be conserved-
and therefore one (or more) of the assumptions that went
into the derivation of Eq. (2.1) must be wrong.

The first of those assumptions was that the final mass
aspect of the system is isotropic. This enabled us to re-
place M ( ac, 8) by m„„„onthe left-hand side of Eq. (I6.9)
and in all the equations derived from it, such as Eq. (2.1).
This assumption seems very reasonable. If cosmic cen-
sorship holds, the event horizon that is formed in the col-
lision cannot bifurcate [5], and hence there must be a
connected "object," symmetrical about the equator
8=~/2 in the center-of-mass frame, at the center of the
space-time, which is bounded by a horizon that always
has an area greater than 32~@, the area of the apparent
horizon found by Penrose [6] (as mentioned in Sec. I of
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FIG. 1. (a) and (b} The asymptotic second-order metric func-

tion d (g)+e'2'(g) is shown for moderately large values of (,
where p( is a measure of retarded time. Numerical problems
prevented its accurate evaluation for larger values of g. The

~(2) (2)
limiting value of d {g)+e (() as gazoo yields —(&2/p)
times the change in the quantity [4b~(w/p) bo(~/p)] from ear-—
ly to late retarded times, and hence leads to an expression for
the final mass in Eq. (2.5), following the assumptions of the new

mass-loss formula.
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paper I). This object should shed its nonspherical pertur-
bations and decay to a Schwarzschild geometry. Assum-
ing all this to be true, the only way the final mass aspect
can be nonisotropic is for there to be other bodies
present, and they must be moving relative to the center-
of-mass frame. For example, in addition to the central
black hole, one could (just) envisage two small black
holes being formed by the focusing of the incoming
waves, which might then fly off in opposite directions
along the axis of symmetry, thereby concentrating the
inass aspect around this axis, so that
M(r= ~,8=0,m ) )ms„». But this seems very unlikely,
since any focusing that is strong enough to produce hor-
izons should take place within the central trapped region.

Second, we assumed that each Q2„(F,Q), in the asymp-
totic expansion (1.2) for the news function at angles
8=y P close to the axis in the large finite-y collision,
tends to a limiting form given by az„(w/p) as f +~. I—n
other words, the radiation pattern in the high-speed col-
lision tends to that produced by the speed-of-light col-
lision as y~ Oo. This seems intuitively obvious, has been
explicitly shown for n =0, by combining the arguments
of Ref. [4] and of the end of Sec. IV of paper I, and we
see no reason to doubt it.

Instead, the reason for the nonphysical answer in Eq.
(2.13) is probably that at late times, close to the axis of
symmetry, there is another burst of radiation, making an
additional contribution to the integral f pc( rg)dr,
which when substituted into Eq. (I6.9) will modify Eq.
(2.1) and bring ms„» down to some sensible value below
2p. In other words, we are suggesting that c(r, f) will
not in fact satisfy the "uniformity" condition (I6.12)
which, we recall, had to be assumed in order to derive
Eq. (2.1).

One can see how this might happen. At both finite and
infinite y one uses perturbation theory to calculate the ra-
diation in the neighborhood of the axis of symmetry (in
the center-of-mass frame) produced by the focusing of the
far fields (where p))p) of the incident shock waves as
they pass through each other during the collision, and
one then matches out to larger angular scales. But if one
is close to the axis 6=0,m, as is necessary when doing
perturbation theory, then one must wait a long time after
the peak of the first burst of radiation has come by before
one can see nonzero initial data at p-p (see Figs. 2 and 3
in paper I). The effectiveness of perturbation theory is
due to this delay by an amount proportional to ln(po),
where (po} =(xo) +(yo) gives the distance from the
axis at the moment when the shocks collide, as described
in Secs. I and II of paper I. This gives the far field of
each shock a large head start over its near-field counter-
part, enabling one to study its essentiaHy wavelike self-
interaction without having to concern oneself with the
details of the highly nonlinear region at the center of the
space-time. And yet it is in this nonlinear region where
the shocks come through each other at p-p, and in
which we expect a black hole to be formed, that addition-
al radiation might be produced. This central black hole
would certainly not be formed "cleanly, " and could shed
its nonspherical perturbations only by emitting gravita-
tional waves.

Using the parametric representation (I3.20) for the
weak shock, it is easy to show that in the speed-of-light
collision in the center-of-mass frame the two bursts
would be separated by a time interval
b,r=8pln[p/2 tan(8/2)] when 8«1. In the finite-y
collision the time delay A~ has the same form so long as
y '«8«1, but when 8 becomes of 0(y ') it flattens
off to a value hr=8pln(y/p) (i.e., h~ F+~ as 8~0),
reflecting the fact that the radiation has detailed angular
structure in this region. Since h~ is large, one would ex-
pect the "influence" of the second burst on the first to be
small. However, the series (1.1) and (1.2) provide exact or
asymptotic descriptions of their respective space-time
metrics in the vicinity of the first burst of radiation. One
would expect to be able to find traces of any second burst
somewhere in these series. We shall demonstrate this for
the speed-of-light collision; there is a completely analo-
gous argument at finite y.

Suppose that the supertranslation state in the speed-
of-light collision is such that the first burst is centered
around

2 tan8/2r=8p ln
p

when 8 is small. [We are therefore keeping the logarith-
mic term which appears quite naturally in the argument
of the news function in Sec. IV of paper I; see, in particu-
lar, Eq. (I4.26) and lines following. ] From the discussion
in the previous paragraph it is clear that the second burst
would be centered near ~=0. Let us restrict attention to
angles 6t&(1. One might, at first sight, guess that the
fall-off of the news function as one moves back in time,
away from the center of the second burst, is given by an
asymptotic expansion of a type similar to Eq. (2.11), go-
ing as

8;[ln( —r/p ) ]
sin 8

i=1 or2

+analogous terms proportional

to sin 8, sin 8, . . . , (2. 14)

where each R,- is polynomial. [There will be no sin 8
term in the second burst: it is only the very special focus-
ing of the far fields of the incoming shocks that causes the
ao sin 8 term in Eq. (1.1).] Define u by

2 tanO/2
u =~—8pln

p

and note that the right-hand side (RHS) of Eq. (1.1) has
the form g„oa2„(u /p) sin "8 in the supertranslation
state we have chosen. Then expressing (2.14} in terms of
u we obtain
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sin 0
i=1 or 2

R 1
u

1
2 tanO/2

u
1

2 tan0/2—+Sin
+ analogous terms proportional to sin 0, sin 0, . . . (2.15)

If we now fix u and let 8~0 then all the resulting terms in Eq. (2.15) should appear in Eq. (1.1) (with ~ replaced by u),
since perturbation theory is certainly valid in this limit. The first term in Eq. (2.15) becomes

sin

R; ln( —S tan8/2)Q,
Sp ln( tan8/2)

[S ln( tan8/2)]'
u +const

Sp ln( tan8/2)
(2.16}

sin 8+ A.ej' "+ analogous terms proportional
j=l

to sin O, sin 0, . . . , (2.17}

where the A are constants. The particular form of the
exponentials in Eq. (2.17) can be seen as follows to be
necessary. First, note that tan(8/2) can be expressed as a
power series in sin8, as tan(8/2}= sin8+k OBk sin "8.
Hence the first term in Eq. (2.17), which can be written as
sin 8+1",Aje~" "(p ' tan(8/2)) ~, can be rewritten as

Qo 00 2J

sin 8 g A ej"~ "sin J8 p
' g Bk sin "8 . (2.1S)

j=1 k=0

This matches with the form (1.1) of the radiation, as
viewed relative to the first burst using retarded coordi-
nate u, as u ~~. Indeed, only the particular exponential
fall-oF of Eq. (2.17) as r~ —~ will "unscramble" the
logarithmic time delay Spln[p/2 tan(8/2)] between the
two bursts, so as to give an expression such as Eq. (2.1S)
in a power series in sin 8. Exactly the same applies to the
terms in Eq. (2.17) with higher powers of sin28.

In sumInary, we are led to conclude that the presence
of a second burst of radiation will be indicated by ex-
ponentially growing terms at late times in the az„(u /p)
in Eq. (1.1) (with 8 replaced by u) beginning at third, or
perhaps some higher, order. [We recall that there were
such terms in the source and surface contributions to
a 2 ( u /p) which fortunately canceled. ] The important
point is that the second burst cannot be detected directly

where Q; and V; are appropriate convergent power series.
This certainly does not match with the sin 0 expansion
(1.1) (again with ~ replaced by u) for the news function,
and therefore the second burst cannot have a tail with an
inverse power-law decay, as described by Eq. (2.14).

%e must instead find a suitable form for the behavior
of the news function at times early compared to the
second burst, but late compared to the first burst. The
form Spln[p, /2tan(8/2)] of the time-delay between the
first and second bursts, together with the property (1.1)
that the radiation admits a convergent series expansion in
powers of sin 8, shows that the news function, at times
early compared to the second burst, should have the
~~ —~ fall-off

at either first or second order in perturbation theory; only
indirectly through Eq. (2.1) and an examination of the as-
sumptions under which it holds.

As mentioned above, a similar analysis may be done for
the finite-y collision, leading to an identical result for the
perturbation expansion (1.2) in powers of y ~: that the
imprints of the second burst will be exponentially grow-
ing terms beginning at third [Q4(F, Q)], or some higher,
order. This does, we feel, provide a satisfactory explana-
tion of the unphysical result in Eq. (2.13), since if the
Qz„(F,l() contain exponentially growing terms then Eq.
(I6.12) will be violated, and so the chain of reasoning
leading to Eq. (2.13}will be broken.

To find the true loss of mass (assuming final isotropy) it
would only be necessary to compute the time integral of
the coefficient of sin 8 in the news function describing the
second burst. This would, presumably, make a negative
contribution to Eq. (I6.9), thus modifying Eq. (2.1), and
lead to a sensible value for rn&„,&. However, since no per-
turbation theory will be able to describe the strong-field
region from which the second burst emanates, the task of
calculating the complete sin 8 term is rather formidable.

As already outlined in this section, the time delay in
the speed-of-light collision between the centers of the two
bursts will be

2 tan8/2b~= 8p ln
p

when 8 is small. At finite y the form of the time delay
will be 67 = Sp 1n(y/p, ) if 8 is O(y '), and
br=Sp[lny —In(g/p)] when g ' and y 'P are o(1)
(i.e., in the matching region where y «8«1). This
means that the "two" bursts of radiation will be truly
separate only in the limit 0~0 in the speed-of-light co1-
lision, and for y~ oo with 8=o(1) in the "finite"-y col-
lision. Away from the axis of symmetry they will merge,
and cannot be thought of as physically distinct. So long
as Eq. (1.1} is convergent it should provide the exact
speed-of-light news function —even if the perturbation
theory has broken down near the initial surface to the
past of the point in question.

Because of the possible exponentially growing terms in
a~(u/p), a6(u lp), . . . , one might doubt whether the
series (1.1) for the speed-of-light news function (with r re-
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placed by u) could converge at late retarded times u.
However, at least if one considers the time-integrated
quantity c(u, 8), which is expected to be a continuous
function for 0 8 m, symmetrical about 8=m/2', then
by the Stone-Weierstrass theorem [7] it will admit the
convergent expansion

4V2 dg
[d' )(g)+e' '(g)+ —,'e, (g)

Therefore a2(r!p), the coefftcient of sin 8 in Eq. (2.2) or
Eq. (1.1), is

'T

Q2
p

c(u, 8)= g b2„(u /p) sin "8
n=0

(2.19) +-,'6'l (4) l (3.5)

as a power series in sin 8. The analogous expansion
should also hold for the function c when regarded as a
function of ~ and 8, where the retarded-time coordinates

and u are related by the supertranslation
u =r 8pl—n[2tan(8l2)lp]. Thus

c(u =r —8p in[2 tan(8/2)/p], 8)

III. THE SECOND-ORDER NEVVS FUNCTION

In this section, we return to the convention that the su-
pertranslation state is such that the radiation is centered
on the retarded time v =0.

From Eq. (2.9) we have
T r r

4b p d(2) r + (2) r +2
b

r

&2
p p p

(3.1)

where the b2„are the functions appearing in Eq. (2.3).
Using Eqs. (II6.29) and (2.8), we see that

—2 sec —bo —sec —= —sec —e, —sec—28 r g8 p, p8 r ~8
2 v 2 v2 2 ' v 2

(3.2)

= g D2„(r/p) sin "8, (2.20)
n=0

where the b2„and D2„are of course different functions.
It is only the simultaneous validity of Eqs. (2.19} and
(2.20), for this particular supertranslation, which is
powerful enough to lead us to the form (2.17) of the
early-r expansion of cp(r 8).

n

E„ ln-
p

'2

+F„ ln —+6„. (3.6)

Q ~

-2

The function we have computed, at a number of
discrete values of je, is d' '+e' ', and so to calculate
a2(r/p) we shall have to do some numerical
differentiation. A graph of the computed
d '(g)+e' '(g}+—,'[e, (g)+geI(g)] is shown in Fig. 2. It
has two stationary points, in contrast with the 6rst-order
metric function e, (g'}, shown in Fig. 3, which has only

~(2)one. We cannot compute d' '+e' ' or e& too close to the
singular point /=0, and so there is a gap there.

In each region g (0 and g & 0, we interpolate
d' '(g)+e' '(g)+ —,'[e, (g)+pe', (g)] using the cubic spline
that passes exactly through all the data points (a cubic
spline is a C' ' function made up of cubic polynomial seg-
ments). It is the continuity of its derivatives that is the
great advantage of the spline here; in addition it does not
develop nasty fluctuations between data points near the
end points of the region of interpolation, as ordinary po-
lynomial interpolants are apt to do (for the unpleasant
things that can happen with polynomials, see Ref. [8]).
To check the accuracy of interpolation, we compare each
of our splines with another that has only 2/3 as many cu-
bic segments (this second spline is a best least-squares fit,
since it cannot pass exactly through all the data points).
The maximum difference between the pairs of splines is
about 5X10, giving a conservative estimate for the
true accuracy of interpolation.

To find a2(r/p) we differentiate the spline interpolant
and divide by —4&2. The result of this is shown in Fig.
4. The singularity at ~=0 is of the form

The function et(g) was defined in Eq. (II6.11), and from
Eq. (II6.10) has the explicit form

8v'Z
e, (g}= f f dx dP'x cosP'

0 0

X8(8 inx+g+8+8x cosP') —4&2,

(3.3)

le
Q
+

lEP

~N

+

«Q)
+

«~

-6

'T
b

p 4v'Z
P [d( )(g)+e( )(g)+ l e

+-,'Ie t(C}lip=;,„. (3.4)

where we have used the gauge conditions (II6.18). Hence
bo(rip) = (p/&22)e

~
(r/p) a—nd

-18

FIG. 2. The asymptotic metric function

d (g)+e (g)+ —,'[geI(g)+e, (g)] is shown. Its g derivative,

evaluated at /=rip, gives —4&2az(r/p), where the news func-

tion is given by co(r, 8)=g„" oa2„(r/p) sin "8+0(y '). There

is a gap in the computational results near the singular point
=0.
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FIG. 3. The asymptotic metric function e, (g), whose
derivative, evaluated at /=rip, gives,

—2&2ao(r/p) The. re is

again a gap in the computational results near the singular point
=0.

0.1

0.0
Tiy4 3rry4

I [ao(x)] dx =0.500,

ao x a2 x dx = —0.586,

a2 x dx = 1. 14 .

(3.8}

Therefore, if the news function were

Using the conventional formula for the energy emitted
in gravitational radiation [3],

Am =
—,
' f I (co ) sin8d r d 0, (3.7)

we can derive an estimate for the mass loss, assuming
that the total news function is given only by
ao(r/p)+a~(rip) sin 8. From the computed ao(rip)
and az(r/p, ) we find

FIG. 5. The energy dE/d 0 (in units of p/4m) which would
be radiated per unit solid angle, if the news function had the
truncated form co(~, t9) =ao(~/p)+ a2(~/p) sin'0.

or about 16.4% of the initial energy (this may be com-
pared with the 25% one obtains when using just the iso-
tropic term). The angular dependence of dE/d Q, the en-

ergy radiated per unit solid angle, for the news function
(3.9) is shown in Fig. 5. It is interesting to note that the
magnitude of dE/dQ is never greater than its isotropic
part (I/4n )f "„[ao(r/p)] d~.

Of course this estimate must be taken with several
grains of salt, since we have truncated the series (1.1}. It
is nevertheless useful as an order-of-magnitude estimate.

IV. DISCUSSION

sin t9,co=ao —+a2
p

then the mass loss would be

(3.9)

Am =— ao —+a& — sin 0
2 —oo 0 p p

X sin9 d ~ d 0=0.328p (3.10)

0.4

0.2

a,. (T 'lt)

0..0

-0.2

-0.4

-0.8

—1.0
I

-30 -18 -12

FIG. 4. The contribution a 2 ( r/p ) to the series

c (r, 0)o=g„" oa2„(r/p) sin "0 for the speed-of-light news func-

tion.

In previous papers [4,9—11] on high-speed black-hole
collisions, both at finite and infinite y, it has been tacitly
assumed that the product of the collision is a single black
hole plus out-going gravitational radiation, where the
burst of radiation is that produced by the focusing of the
far fields of the colliding holes- and its continuation to
larger angular scales. If this were the case, then by solv-

ing the perturbation theory to all orders one could deter-
mine the entire news function.

Using the mass-loss formula (2.1), or Eq. (I6.9) from
which it was derived, we have shown that the true picture
is not so simple. %e have argued that there will be an ad-
ditional burst of radiation produced during the decay to
equilibrium (i.e., Schwarzschild) of the central black hole
formed by the collision, and that this will be manifested
by the appearance at high orders in perturbation theory
of terms growing exponentially with time. The two
bursts are truly separate only in the limit 0~0 or ~,
merging together away from this axis. Because of this,
and because the "second" burst cannot be treated using
perturbation theory, originating as it does in a highly
nonlinear part of the space-time, we cannot calculate the
news function away from the axis of symmetry, except at
early times. The expressions that have been derived for
the news function, by previous authors and in this series
of paper, are only valid either in the vicinity of the first
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burst close to the axis of symmetry, or at early times
away from this axis.

It is likely that further analytical progress on this prob-
lem will be limited. Computational limitations will

prevent higher-order calculations in perturbation
theory —and there is little point in attempting them, at
least within the framework presented here. The speed-
of-light space-times are algebraically general [9] (as are
those at finite y), and given the complexity of just the
news function one certainly cannot expect to find an ex-

act solution. The combined analytical-numerical ap-
proach used here must be regarded as complementary to
the numerical construction of these speed-of-light space-
times [12].
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