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This paper describes analytical simplifications which make feasible the numerical calculation of the

second-order news function, which gives partial information about the angular distribution of gravita-

tional radiation emitted in the axisymmetrie collision of two black holes at the speed of light. In the

preceding paper, paper I, the curved radiative region of the space-time, produced after the collision of
the two incoming plane-fronted shock waves, was treated using perturbation theory by making a large

Lorentz boost to a frame in which a weak shock of energy A, scatters off a strong shock of energy v &&A,.
Calculations of gravitational radiation at first, second, . . . order in {A,/v) translate, when boosted back

to the center-of-mass frame, into calculations of the coefficients ao(v/p), a2(~/p), . . . in the convergent

series expansion co(r", 8)=g„" Oaq„(r/ts)sin "8 expected for the news function co, where ~ is a retarded

time coordinate, 8 is the angle from the symmetry axis, and p is the energy of each incoming black hole

in the center-of-mass frame. In paper I, a p(7 /p) was computed and az(f/p} was obtained as an integral

expression too complicated to be tractable numerically. In the present paper a simpler expression for

a2(~/p) is derived, using the property that the perturbative field equations may all be reduced to equa-

tions in only two independent variables, because of a conforma1 symmetry at each order in perturbation

theory. The Green's function for the perturbative field equations is found by reduction from the retard-

ed Hat-space Green s function in four dimensions, leading to expressions in terms of two variables for the

second-order radiative metric components. From these, a2(w/rm) ean be extracted after removing, by a

gauge transformation, the (lnr)/r terms present in the second-order metric in the harmonic gauge used

here (r being a radial coordinate). Numerical results are presented in the following paper, paper III,
which discusses the implications for the energy emitted and the nature of the radiative space-time.

PACS number(s): 04.30.+x, 97.60.Lf

I. INTRODUCTION

This is the second in a series of three papers concerned
with gravitational radiation emitted in the axisymmetric
collision of two black holes at the speed of light. The
preceding paper, paper I [1],was concerned with describ-
ing the problem and with setting up an analytical treat-
ment using a perturbation approach. The present paper
describes analytical simplifications which make feasible
the numerical calculation of the second-order news func-
tion, which gives partial information about the angular
distribution of gravitational radiation. Results and con-
clusions concerning the radiation emitted and consequent
mass loss are presented in the following paper, paper III
[2].

In paper I the axisymmetric collision of two black
holes traveling at the speed of light, each described in the
center-of-mass frame before the collision by an impulsive
plane-fronted shock wave with energy p, was investigated
in a new frame to which a large Lorentz boost had been
applied. There the energy v= pe of the incoming shock
1, which initially lies on the hyperplane z + t =0 between
two portions of Minkowski space, obeys v)&A, , where
A, =pe is the energy of the incoming shock 2, which in-
itially lies on the hypersurface z —t =0. In the boosted

frame, to the future of the strong shock 1, the metric
possesses the perturbation expansion

00

g,b-v' v],b+ g — h, b
(i)

(I3.18')

with respect to suitable coordinates, where g,& is the
Minkowski metric. The problem of solving the Einstein
field equations becomes a (singular) perturbation problem
of finding h,'&'h,'&', . . . by successively solving the linear-
ized field equations at first, second, . . . order in A, /v,
given characteristic initial data on the surface u =0 just
to the future of the strong shock 1.

On boosting back to the center-of-mass frame, one
finds that the perturbation series (1.1) gives an accurate
description of the space-time geometry in the region in
which gravitational radiation propagates at small angles
away from the forward symmetry axis 0=0. By
reflection symmetry, an analogous series also give a good
description near the backward axis 0=m.. The news func-
tion [3] co(~, 8), which describes the gravitational radia-
tion arriving at future null in6nity J in the center-of-
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mass frame, is expected to have the convergent series ex-
pansion

cu(~, 8)= g a2„(7/p)sin "8,
n=0

(1.2)

(I1.3')

where r is a suitable retarded time coordinate. [The
series of Eq. (I.13) has been modified here by making the
replacement a2„(r)~a&„(rip), since r will always ap-
pear as an argument in the dimensionless combination
(r/p) (see Sec. V of paper I).] The first-order perturba-
tion calculation of h,'b' in Sec. IV of paper I, on boosting
back to the center-of-mass frame, yielded ao(r/p), in

agreement with the expression found in Ref. [4] by study-
ing the collision of two black holes at large but finite in-
coming Lorentz factor y. This is such that, if the radia-
tion were isotropic [i.e., if ai„(~/p) were zero for n 1],
25% of the initial energy 2p would be emitted in gravita-
tional waves. The second-order calculation of h,'b' in Sec.
V of paper I, on boosting back to the center-of-mass
frame, gave an integral expression for the next coeScient
a2(rip) which unfortunately was so complicated as to be
intractable numerically. In the present paper we shall
show how the calculation of a2(r/p) can be simplified
analytically so as to enable us to compute this function
numerically. As was shown in Sec. VI of paper I, if all
the gravitational radiation in the space-time is (in a cer
tain precise sense) accurately described by Eq. (1.2), then
the mass of the (assumed) final static Schwarzschild black
hole remaining after the collision can be determined from
knowledge only of ao(~/p) and a2(r/p) Further, . Pen-
rose [5] has found an apparent horizon on the union of
the two nu11 planes on which the incoming shocks lie; if
the cosmic censorship hypothesis [6] is correct, this gives
a lower bound of &2p for the energy of the final black
hole (or holes). The computation of a2(alp) is thus
linked to an interesting test of cosmic censorship.

In Sec. II of this paper we begin the process of finding
a simpler form for a2(r/p) by noting that, because of a
conformal symmetry at each order in perturbation
theory, the field equations obeyed by the metric perturba-
tions h,'&', h,'P, . . . in Eq. (1.1) may all be reduced to
equations in only two independent variables. The result-
ing reduced differential equations are studied in Sec. III;
the equations are shown to be hyperbolic, and their
characteristics are found. The retarded Green's function
for the reduced differential operator is found in Sec. IV
by reduction from the retarded Hat-space Green's func-
tion in four dimensions. This allows the transverse com-
ponents of the second-order metric perturbation h,'b'

[from which az(w/p) can be found] to be expressed in
two-dimensional form (Sec. V). The resulting integral ex-
pressions are considerably simpler than those found from
a four-dimensional approach in Sec. V of paper I, thus
making feasible the numerical computation of a~(rip),
of which the results will be presented in paper III ~

In order to extract a2(w/p) from the metric perturba-
tions, one has to deal with certain terms introduced in the
metric as a result of the choice of the harmonic gauge,

employed in the calculation of h,'b' and h,'b'. As is well
known [7], this gauge leads to the appearance of (Inr)/r
terms in the metric tensor at second and higher orders in
perturbation theory, where r is a radial coordinate. In
Sec. VI of this paper we calculate the (1nr)/r term in the
transverse part of h,'b', and show how to eliminate this
term by finding an explicit coordinate transformation to a
Bondi coordinate system [3] at first order in perturbation
theory. In Sec. VII we show that, while the construction
of this coordinate transformation can be carried on to
second order, knowledge of the full second-order gauge
transformation is not needed in order to calculate the
second-order news function, which describes the gravita-
tional radiation at this order. Section VIII discusses the
ambiguity in the second-order news function caused by
the freedom to make supertranslations [3]; use of this
freedom is in fact essential in order to put the news func-
tion in a form which is square integrable at each order in
perturbation theory. (The complete news function must
be square-integrable, in order that the mass loss in gravi-
tational waves be finite. ) Some comments are included in
Sec. IX.

II. REDUCTION TO T%'O DIMENSIONS

ds =du du+[I+4pu8(u)p ] dp

2[1 4 ~8(~ )
—2)2d~2 (2.1)

(I2.4')

where 8(u ) is the Heaviside step function. On using the
discontinuous coordinate transformation

x =x —4pu 8(u )xp

y =y —4pu 8(u )y p
(2.2)

u =u+gju8(u )lnp —16}M u8(u )p

(I2.3')

where x =pcosP, y=psinP, x=jcosg, y=psinP, this
may be put in the form

ds =du du+dx +dy —4pln(x +y )5(u)du (2.3)

describing an impulsive plane-fronted wave between two
portions of Minkowski space-time.

Let L denote the Lorentz transformation

~e shall now show that the (four-dimensional) field
equations satisfied by the metric perturbations
h,'b', h,'b', . . . in Eq (1.1). may all be reduced to two-
dimensional form.

Consider the C form of the infinitely boosted black
hole metric:
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(u, u, p, iI})
L

:(u', v', p, it' )=(e ~u, e~v, p, P) (2.4) (u, v, p, iI})
e

:(u', u', ,P')=(e u, e v, e p, P) .

(2.5)
[using Eq. (2.2) it can be shown that L is a Lorentz trans-
formation, even though the careted coordinates are not
Minkowskian in u )0], and let C denote the conformal
transformation

Then under CL,

(u, v, p, P}
and

:(u', u', p, P') =(e ~u, v, e ~p, P) (2.6}

du dv+ [1+4pu8(u )p ] dp +p [1 4—pu 8(u )p 2]d$2
CL

:e ~Idu 'du '+[1+4)Mu '8(u ')p ] dp +p [1—4pu'8(u')p ] d$2] . (2.7)

Thus the transformation CL is a conforrnal symmetry of (2.1}. (This is easy to understand physically: the Lorentz
transformation L increases the apparent energy of the wave from p to pe~; but this energy provides the only length
scale present in the metric. If, therefore, using C, we scale down all lengths by a factor e~, then the apparent energy of
the wave is reduced to )Lb again. ) For a wave traveling in the opposite direction the effect of CL is

du dv+[1 —4pv8( —v)p ] dp +p [1 +4@v 8( u)p —] dP
CL

=e ~Idu'du'+[1 4pe—~u'8( —v')p ] dp +p [1+4Ibe ~v'8( —u')p ] dp ] .

(I3.5')

Let us denote by g,b (v, A, ,J) this explicit form (2.9) of the
precollision metric in the boosted frame [X'—= (u, u, p, P)].
From Eqs. (2.7) and (2.8), we see that g,b(v, A, ,X') (and
hence also the initial data on u =0+ ) transforms as

CL

g.b(v, X,X'):e'1'g.b(v, Xe '~, X"') (2.10)

under CL. The map CL has a natural continuation into
the region in u )0 where the weak shock appears a small
perturbation to the Hat background of the strong shock:
namely, (2.6) with the coordinates being those of the
strong shock background. In the uncareted coordinate
system, which is related to the careted system through
Eq. (2.2) with )M replaced by v, the metric possesses the
perturbation expansion (1.1):

Now consider the axisymmetric collision of two such
waves, viewed in the "boosted frame" in which the waves
have energies v=pe and A, =pe, and in which the
precollision metric is given by

ds =du du+[1+4uu8(u)p ] dp

+[—8A,u8( —u)P +16k, u 8( v)p ]d—p

+ [1—4uu8( ) ] dP

+ 2[8Au8( —u) +16k, u 8( —u)p ]dP

(2.9)

solely by the initial data on u =0+, and since this initial
data transforms as (2.10), the effect of CL on (2.11) is

v rl, b + g — h,'b'(X)

Xe
=e ~v rl~b+ g h,'b'(X')

(where the explicit forms of the h,'b' are identical in the
two expansions). Hence the transformation CL does not
e6'ect the intrinsic nature of the perturbation problem: it
merely alters the value of the perturbation parameter. In
other words, the space-time possesses a conformal sym-
metry at each order in perturbation theory:

CL

(2.12)

h.'b'(X) 2(i —1)Ph (i)(X~ )
CL

(2.13)

(where of course, X =X').
We can use Eq. (2.13) to determine something of the

behavior of the h,'I,'(X) From Eq. (2..6) we deduce

4p 3P
gib. fA) e gute. s gA)~ e gw ~uu uu up up

g ~~ =e g2P

(2.14)
gU e gU~p & gIv'v'I g

I
vv

I

Using the coordinate transformation of Eq. (2.2) with )M

replaced by v, we can show that identical relationships
hold between the uncareted coordinate systems:

g,b(X)-v rl,b+ g —h,'b(X)(i) (2.11) 4p 3P
guu guu gup gup ~

(The coordinates have been rendered dimensionless, us-
ing X~X/v [Eq. (13.11)], to obtain Eq. (2.11).) Since
the metric to the future of the strong shock is determined

e2P

, =eI'gv'p' gUp& g
I
v'v'I g

I
v v

I
~

(2.15}
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Combining Eq. (2.1S) with Eq. (2.13), we deduce

h "(X')= "+' h "(X)
QQ QQ

h"(X')= ' '+" h "(X)
Qp Qp

h" (X')=e 'h" (X) (2.16)

h ' (X')=e' ' "~h "(X)
VP Vp

h" (X')=e' ' ' h" (X)

From Eq. (2.6) we note that the values of v, up 2 and
({) are left unchanged by the map CI.. Using Eq. (2.2)
with p replaced by v we can show that the corresponding
combinations of uncareted coordinates that are left in-
variant by CL are

In an appropriate gauge the field equations for the h, b

are all of the form Gh,'b'=S,'b', where S,'b' is a function of
h,'b ', . . . , h,'b and their derivatives (S,'~" =0). Since
each h,'b' is of the form fn (q, r}p ", its corresponding S,'I,
must be of the form fn (q, r)p '"+ '. This indicates that
we can eliminate p from the field equations by separation
of variables, thereby reducing them to two-dimensional
di6'erential equations.

Let us now perform the reduction to two dimensions
explicitly, starting with the first-order perturbations h,'b'.

Consider the fiat-space wave equation

De-=2 a 0 + 1 a, 20 + 1 a'0 =0, (2 19)=
auaU pap pap p ap

= '

where the boundary condition is

r —= 8 ln( vp ) —&2u, q = u p (2.17) O=e™p"f[8 ln(up) —&2U ],
[where we have removed a factor of v from the coordi-
nates, as in Eq. (I3.11), and redefined u and U by
u =(1/&2)(z+t) and U =(I/&2)(z —t)]. The lines on
which q, r, and P are constant may be interpreted geome-
trically as the orbits of the conformal symmetry CL.

If we express each h,'I,' as h,'b'(q, r,p) (({) is ignorable)
then the only coordinate that changes in value when CL

is applied is p(p:p'=e ~p). Used in conjunction
with Eq. (2.16) this tells us that

h„'„'=fn(q, r)p

h (() —fn (q r)p (2i +()—

f(x) =0, Vx (0 (2.20)

[here m and n are integers and apart from the above re-
striction f (x) is arbitrary]. The field equations for h,'b'

are special cases of the general system (2.19) and (2.20).
We know from our preceding arguments that g must be
of the form e™p"X(q, r) in u ~0 [where q and r are
defined in Eq. (2.17)]. From Eq. (2.17) we find

a =1 a
au „& p2 aq

h « =fn(q, r)p
ttU

h,"=fn(q, r)p

h(~) fn(q r)p
—(2~ —2)—

(2.18)

u, u, y

a 2q a

q, r, y p q r, p, y
a

8

. q, p, ear

(2.21)
Thus each metric perturbation has a very simple depen-
dence on p. and therefore

a' 1 a a 1 a' 1 — a' a
2 +—

p +—, , =—, —2&Z + p
auaU p ap ap p ay ~& aqar ap

—2q +8 p
—2q +8 +a a a a a a'

aq ar ap aq ar

(2.22)

Thus y is the solution to

—2&2 + n —2q —+8
-a' a a

BqBr Bq Br
—n —2q +8

Bq Br
—m y=O, (2.23)

where the boundary condition is X ~ ()
=f (r )

Of course, for the homogeneous wave equation (2.19},
where the solution has the simple integral form given in
Eq. (14.5) [8,9], there is really no point in eliminating p
and P from the differential equation. However, consider
the field equation for any one of the higher-order metric

coefficients (i.e., h,'b', i ~ 2}. It is an inhomogeneous flat-

space wave equation

(2.24)Ug=S,
in which the source term is S =e™p'"+ 'H(q, r) [The.
boundary condition may be taken to be $~„0=0, since
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any contribution to the solution from nonzero boundary
conditions can be evaluated separately using Eq. (I4.5).]
In contrast with the homogeneous case, the benefits to be
gained by reducing Eq. (2.24) to

(2.25)

(where, of course, P=e' ~p "y} are not insignificant.
First, the geometrical configuration of the problem is
now much easier to visualize. Previously, to calculate the
solution at some space-time point P we would have had
to integrate the source term S (suitably weighted) over
the past nu11 cone of P. Now we need simply to integrate
the product of H and the Green's function for the
differential operator X „over some two-dimensional re-
gion in the (q, r) plane. This makes it much easier to esti-
mate the various contributions to the solution from
different parts of the integration region. Second, al-
though we must now find and calculate the Green's func-
tion for X „, it turns out that there is a considerable
computationa1 gain which makes the numerical calcula-
tion of the solution practicable, whereas before it would
have required a prohibitive amount of computer time.

III. THE REDUCED DIFFERENTIAL EQUATION

We shall now demonstrate that the di8'erential opera-
tor X „ is hyperbolic and find its characteristics. Define
new coordinates

(=g(q, r), g=rl(q, r) .

Now,

a'
2

a' a'
X~ „=—(2~2+32q) +4q +64 +

Bqar aq2 ar2

(3.1)

(3.2)

where the terms omitted are first and zeroth order in
a/aq and alar. We wish to choose g and g so that X
is transformed to normal hyperbolic form [10), in which

I. „=f(g, rl) +
B B2)

(3.3)

where the terms omitted are now of first and zeroth order
in B/Bg' and B/B21. Expressing X „ in terms of B/Bg
and B/Brl we find that

ag—(2&2+32q )
Bg

+ —(2~2+ 32q )
anal

Bq

r 2
ag +4q B4 +64 B4 a
Br Bq ar

2

+4q +64
Br Bq Br

+ —(2~2+ 32q )
ag
Bq

a& ag
Br Br

B2)

Bg'

, a
Bq

+1Z8
Bq Br

an a' +a, a,ag
+

(3.4)

—(2&2+ 32q )
Bq

BY/ +4 2 Bv)

Br Bq

In order that Eq. (3.3) be satisfied, we must have
2

'2

Bg 1+8&2q ++(1+16&2q)
Bc' z~zq2

and

ag
Br

(3.7)

+64 =0,
(3.5)

Bi) 1+8&zq —+(1+16'/zq)
Bq 2&2q2

B7I

Br
(3.8)

—(2&2+ 32q)
Bg

B4 +4 2 B4
Br Bq

2

where we have arbitrarily assigned the plus sign to g and
the minus sign to g. For ease of calculation we now
choose

+64 =0 .
Br

In other words, (Bg/Bq)/(Bg'/Br ) and (Bg/Bq)/(Bg/ar )
must be the two real roots of the quadratic equation

Bg'
1

B7)

Br '
Br

(3.9)

Solving Eqs. (3.7) and (3.8), subject to Eq. (3.9), we find

4q x —(2&2+ 32q)x +64=0 . (3.6) '}/(1+16&zq)—1

2
The discriminant of this quadratic is positive, so X „ is
hyperbolic, and its characteristic coordinates g and g
satisfy

8 —4
[+(I+ 16&zq}—1]

(3.10)
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and

+(1+16v'2q )+ 1g=r+8 ln
2

0=No

(po)'u= 1+—
4&2 po

(3.17)

+ 8 —4
[+(1+16&2q )+ 1]

(3.11)
k

v =4&2 ln(vpo) —2V'2 1+—
Po

Expressing Eq. (3.17) in terms of r and q one finds
where the constants of integration have been chosen for
future convenience. The characteristics of X „are the
two families of lines

g =const, t) =const . (3.12)

They play the usual role of limiting the speed of propaga-
tion of information, so that a point A cannot be
influenced by another point B, if B lies outside the region
bounded by the two past characteristics through A.

The explicit forms (3.10) and (3.11) for g and t) have
the following simple geometrical interpretations. In our
dimensionless coordinates ( u, U, p, P ), the null geodesic
generators of the weak shock have the parametric repre-
sentation (I3.20). That is,

1q= — —+1
4&2 po

k
r =8ln —+4

Po

Po

k

—+1k

Po

2

(3.18)

+(1+16' 2q) —1

2

8 —4=0 (3.19)
[+(1+16&2q )

—1]

Now by eliminating po/k from Eq. (3.18) it is easy to
show that

u =&2A,
16''ZA

U =4&2 ln(vpo)—
(po)'

8Ax =xo 1
(po)'

(3.13)

at the geodesic's intersection with S (here q )0).
Now consider a geodesic generator which originates at

p=po~ k, P=Po. A geodesic of this type will hit S be
fore passing through the caustic. By following a similar
argument to that of Eqs. (3.15)—(3.19) it is easy to show
that, at the point of intersection,

8A
y =yo

(po)'

(I3.20')

+(1+16&2q )+ 1

2

+ 8 —4=0,
[+(1+16&2q )+1]

(3.20)

where x and y are the usual Cartesian coordinates, so that
p=(x +y )' and A~O is an affine parameter along
each of the null geodesics. Let us now find the locus of
intersection of these null geodesics with a surface S of
constant p and P, on which

where again q )0.

p=k 4=4o . (3.14)

Consider a geodesic which comes through the collision
surface at p=po, P=ir+Po. This geodesic will pass
through the caustic at p=O before hitting S (P jumps
from sr+go at p=O to Po at p=O+). Hence, at its inter-
section with S,

8A
po

—1 =k,
(po)'

(3.15)

Solving for A we find

k Po( )'

Po
(3.16)

Substituting this into Eq. (3.13), we find that, at the point
of intersection,

FIG. 1. The curved shock 2 is depicted, as viewed from the

Minkowskian region III to its past, which lies above the incom-

ing plane shock 1 (u =0). The heavy black lines all lie in the

surface S(p=k, /=$0). The lines (=0 and t)=0 mark the in-

tersection of the null geodesic generators of shock 2 with S.
The generators are drawn bold on the near side of S, and dashed

on the far side.
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t s aced fro 'he fl

d ibdi SU in the manner es
will satisfy

EEN'S FUNCT ION
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f f f ~ f p~ 5[t t—, —Q(z —z, ) +P —2ppicos(4 —pi)+Pi]e'™p"G „(q,r;qo, ro)=
ul &o Q(z zi ) +p 2pp&cos($ Pi)+pi

Xe™!pi'"+ '5(qi —qo}5(r, r—o)p, dt, dz, dp, dg,

f f f oD f Q7/' 5[t t,——Q(z —z, ) +p —2pp, cosoi +p, j

u & o Q(z —z i ) +p
—2ppicosco+ pi

Xcos(mt')p, '"+"5(qi —qo)5(r, r—o)dt, dz, dp, d . (4.5)

n

CO g N CO
— g

00 i=1
(4.6)

In Eq. (4.5) let us first integrate over co. This involves
evaluating an integral of the form (4.6). For the particu-
lar case (4.5),

There is no sin(mco) term present in the second multiple
integral of Eq. (4.5) because such a term clearly integrates
to zero

If f (co) is a function with n simple zeros coi, . . . , co„,
then

cos(mco)

V (z zi) +p —2ppicosco+p,
(4.8)

As a convenient shorthand, and for reasons which will
become apparent, define cosQ& by

(z —z, ) +p +pi (t —t, )—
COSA' =

2PP&
(4.9)

If the space-time coordinates (t,z,p) and (ti,zi,pi) in Eq.
(4.9} are such that ~cosQi~ ) 1 then f(to) will have no
zero. On the other hand, if ~cosQi~ (1 then f (to) will
have zeros at

f (to) =t ti —Q—(z —zi } +p —2pp, cosco+pi

and

(4.7) co =+arccos(cosQ, ) .

We deduce that

(4.10)

„cos(m Q, )e' ~p "G „(q,r;q, r )= f f f . 8(1—~cosQil)pi '" ' 5(qi —qo)5(ri ro)dtidz, dpi, —
0 pp&sinQ &u) &0

(4.1 1)

where cos(mQ, ) and sinQ, are related to cosQ, through
the standard trigonometric formulae and 8(x) is the
Heaviside function, defined by

= p'
dt, dzi = dq, dr, .

2
(4.14)

1, x~0,
8' '=

0, (0. (4.12)

Integrating out the two remaining delta functions in Eq.
(4.11),we find

Now reexpressing cosQi, first in terms of (u, u, p) and
then (q, r,p), we find that

2(u —u, )(v —U, }+p +p,
cosQi =

2PPi

e'™p"G „(q,r;qo ro)

cos(m Qo)f . 8(1—~cosQo~ )pi "dp, ,
2 2mp o sin Qo

(4.15)

P pi
q

—
q&

P

where cosQo is defined as in Eq. (4.9), except that

(t„z„p,) is replaced by (to zo po) Making t.he substitu-
tion p& =yp in Eq. (4.15) we find that

X 81n (r ri } +— + ———P 1 P Pi

Pi 2 p& p
G „(q,r;qo, ro)= f . 8(1—~cose~ }

2&2+ 0 Sine

Also

(4.13)

where now

(4.16)
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cosa= [1+y —V2(q —
qoy )(81ny +r ro—) j .

1

(4.17)

One can show that G „does vanish outside the region
bounded by the past-directed characteristics through
(q, r}, as it should.

V. THE SECOND-ORDER TRANSVERSE METRIC
FUNCTIONS IN TWO-DIMENSIONAL FORM

Let

e = f f cos(2$')8(Arg) d(t)',
'ITq 0 0

b = f f cosP'e(Arg } dP',
7Tq 0 0 y

f f Argo(Arg) 3
d(t)',-q' ~ ~

' ' y'

where 8(x) is Heaviside's function and

Arg=/2q(81ny+r) (1+y —)+2y cosP' .

Also define d and e by

(5.3)

(5.4)

e=p E, b=p B, a=p A, (5.1) d' '=p D' ' e' '=p"E' 'e p (5.5)

where E, B and A are the first-order metric functions
defined by

h"'=0
uu ~ uU

/
())—

/
())—

(
2 /2)xx yy y + p

h"'=0 h"'=0
uU ~ vx (5.2)

hxy 2xyp E p h xp B

h„"'=0, h„'„"=yp 'B .

(I3.13')

When the first-order field equations are solved in har-
monic (de Donder) gauge, subject to the characteristic in-

itial data (I3.14) on u =0+, one finds from Eq. (I4.18) and
its obvious analogues for B and A that e, b, and a are
functions only of (q, r), given by

where D' ' and E' ' are the second-order transverse
metric functions introduced in Eq. (I5.16):

b (2) D(2)+ (
2 x 2) —2E(2)

XX 7

b(2) D(2)+(~2 2) —2E(2)
VV

b (2) 2xyp
—2E(2)

xy

(5.6)

(I5.16')

Here d' ' and e' ' are functions of q and r only. We recall
that the second-order news function in the boosted frame
is defined in terms of D' ' and E' ' through

2

co '= ——— lim ~r~ (D' '+E' '}, (5.7)
2 v (r( m dr

(I5.18')

once the spurious gauge terms contributing to this equa-
tion are eliminated by transforming to Bondi coordinates
(Secs. VI and VII}. In harmonic gauge, the second-order
metric functions D' ' and E' ' obey the inhomogeneous
flat-space wave equations (I5.19) and (I5.20). On reduc-
tion, these imply that

and

Xo 4d( ) =4~2be „+2v'2qbe ~„gv 2qbe —„„(b„) +2M'2qb —~e „—8&2e „b „—2&2e e „

+4e +4qee —16ee „—32qe se „+4q (e ) +64(e, ) =S(q, r)

X2 4e' '=2ae „„2&2be„+2&—2qbe ~
8&2be „„2—&2qe „b q—+8&2e „b „+(b„)

—12qee ~+32ee „4q ee ~~—+32qee „64ee „„=—T(q, r) .

(5.8)

(5.9)

From Eq. (I5.17) we find that the boundary conditions on
d' ' and e' ' are

d' '~~ 0=16r 8(r), e' '~ O=O . (5.10)

It is not difficult to show that the contribution to d' '

from this surface term is

d,'„,'( =
2 f f Arg8(Arg) dP',

mq

where Arg is as in Eq. (5.4).
The Green function for d' ' is, from Eq. (4.16),

(5.11)
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Gi(q r qo ro)= — J &(I —~cose~)
4fp

y sine

and that for e' ',

G„(q,r;q„ro}= 8(1—~cose~)
—1 cos(2e)dy

2 2ir SlnE

where, from Eq. (4.17},

(5.12)

(5.13)

1
g = r + 8 In(4V2q )

— —8+ O (q) .
&2q

(5.15)

Now let x =y/4&2q. Then when x, qo and ro are of or-
der 1 and r is very large,

1cose= [1+y —V2(q —
qoy )(81ny+r r—o)] .

(5.14)

We saw in Sec. III that to calculate the news function we
must take the field point (q, r) out to the region where r is
very large and ~(~ is of order 1 (and so q is small). Froin
the definition (3.10) for g we find

1
cos6 =

8&2qx
I+32q~x —v'2(q —32x q qo) 8lnx+ — +8+(—ro+O(q)

2q

16V2qox —(8 Inx+g ro+
—8)

+O(q), (5.16)

and thus

Gi = — — J e(1 —
Icosel ) g +O(q

—1 1 GX

2 2' (4 2q) & x sine

(5.17)

[Gi(q, ";qo,"0)S(qo,"o)

+Gii(q & qo " )OT'( qo&o)]dqod&0 (5 20)

to be added to this, where the source functions S and T
are defined in Eqs. (5.8) and (5.9).

1 1
()(1

~ ~ ~ )
cos(2e)dx

2&2m. (4&2q) o x sine

+O(q ), (5.18)

8lnx+ +8+8x cos '

~q o o

X 8(81nx +g+ 8+ 8x cosP') dx d
x

(5.19)

(plus irrelevant higher-order terms) to d' '+e' ~ when
r~~ with g constant. There is, of course, also the
source term

where cosa is equal to the first term on the right-hand
side of Eq. (5.16). We can in fact ignore the O(q )

terms in Eqs. (5.17), (5.18) since they do not contribute to
the news function.

In Sec. VI of paper I we derived a mass-loss formula
[Eq. (I6.27)], which showed that if the gravitational radi-
ation obeyed certain uniformity conditions, then the mass

ms„,i of the final black hole (assumed to be a static
Schwarzschild geometry) produced by the speed-of-light
collision must be ms„, i

=—', @+4f" a2(rip)dr Since it.
is the time integral of the news function which is required
in this formula, and not the news function itself, the
quantity that we shall compute directly (as described fur-
ther in paper III) will be the combination d' '+e"' of
metric components, and not its time derivative. When
we require the news function in paper III, we shall
differentiate numerically.

The surface term (5.11) contributes

VI. ELIMINATING LOGARITHMIC TERMS
FROM THE SECOND-ORDER

TRANSVERSE METRIC COEFFICIENTS
It has been known for a long time (see Pock [7]) that

harmonic gauges are complicated by the appearance of
(ln

~
r

~
) /~ r

~
terms in the metric tensor at second and

higher orders in perturbation theory (~r~ is the radial
coordinate}. Initially it was not clear what, if any, physi-
cal significance these terms had, nor if gravitational radi-
ation theory could be properly defined in such coordinate
systems. [Naive calculations, using dE/d 0 dt
=r„,/32~(h;& hjk )„(see Ref. [11]),of the power radi-
ated per unit solid angle predict an infinite quantity of
gravitational radiation. ] However, it has been shown by
Winicour and Isacacson [12] in the axisymmetric case,
and by Madore [13] for the general case, that these
(ln~r~ )/~r~ terms are coordinate artifacts which can be el-
iminated by transforming to a Bondi gauge, so that the
news function is still well defined. In this section we cal-
culate the (In~r~)/~r~ term in the transverse part of the
second-order metric perturbation h,'&', and then show
how to eliminate it by finding an explicit coordinate
transformation to a Bondi gauge. The (In~r~)/~r~ terms
in the metric are produced, in the source integral (5.20),
by the region of (qo, ro) space corresponding to a source
point near future null infinity 2+, where (in particular)

pp (& 1 . It is thus necessary to estimate the magnitudes
of the Green's functions G&,G» and of the source func-
tions S(qo, ro), T(qo ro) when (qo, ro) lies in this region.

From Eqs. (5.17) and (5.18):
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ex
~(i, rr}(q r qo ro}= — . —, @1—lcosel) '

2 2m. (4 2q)3 o x sine
(6.1)

cose=
16' 2qpx —(8 lnx+g —ro+8)

8x
(6.2)

If qo is small then

plus corrections negligible in the radiation zone, where and, to lowest order in qo

e = I f cos(2$')0(Arg)

Kqo
(6.10)

r =go —81n(4&2qo)+ — +8+0(qo) .
&2q,

(6.3)

Define y by y =4&2qox. Then
'3

qo 1 dy8(1—lcosel) '

0 cos2e y sine

O(qp)
3

(6.4)

where now

1+y —&2qo(8 lny +g—
gp)

cose =
2y

(6.5)

Now assume that (g —
gp) is of order 1 (so that we are re-

stricting attention to the region immediately surrounding
the weak shock). Let y =1+[&2qo(g —gp)]' z. Then

cose= 1+ (g —go)(z —1)+qp f (z)+ O(qo ),

(6.6)

where f (z)= f( —z) [the expl—icit form of f (z) may be
easily found, but it is not important here]. Using Eq.
(6.6) it is not difficult to show that

3 4O(qp)
Gi=Grr= + (6.7)

2v'2 q q'

if go g, while if go) g then they both vanish [there is no
qo7~2/q3 term in Eq. (6.7) because f (z) is odd].

Let us now examine the behavior of the source func-
tions S(qo, ro) and T(qo, ro) in this region [where go is
O(1) and qp «1] of the (qo, ro) plane. From Eq. (5.4)
we have

1
[e i (Co)+qo»(qo)e2(40)+

qo

1
b = [b i(ko)+qoln(qo )b2((p)+ ]

qo

=1
3 [al(ko)+qoln(qo)a2(ko)+ ' ' '

] .
qo

(6.11a)

(6.11b)

(6.11c)

[Among the functions a;(go), only a&(go) will be used in
this section, and the notation of Eq. (6.11c) will not be
used in any other section. There is thus no risk of con-
fusion with the functions ao(rip}, a2(r/p), . . . appear-
ing in the series (1.2).)

Now

Bq

8
Bq

ag a
aq „ ag ,

(6.12)

Br
q ag, '

and when q is small (Bg/Bq)„=1/W2q +O(1/q). Sub-
stituting Eqs. (6.11,12) into Eqs. (5.8,9) we find that in the
region of interest

~(qo ro}=(qo} "[2bt(ko)eI'(ko) —[bI(fo)]'

8V'2 I ~ J~ Arg dx dp'
1 — 8 Arg

m.qp o o 4 x

(where in each case the terms that have been neglected
are of order qplnqo times the leading term). Each of the
functions in Eq. (6.10) will possess a series expansion in

qo. That is

Arg =&2qp ( 8 lny +rp ) —( 1+y ) +2y cosP' . (6.8)

Define Arg=Arg/2qp and x =y/4v'2 qo, then using Eq.
(6.3) we find

ln(qp )
+2b i (go)e i (go) ] +0

(qp)'

(6.13)

Arg = 8 lnx +go+ 8+8x cosP' —16~2qo(x —1), (6.9) and

ln(qo }

T(q, r )=(q ) 4[2a&(g'o}e", (go)+2b, (gp)e&'(jp} —2b', (go)e](go)+[b', (gp)] —2ei(gp) ~1~(gp)] 3
(6.14}
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and therefore

~ + T= (qo ) I 2[a 1 (ko)+2b 1(ko) e 1 (ko) le 1 (ko) ]

ai((o)+bi(ko)=0 bi(ko) ei(ko)=0

and hence

(6.18)

1n(qo )+0
(qo)'

(6.15)

A, +—B+B =0, B,——E —E =0 .1 2

p
)P 0

p p
(6.16)

This expression may be simplified using the harmonic
(de I3onder) gauge conditions (I4.2) relating the first-
order metric functions E,B, A defined in Eq. (5.2). These
conditions give

a&((o)+2b, ((o)—e, (go)=A. (const) . (6.19)

(6.20)

We can find A, most easily by examining the behavior of
e, b, and a in Eq. (6.10) as go~ —co. Now if go && —1

then Arg will be zero unless x is large. This implies that
limr „b,(go)=hmt „a,(go)=0, since there are

factors of x and x in the integrands of b and e, re-
spectively. From Eq. (6.10),

—4&v dxe= sin 2e +o qp
'

7Tqp ~cosa~ ~ 1 X

Written in terms of e, b, and a, Eq. (6.16) becomes

—v'2a „2b —2qb —+8b „=0,
(6.17)

V2b—„+2qe ~
—8e „=0 .

Substituting Eqs. (6.11), (6.12) into the above we find

where cose = ( 1/8x )[16'/2qo(x —1 ) —( 8 lnx +go+ 8 ) ].
We recall here that the standard notation g(z)=o(f(z))
as z ~0 means that g (z) /f (z)~0 as z ~0. In Eq. (6.20),
the o (qo

'
) term refers to the limit qo~0. When

go « —1 the lower bound on x is xi = —(go+8)/8 and
the upper bound is x„=1/2i/2qo. Hence

—8v'Z
lim e = lim

(p oo 77qp (0 Qo ~ CQ+ 8 ] /8

—(go+ 8) 1—
8x

2 1/2
Co+8 dx

1/2+2qp
+ 2 2qpx 1 —2 2qpx '+0 qp

'
p X

y &(y —1)dy+ f &(1—z )dz +o(qo ')

qp
+o(qo ') . (6.21)

Thus lim& „e,(go)= —4&2, giving A, =4&2 in Eq.
0

(6.19), and

S( q~or o) +? (qo r )=o8i/2eI {ko)qo

+0[in(qo)/(qo) ] . (6.22)

The source term contribution to d' '+e ' ' is

f f (G,S+G»T)dqo«o .
q pq (gg

4 lng e', (g)+terms of O(q ) and less .
q

(6.24)

The contribution to D' '+E' ' from the logarithmic term
is therefore

4 lnrl
3 4

(6.25)

are valid at go=A. Since &2qo=1/go+o(go ') in the
region of interest, (6.23) reduces to

, f f [ 42qoe'i'(ko)+—o(qo) ldkodno .
q A —oo

(6.23)

Here g' and i) are the coordinates of the field point and A
is a lower cut-off which is 0 (1) (with respect to g) but is
su%ciently large that the series expansions derived earlier

In this integral dq pdr p may be replaced by

[&(qo, ro)/&(g'o, i)o)]d god i)o, where the characteristic
coordinates g, q are defined in Eqs. (3.10), (3.11}. When

qo «1, B(qo, ro)/B(go, bio)=v 2qo. Substituting Eqs.
(6.7), (6.22), into the source integral, we find the contribu-
tion to d' I+e' ' from the region where i)o is large and go
is of order 1 to be

Now

(=r+8 In(4v 2q )— 1 —8+0(q),
2q

i) = r +0 ( lnq ),
r =8ln(vp} —v 2U, q =up

p= ~r~sinO,

u = (
—2~r)sin ——r),1 . 20

v'2 2

u = (2~r~cos —+r),— 1 20
v'2 2

(6.26)
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where r= t —
I
r

I
is a retarded time coordinate. Hence

(6.25}equals
T

lnlrl+ln(2 sin 8/2) 2 8 2 8
Irl

tan —sec —
e& T

2 2

+o, (6 27)
1

r

where

T =~sec ——8ln2 8 2 tan8/2
+Sln8 —8.

2 V

(Note that we are still using dimensionless coordinates

here. )
It is easy to see that the contribution to D' '+E' '

from the source region in which qo and ro are 0(1) is
0(l/lrl); while that from the region where rto is large
and $0 is 0(1/qo} (i.e., between the weak-shock region
and the initial surface) is o(1/lrl). The contribution
from the surface term (5.19) is also 0(1/lrl). Hence
(6.27) contains the only lnr/r term in D' '+E' ' (from
here on write r instead of lr I

since there will be no danger
of confusion with the two-dimensional (2D) coordinate of
that name).

We shall now show that this lnr/r term is eliminated
from h

&&
when we transform to a Bondi coordinate sys-

tem. In such a coordinate system the metric has the form
[3]

ds =v — 1 — +02M 1
d —2 1+0 d 6 2 — +0 rd d8

2 p2

T

+r 1+ +0 d8 +r sin 8 1 — +0 dy (6.28}

We shall endeavor to put our metric in this form, to first
order in e, by searching for an explicit coordinate
transformation from our harmonic gauge to a Bondi
gauge.

The first-order metric perturbation h,'b' is given by
Eq. (5.2) in terms of the metric functions E=p e, 8
=p b and A =p a [Eq. (5.1)]. In the asymptotic re-
gion of space-time "near" 2+, e=e&(g) /q] +o( q '),
b =[[e&(g)—eo]/q J+o(q ) and a= —[[e&(g)—eo]/
q ]+o(q ), where eo=lim& „e,(g)= —4&2. Hence
[using Eq. (6.26)]

E= e&(T)+o(r '),
2r

—tan 8/2sec 8/2
[

2 2

2r

h",„'=o(r '),

h'"=r
w8

—r

s',"=0,

tan8/2 sec 8/2
[ (&} ]+

21'

—2v 2stn 8/2 eo+o r

a,'"=0,rP

&2tan8/2 cos8
h, 8 =r eo+o r

(6.31)

tan8/2 sec 8/2
[ ( ) ]+

2

r
(6.29)

z
—sec28/2 2~2sin 8/2

eo

&2tan 8/2 sec~8/2
[r h'8~' =0,

+o(r ')

where T was defined after Eq. (6.27). Now transforming
Eq. (5.2) to coordinates (r, r, 8,$) in which the back-
ground metric is flat space-time in the Bondi form (6.28),

21

If we make a gauge transformation

ds =v [ dH 2drdr+r (d8 +sin 8dg—)], —

we find

(6.30)
~=r+e g, r =r+e g~, 8=8+e ge (6.32)

of the flat background metric (6.30), then (6.30) trans-
forms to
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ds = —dr —2dz dr+r (dO +sin Odg )

+e [ —2(( +(~ )dz. —2(g' ~+(&z+g )dr dz. 2—( ~dr —2(( e+g~ e
—r ge )drd8

—2(g e rg—eq)drrd8+2(rg~+r ge e)d0 +2(rgqsin 0+r sinOcos8(e)diIi ]+O(e ) . (6.33)

If (z is to transform the metric into Bondi form then g,
g~, and ge must all possess series expansions in r. That is,

g =f, (z., 8)lnr+ fz(r, 8)+o (1),

g~ =g, (r, 0)lnr +gz(~, 0)+o (1),

ge=h, (&, 0) + hz(r, 8—)+o(r ) .
lnv 1

v r

(6.34)

Let h,'b' denote the Bondi metric perturbations and h,'b'

the harmonic ones. Clearly, h,'„" —2$, &=h~~' . More

explicitly,

f, (&,8)

V

—&2sin (0/2)eo
+o(r ')

—/2sin (0/2)eo
+O(e ),

r
(6.35)

and so f, (r, 0}=—&2eosin (0/2). [The O(e ) term is
irrelevant here since it affects only the second- and
higher-order metric perturbations. ] Also, he'e' +2(rg„
+ r ge e) =h e'e', which when written out in full is

—sec —e (T)+2&2r sin —e +2 g (&,8)+r 20 , 20
v'2 2 0 1

Bh, (r",8) „8hz(r, 0)
"r lnr+ gz(~, 8)+ r =2re c " . (6.36)

The corresponding PP equation is

—sin Osec —e&(T)+2sin 0[[g,(r, 0)+cotOh, (r, B))r lnr+[gz(r, 0)+cotOhz(r, 8)]r] = 2r sin—Oe c " .
V'2 2 ' (6.37)

The 9 ink terms must vanish in both these equations, and
so Bh, (r, 0)/80=cotOh&(w, 0), which when integrated
yields hi(r, 8)=k(r)sin8 [whence g&(z.,8}=—k(r}cos0].
Multiplying Eq. (6.36) by sin 8 and adding it to Eq. (6.37)
leads to

8hz(~, 8)
+2 „—cot8hz(r", 0) =4e c"' .

BO

The most general form that c (&,0) can take is

(6.39)

i}hz(v., 0)
+2sin —eo+Zgz(z, O)+ +cotOhz(~, 0)=0,

80

(6.38)

while subtracting yields

—&2sec —e (T)+2+2si n ez0 . zO
1 0

lim r '(sin8) Bh&& /Br= lim r '(sinO) Bh&&/Br,
$ —+ oo p'~ oo

i}h z(0) —cot0 hz(0) =a'(0)cotO —a"(0) .
ao

(6.41)

which proves rigorously that the formula
co"=—zie 2'lim, r 1(sinO) z(ahI1~)HIRE) used in

Sec. IV of paper I to derive the first-order news function
is correct, and leads directly to Eq. (6.40). In Eq. (6.40)
the derivative of the first term is the news function found
previously, the second term is included for convenience,
and the third term incorporates the supertranslation free-
dom [3].]

Since the time-dependent parts of gz and ge are o(1)
and o (r ') respectively, g, (r, 0) =g, (0) and

h, (&,8)=h;(0); whence k(z. )=E Now combini. ng Eqs.
(6.39) and (6.40) we find

c =e —za
—sec 0/2 1 . 20e, ( T)+ —sin —eo

2&2 v'2 2

+—[a'(0)cotO —a"(0)] +O(e ) .
2

(6.40)

Therefore h z(0) =L sin0 —a'(0), whence from Eq. (6.38),

—1. 2 9
gz(0) = sin —eo Lcos0+ —a"(0)+— cot0 a'(0—).v'2 2 2 2

[The v"0 equation, g e+g& e rge =O(1), implies tha—t
the time-varying part of leis o(r ). Then Eq. (6.38) en-

sures that the time-dependent part of g is o (1). Hence

The rr equation, h"' =h"' „—2(g +g& ), now im-

plies that Bf;(r,0)/Br=0, and so fz(r, 0)=f(0) Mak-.
ing the appropriate substitutions, the v 0 equation is
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8—&2tan —cos8 eo —2 sin8ezlnr+ E—C sin8(1 —inr }+Lsin8—a'(8) =0 .
a8

Therefore I(. =eolv 2, and

(}f (8) 1 8—eotan — L—sin8+ a'(8) .v'2 ' 2

(6.42)

(6.43)

Hence f2(8)= —v 2eoln[cos(8/2)]+L cos8+a(8), where the constant of integration has been absorbed into a(8). If
we now examine the forms of fz(8), g2(8), and h2(8), we find that all the terms in L may be eliminated by redefining
a(8). In sum,

g, = —v 2sin —eolnr —v'2ezln cos—+a(8)+o(1),2g — g n

—1 eo . z8 1 d—eocos8 1nr — —sin —+ [sin8a'(8) ]+o(1),
2 2 2 2sin8 d8

1 . 81nr a'(8) +

(It is obvious that the r8 and R' equations are satisfied to the appropriate order in r.)

In our harmonic gauge

sec (8/2)e (T)
g =@~r aisin&8[1+ e 2a +e 4a(D(z)+E(2) )+O(e a6}+o(r ') ] .

v'2r

If we now apply the transformation given by (6.44), then the new g&& is

( I /V 2)sec (8/2)e) ( T)—&2sin (8/2)eo —[a'(8)cot8 —a"(8)]
g&&=v r sin 8 1+e

(6.44)

(6.45)

+e (D' '+E' ')+O(e )+o(r ') ' . (6.46)

Let

7 =v sec ——81n
8 2 tan(8/2)

+8ln8 —8.
2 v

Then

T= 1'+e sec ——v 2sin —e lnr —v'2e ln cos—+a(8) +o(1)+O(e ) .-Z 2~ — Z~ 8 —4a
2 2 ' ' 2

(6.47)

Hence

( I/v'2)sec (8/2)e) ( f') —v 2sin (8/2)ez —[a'(8)cot8 —a"(8}]
g —v~7'~sin~8 l +e

—2a

+e D +E + — [ —v'2sin —e in& —&2e ln cos—+a(8)]e'(T)—4a, (2) (2) 1 sec (8/2} 2 8 g
v'2 p 2 ' ' 2 1

+O(e )+o(r ') (6.48)

The logarithmic term in D' '+E' ' is [from (6.27)]

2e, e, - lnw
eotan —sec —e', ( T )

2 2
(6.49)

which is clearly canceled by the other (lnr)/r term in Eq.

(6.48). There is also a term of the form "e', (f') times an
arbitrary function of 8" in the e term in Eq. (6.48).
We postpone to Sec. VIII any discussion of this term,
which at first sight seems to make the second-order news
function ill-defined.
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VII. TRANSFORMING TO A BONDI GAUGE
AT SECOND ORDER

r —r+e —2ag +e —4ag(2)
7

g g+ e
—2ag +e

—4ag(2)

(7.1)

We shall now investigate the relationship between the
harmonic and Bondi gauges at second order in e . In
other words, we shall consider gauge transformations of
the form

&+e
—2ag +e —4ag(2)

of g&
' and g(e

' are o (1) and o (9 ') respectively, so that
the effect of gb

' on the time-varying part of ()i &&' is o (r ).
If we apply (7.1) to the flat-space metric (6.30), then the

e term in the transformed metric in the hatted coordi-
nate system will consist of two terms. The first will be
identical to the e term in Eq. (6.33), except that gb
will be replaced by gb( '. The second term will have sub-

terms that are each quadratic in ga and its first deriva-
tives. Using Eq. (6.44) one can show that it has the form

e [o(r ')dw +o(r ')drdP+o(1)drdg

+o(r ')dr +o(1)dkdg+o(r)dg +o(r)d(tt ] .

and examine some of the properties that ((b
' must have if

(~, r, 8,$) is to be a Bondi coordinate system. More
specifically, we shall show that the time-dependent parts The first-order metric e h,'b' (x') transforms to

(7.2)

—2a[h())H(~ d}+ —2ah(1)H(~ d)ge](5a+e —2agQ )(gb +e —2agb )+O(e —ba)
t

If we write out the e 4 term in Eq. (7.3) in full, we find that it has the form

(7.3)

e 4 [[fn(r, 8) +fn(w, 8)—+o(r ')]dr +[fn(r, g)ln'P+fn(r, 8)+o(1)]drdg+o(r ')de&

+o(r ')dP +o (1)dP d8+ [ A (~, 8p lnr+B(r, 89+o(r))d8

+sin20[ —A (g, 8+ Inr B(v,—8p+ fn(gal rn+ fn (OF+o(r)]dp I, (7.4)

where the explicit forms of each fn and of A and B can
be calculated using Eqs. (6.31) and (6.44).

There is, of course, also a contribution to the second-
order hatted metric from h,'b' itself. Clearly
e h' ',b(x') transforms to e h' ',b(x ')
+O(e ). The second-order metric perturbations
h' ',

& maybe written as

( —C'2' —singF' ' —
—,'cosgG' '+cos8D'

c}~

—
—,'cosg A' ')=o(r ') . (7.6c)

(
—B' '+singE' ' —cosgF' + —,'»ngG' '

a7.

—
—,'sing A' ') =o(r '), (7.6b)

h (2)H g (2)

1yg (2)
ty =P

p (2)H G(2)
zz A

(2)H —1~F(2)
zx

h (2)H —1~g (2)
tx P

(7.5)

Now

h (2)H= g (2)+2 cosg( ( )+p sjnlg g +cos g 6
rr

+sin(20)F' '+sin 0(D' ' —E' ') . (7.7}

Ii(2)H ——i F(2) P(2)H D(2)+(y2 x2)p
—2E(2)

zy P & & xx 7

P
(2)H 2

—2E(2) g(2)H D(2)+( 2 2) ——2E(2) h'""=o(r ') .
rr, 7

Similarly one can show that

(7.8)

Multiplying Eq. (7.6b) by sing and adding it to cosg
times Eq. (7.6c), we find that

Each of the functions A ' ', . . . , G' ' in Eq. (7.5) will pos-
sess a series exj)ansion of the form
fn (~,8)[ln)lr]+r[fn(r, g)lr]+o (r '). When ex-
pressed in terms of A ' ', . . . , G' ', the second-order
gauge conditions h ' ',b, "=0are

h"'H=o(1), Ii(2)H+sin'gh(" =o(r) .
t t t

g(2) must be of the form

g( )=fn(~, 0)(lnr } +f (n~, )0l rnf+n(&, 0)+o(1),
('2) =fn(&, 0)(lnr ) +fn(f, 8)lnr+ fn(~, 0)+o (1),

(7.9}

a
( —'A' '+D' '+ —'G' '+sjngB +cosgC' ')=o(r '),

87 2

(7.6a}

(7.10)

g(2)= —[fn(~, 0)(l r) +nfn(r, 8)lnr+ fn(&, 0)+o(1)] .
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Collecting together all the contributions to the second-
order hatted metric, we find that if the hatted coordinate
system is to be Bondi then the e d~d8 term implies
that

and so g'e'=o(P '). In addition, the e dP term add-
. 2~X. —4 2ed to sin 8 times the e d8 term implies that

2g& )sin8+r(sin8$(& ))
&= fn(8)lnr+ fn(8)+o(1),

(7.12}
g(2)+g(2) P 2g(-2) =o(y)

V, O ),0 8, 7". (7.11) and thus g(„,)=o (I ). Therefore

Iimr '(sin8) h&&), = lim [r '(sin8) h&&), + terms which can be calculated using only h&& and g~] .
P~ 00 P~ (X)

(7.13)

Thus, when calculating the second-order news function,
g'a

' need not be found explicitly, which is what we set out
to prove.

1 sec (8/2) 81
8 + (8), (p)

v'2 P 2

VIII. THE AMBIGUITY IN THE SECOND-ORDER
NEWS FUNCTION CAUSED

BY THE SUPERTRANSITION FREEDOM

We saw earlier that in addition to the (Inr)/r term
(6.49), the 1 gn/q p term (6.25) contributes

4+
—ln(2sin (8/2)) 2 8 28

to h(&&) [see Eq. (6.27}]. Also, in addition to the (Inr)/r
term in Eq. (6.48), the gauge transformation (6.44) intro-
duces a term

into h&& . There is also a contribution to h&& from the
surface integral (5.19): it is of the form

z 8 28 fn(f')
tan —sec—

2 2

The rest of the source integral f j(G&S+G„T)dqodro
of Eq. (5.20) also contributes a term of the form

28 28 fn(f')
tan —sec—

2 2

In total, the I /r term in h (&&) has the form

tan (8/2)sec (8/2) ~ P'(8)cot8 —P"(8)9 sin8 n 1—

sec (8/2) —4~2sin —ln 2sin —+4&21n cos—+a(8) e((f'). 28 . 28 — 8
2 2 2

(8.1)

The angular dependence of the first term is expected
from the analysis in Sec. V of paper I, where we found
the form which the sin 8 series (1.2) for the news function
would take in the boosted frame. The second term,
which is time independent, incorporates the standard su-
pertranslation freedom. The additional terms, however,
are somewhat unexpected. The ln(2 sin (8/2) ) and
In(cos(8/2)) terms, when transformed to the center-of-
mass frame, do not have an angular dependence of sin 8.
There is, as well, the term

4sec (8/2)
T

f'=0. In addition, one can show that the function fn( f')
in the first term in (8.1) contains a certain (and calculable
[14]) amount of In~f'~ singularity. Hence the second-
order news function, which is related directly to the time
derivative of (8.1},will contain I /1' singular terms, which
are not square integrable. And yet the news function
must be square integrable, in order that the mass loss be
finite.

It is, in fact, not diScult to resolve these puzzles. Con-
sider any Bondi metric in which the various metric func-
tions all have series expansions in powers of some pertur-
bation parameter e. In particular, the function c in Eq.
(6.28) will have the form

where a(8) is arbitrary, which seems to make the
second-order news function ambiguous.

Moreover, there is an additional problem. We recall
from Sec. IV of paper I that e', ( T) diverges as In~ f'~ near

c(r, 8)= Ao(r, 8)+eA((r, 8}+e A2(r, 8)+
Now suppose we make a supertranslation

r=F+ef((8)+e f2(8)+

(8.2)

(8.3)
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c(r, 0-)= g e~A, r+ g e'f, (0),0 +g(0),
j=o i =1

where

oo

g (0)=—g e'[f,'(0)cot0 —f;"(0)] .
2 ' ]

(8.4)

(note that r —r, and that 0=0 on 2 ). Then c is un-
changed, apart from the addition of a time-independent
term [3]:

how much of ao is contained in a2. The correct amount
can be given in analytic form as an integral [14],but here
we simply quote a numerical value. Let us describe the
radiative part of the second-order gravitational field in
terms of the quantity (d' '+e' ')=q (d' '+e' '). We
assume that the logarithmic (gauge) part of this quantity
near nu11 infinity has been subtracted off, and denote by
d ' '(g)+e ' '(g) the reinaining O(1) part near 2+. This
is related to the second-order asymptotic metric function
~(2) by

But if we now expand out each A; we find

c(~,0)= Ao(r, 0)+e[A, (F,0)+f, (0)At( 7, 0)]

+e [A2(r, 0)+ ,'(f, (0—))A o'( r, 0)

+f2(0) A 0(~,0)+f, (0)A 'i (r, 0)]+ +g(0),
(8.5)

where

tan —sec —[d "'(g)+e '"(g)]
2 2

2 0 2 tan(0/2)

(8.6)

where '=8/Bv.
The barred and unbarred coordinate systems are physi-

cally indistinguishable, since it is impossible to tell what
supertranslation state one is in, Owing to this complete
freedom in the choice of origin of retarded time, only the
leading term in the perturbation expansion for c (and the
news function co) is unambiguously determined —all the
higher-order terms being uncertain to the extent shown
in Eq. (8.5). Of course the magnitude of the total news
function, given by the sum of the series, remains un-
changed; thus the amplitude of the gravitational radia-
tion, which is the physically significant quantity, is well
defined. We also note that f" (c„) d r remains invari-

ant at each order in e.
Such behavior is not limited just to perturbative news

functions. A general news function co(~, 0) "super-
translates" to co(r+f(0), 0). We can then (at least for-
mally) expand out in powers of f (0), to obtain

co(F,0)+f(0)co(r, 0)+ ,' f(0) co'(7., 0)+—

(In this way an isotropic distribution of radiation could
be made to look nonisotropic. ) However, as in the pertur-
bative case, the magnitude of the news function at any
given point on 2+ remains unchanged, and none of the
additional terms contribute to f" (co) d7

We see from Eq. (8.5) that the second-order g&& may
contain an arbitrary multiple of the time derivative of the
first-order g&&. This explains the origin of all the e', (f')
terins in Eq. (8.1). The ln(T) term in fn(1') must also be
due to an e', (T) term that has been introduced by the
"wrong" choice of supertranslation state. All these terms
may therefore be eliminated by making an appropriate
supertranslation. In fact, since it is the center-of-mass
news function that we would like to be manifestly square
integrable, we shall choose u(8) in Eq. (8.1) [and Eq.
(6.44)] to ensure that, on matching back to the center-of-
mass frame, the coefficient a2(rip) of sin 0 in Eq. (1.2)
contains no 1/f' term near 1'=0.

In a way, it is fortunate that our news function is
singular, for otherwise we would have no way of telling

The integral expression in Ref. 14 shows that the nu-
merical coefficient of in~(~ in d' (g)+e ' '(g) is 4.21867.
Further, the coefficient of in~(~ in e', (g) may be shown to
be &2/m. . In the numerical calculation we therefore sub-
tract (n/&2) X.4.21867Xei(g) from d ' '(g)+e ' '(g) be-
fore differentiating to find the news function.

IX. COMMENTS

In this paper we have seen how the second-order per-
turbation problem in the axisymmetric speed-of-light col-
lision can be reduced to a problem in two independent
variables, by exploiting the conformal symmetry (2.10) at
each order of perturbation theory. The second-order
metric coeScients can then be expressed in terms of two-
dimensional integrals of a Green function multiplying a
source function, plus surface contributions. Although
the resulting metric is not in a Bondi gauge at null
infinity, gauge transformations can be found which put it
into Bondi gauge. This allows one to read off the
second-order news function, which gives the sin 0 part of
the strong-field gravitational radiation pattern (1.2), in
addition to allowing a further investigation of the new
mass-loss formula described in Sec. VI of paper I. These
results are presented and discussed in the following paper
III.

Clearly a large amount of numerical work is involved
in the computation of the integrals giving the 0 (1) radia-
tive part of d ' '+e ' ' at null infinity, as a function of g
or ~. %e do not discuss this numerical work here; a
somewhat detailed treatment is given in Ref. [14]. Never-
theless we should remark on two of the difhculties which
must be overcome numerically. First, the logarithmic
terms in d' '+e ' ' near nu11 infinity must be carefully
subtracted off numerically, leaving the O(1) part which
carries the information about gravitational waves.
Second, the separate contributions from the surface term
(d' '+e' '),„,f of Eq. (5.19) and from the volume contri-
bution to d' '+e' ' grow exponentially at late times, the
exponential terms canceling each other in the complete
d(2)+e(2). This requires very high accuracy in the com-
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putation when g is only moderately large and positive.
This possibility for exponential behavior, already men-
tioned in Sec. III of paper I, may actually be realized in
some of the higher-order metric perturbations, as will be
discussed in paper III.
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