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Gravitational radiation in black-hole collisions at the speed of light.
I. Perturbation treatment of the axisymmetric collision
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In this and the two following papers II and III we study the axisymmetric collision of two black holes
at the speed of light, with a view to understanding the more realistic collision of two black holes with a
large but finite incoming Lorentz factor y. The curved radiative region of the space-time, produced after
the two incoming impulsive plane-fronted shock waves have collided, is treated using perturbation
theory, following earlier work by Curtis and Chapman. The collision is viewed in a frame to which a
large Lorentz boost has been applied, giving a strong shock with energy v off which a weak shock with

energy A. && v scatters. This yields a singular perturbation problem, in which the Einstein field equations
are solved by expanding in powers of A, /v around flat space-time. When viewed back in the center-of-
mass frame, this gives a good description of the regions of the space-time in which gravitational radia-
tion propagates at small angles L9 but a large distance from the symmetry axis, near each shock as it con-
tinues to propagate, having been 'distorted and deflected in the initial collision. The news function

co(v, 8) describing the gravitational radiation is expected to have a convergent series expansion
co(r, 9)=g„" Oa, „(r)sin "8, where r" is a retarded time coordinate. First-order perturbation theory gives

an expression for ao(~) in agreement with that found previously by studying the finite-y collisions.
Second-order perturbation theory gives a&( f) as a complicated integral expression. A new mass-loss for-
mula is derived, which shows that if the end result of the collision is a single Schwarzschild black hole at
rest, plus gravitational radiation which is (in a certain precise sense) accurately described by the above
series for co(~, 8), then the final mass can be determined from knowledge only of ao(~) and a, (~). This
leads to an interesting test of the cosmic censorship hypothesis. The numerical calculation of a, (~) is

made practicable by analytical simplifications described in the following paper II, where the perturbative
field equations are reduced to a system in only two independent variables. Results are presented in the
concluding paper III, which discusses the implications for the energy emitted and the nature of the radi-

ative space-time.

PACS number(s): 04.30.+x, 97.60.Lf

I. INTRODUCTION

In the many years since general relativity was original-
1y formulated by Einstein no one has found, owing to the
complexity and nonlinearity of the field equations, any
physically realistic analytic solution which does not pos-
sess a large number of simplifying symmetries. However,
if one is interested in studying the generation of gravita-
tional radiation by realistic physical sources, then one
must of necessity consider isolated gravitating systems
that are time dependent and which can have no simplify-
ing features apart from axisymmetry.

An exact treatment of such problems is, at present,
quite out of the question and one must therefore seek
recourse to approximation procedures [l]. There are two
alternatives. The first is numerical simulation, whereby
one replaces the space-time continuum by a discrete grid
and the differential field equations by a finite difference
scheme. One sets up appropriate boundary conditions on
some initial surface, and then one "constructs" the
space-time to the future of this surface by evolving the in-
itial data on a computer. This approach has been used to

study, amongst other problems, the axisymmetric col-
lision of two black holes starting from rest at a finite sep-
aration [2].

The other method of treatment is perturbation theory.
Here one assumes that the space-time metric differs only
very slightly from some fixed background (which is taken
to be one of the highly symmetric exact solutions men-
tioned above). The field equations for the metric pertur-
bations are linear to lowest order, and often prove
mathematically tractable, owing to the (relatively) simple
nature of the background metric.

However, since the time-dependent perturbations must
be small, the gravitational radiation produced is almost
always correspondingly weak (in the sense that the ener-

gy carried off by the waves is only a small fraction of the
total energy of the system). To deduce the behavior of
gravitating systems when the perturbations are not small,
one is obliged to extrapolate from the weak-field limit,
which can provide physical insight, but no strict quanti-
tative results.

In fact, there is only one physical process in which per-
turbation methods have proved successful in describing
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truly strong-field gravitational radiation: namely, the
high-speed collision of two black holes. The success of
perturbation theory in these space-times is due to certain
special features of their geometry, which we now briefly
describe.

Owing to special-relativistic effects, the gravitational
field of a black hole traveling close to the speed of light
becomes concentrated in the vicinity of its trajectory,
which lies close to a null plane in the surrounding nearly
Minkowskian space-time. At precisely the speed of light,
the black hole turns into a particular sort of impulsive
gravitational plane-fronted wave [3) (as the speed in-
creases one must scale down the rest mass appropriately,
in order that the energy be finite). The curvature is then
zero except on the null plane of its trajectory, and there is
a massless particle traveling along the axis of symmetry
at the center of this null plane.

An important property of this sort of gravitational
shock wave is that geodesics crossing it are not only bent
inwards, but also undergo an instantaneous translation
along the null surface that describes the trajectory of the
wave. The nature of this translation is such that geo-
desics crossing the shock close to the axis of symmetry
are delayed relative to those which cross the shock far
out from the axis. Hence, when two such waves pass
through each other in a head-on collision, the far-field re-
gion of each wave (i.e., the region far from the axis of
symmetry) is given a large head start over its near-field
counterpart, in addition to being bent slightly inwards.
Because of this, the self-interaction of the far field of each
wave as it propagates out towards null infinity takes place
without interference from the highly nonlinear region
near the axis of symmetry; and because gravity is weak in
the far-field region, perturbation theory can be used to
study this process. However, the radiation produced in
the forward and backward null directions is not weak, for
although the far fields contain only a fraction of the total
energy, the solid angle into which they are focused is
small, and so the energy flux per unit solid angle in these
directions is not small (i.e., the news function [4], which
characterizes the gravitational radiation, is of order unity
in dimensionless units). Thus perturbation methods can
successfully describe the generation of truly strong-field
gravitational radiation in these space-times [5,6].

The physics is practically identical in collisions at just
less than the speed of light —the main difference being
that everything is slightly smoothed out, since the incom-
ing shock waves are no longer impulsive [7].

For a range of impact parameters in the speed-of-light
collision, Penrose [8] has found an apparent horizon on
the union of the two null planes that describe the trajec-
tories of the incoming waves. If one makes the cosmic
censorship hypothesis (see, for example, Ref. [9]), then
the area of the initial apparent horizon can be used to put
a lower bound on the areas of the event horizons of any
black holes formed by the collision. In this way, Penrose
has shown that the total rest mass of the black hole (or
holes) formed by the axisymmetric collision must be more
than 100/v'2% of the initial energy. Conversely, if too
much energy is carried off by gravitational waves then
the hypothesis must be wrong. These high-speed col-

lisions thus provide an interesting test of cosmic censor-
ship.

There are two different perturbation methods that one
can use to treat these high-speed collisions. In one ap-
proach [7], the collision was studied by large but finite y,
where y is the Lorentz factor of the incoming holes. It
was shown that the metric of a single high-speed hole,
and hence also the precollision metric in the high-speed
collision, can be expressed as a perturbation series in y
A method of matched asymptotic expansions could then
be used to investigate the space-time geometry to the fu-
ture of the collision. It is necessary to use a number of
different asymptotic expansions to allow for the various
length and time scales characteristic of the gravitational
field in different parts of the space-time. One expects that
expansions holding in adjacent regions will match
smoothly on to each other; the regions to the past there-
by providing boundary conditions for those neighboring
regions to the future.

Following this approach, one may calculate the radia-
tion on angular scales of O(y ') produced by the focus-
ing of the far fields of the waves as they pass through
each other during the collision. It was found [7] that in
this region the news function has an asymptotic expan-
sion of the form

c0(~,0)- g y "S„(~,8)
n=0

(1.2)

valid as y~ ~ with r, 8 fixed. [The retarded time vari-
ables used in Eqs. (1.1) and (1.2) are not the same, owing
to the varying time delays suffered by different parts of
the shocks when they collide. ] Here SD(r, 8) must be the
news function for the collision at the speed of light
(y = ~ ). If the two asymptotic expansions (1.1) and (1.2)
both hold in the intermediate region where y

' «0 «1,
then matching enables one to gain information about the
angular dependence of S0(&,8) near the axis 8=0. More-
over, if S0(~,8) is sufficiently regular then it will possess a

co(r 8=y '4) g-y '"Q2.«4)
n=0

valid as y~ ~ with r, g fixed, where r is a suitable re-
tarded time coordinate and 8 is the angle from the sym-
metry axis in the center-of-mass frame. In Ref. [7] the
leading term Q0(r, g) was calculated; this does not vanish
and is a regular function of r. Since QD(F, Q) is not
damped by any power of y ', the news function is of or-
der 1, and so describes truly strong-field gravitational ra-
diation (the square of the news function is 4m. X power
radiated/unit solid angle). QD(r, g) and its first angular
derivative, BQ0(r, p)/Bg, both vanish at it =0, as they
must if the space-time is to be regular [4]. What is most
interesting is that, as g tends to infinity, QD(r, g) ap-
proaches a nonzero limiting form, which is such that
25% of the incident energy would be carried off by gravi-
tational waves if the radiation were emitted isotropically
with the limiting power/solid angle.

It was further shown in Ref. [7] that on angular scales
of order 1 the news function should have an asymptotic
expansion of the form
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convergent series of the form

So(~,8}= $ a2„(r)sin~"8, (1.3)
n=0

since it is symmetrical about 8=a/2 (in the center-of-
mass frame). Since 8=y 'ij'j in Eq. (1.1), the 8 "part of
(1.3) will be found from the (y 'p) "=y "1(j" part of
(1.1), and thus finding Qz„(r,g) enables one to determine
the coefficient a2„(r}of sin "8 in (1.3). In this way ao(r)
was found, given by the limiting form of Qo(r, g) as

If these matching ideas are correct, then pertur-
bation methods can be used to determine the entire news
function of the highly nonlinear speed-of-light collision.
But to calculate higher-order Qz„(r, g) requires the solu-
tion of inhomogeneous flat-space wave equations with ex-
tremely complicated source terms, and it is not a techni-
cally feasible way of determining the nonisotropic part of
So(~, 8).

But there is another way of calculating So(r, 8) using
perturbation methods, which deals with the collision at
precisely the speed of light. The method was used by
Curtis [10],following a suggestion by Penrose. Curtis ex-
amined the result of scattering a weak shock wave off a
fully nonlinear one, using twistor methods. The pertur-
bation parameter here is the ratio of the energies of the
two waves. Curtis derived an expression for the radiation
pattern at lowest order in perturbation theory, valid over
the whole celestial two-sphere except very near 9=m.

However, he did not use this expression to derive quanti-
tative answers. It was pointed out in Ref. [7] that results
in perturbation theory concerning the radiation pattern
in this weak-shock —strong-shock system translate, when
one makes a Lorentz boost to a center-of-mass frame, to
a description of the gravitational radiation in the neigh-
borhood of 0=0 in the fully nonlinear space-time formed
by the collision of two shocks with equal energy. One
can then match the expressions one derives for the news
function close to 8=0 with Eq. (1.3) in order to find the
entire news function So(~, 8), just as in the finite -y col-
1ision.

In this paper we describe a similar calculation, based in
part on the work of Chapman [11]. Starting with the
speed-of-light collision of two shocks which each have
energy p, one can then make a large Lorentz boost away
from the center-of-mass frame, so that one shock be-
comes much more energetic than the other. The metric
describing the scattering of the weak shock off the strong
one possesses a perturbation expansion in powers of k/v,
where A, and v are the energies of the weak and strong
shock, respectively. The news function can be found to
lowest order in k/v in the boosted frame, and then
matched to obtain an expression for ao(r). Pleasingly,
the resulting expression is identical to that derived in Ref.
[7] for the isotropic part of the news function in the
finite-y collision on angular scales of order 1. By solving
the second-order field equations in the boosted frame,
which take the form of inhomogeneous fat-space wave
equations with complicated source terms, one can go on
to derive an integral expression for the first nonisotropic
term a2(r) in Eq (1.3). In .papers II and III following
[12,13], we will show how the computation of a2(r) can

be simplified by reducing the perturbation field equations
to equations in two independent variables, and will dis-
cuss the implications for the energy emitted in gravita-
tional radiation and the nature of the radiative space-
time.

One expects the apparent and event horizons in the
finite-y collision to be very similar to those in the speed-
of-light encounter. A plausible scenario for each process
is that at the collision there is a burst of radiation accom-
panied by the formation of a black hole, which settles
down asymptotically to a Schwarzschild geometry. How-
ever, since ao(r) is nonzero, the speed-of-light news func-
tion does not vanish on the axis of symmetry 8=0,~,
which indicates that this space-time is not smooth on the
axis at future null infinity [4,7]. The logarithmic singu-
larity [7] in the news function is another indication that,
strictly speaking, this space-time is not asymptotically
flat. Further, the speed-of-light space-time is certainly
not asymptotically flat in the past, since the null shocks
extend to infinity. These properties show that one should
be careful about considering the speed-of-light collision
as an isolated radiating system, and that it is better to
think of it as the limit of the perfectly regular finite-y col-
lisions; and of the speed-of-light news function So(r, 8) as
describing the radiation in the finite-y collisions on angu-
lar scales of order 1. This will be our attitude here; that
is, we are principally interested in the speed-of-light col-
lision as a calculational tool which we use to find the
higher-order moments in the off-axis news function in the
finite-y encounters. %henever we loosely refer to future
null infinity 2+ for the speed-of-light collision, the argu-
ment can always be rephrased in terms of limiting prop-
erties of the finite-y space-times, which are expected to
have a regular 2+.

It has been conjectured [14,15] that the radiation pat-
tern in the high-speed collision is isotropic, apart from
the detailed structure near the axis of symmetry. This
conjecture was motivated by the zero-frequency limit
(ZFL) calculation of Smarr [14], who found that the
zero-frequency limit of the gravitational energy spectrum
does have this angular distribution. If valid, it would
mean that all the a2„(r) vanish for n ~ 1, and that the rel-
ative mass loss is 25%. It has been shown in Ref. [16]
that Smarr s ZFL calculation is in fact a linearized ap-
proximation valid only when the gravitational radiation
is weak, so that it cannot be applied to the head-on col-
lision of two black holes. As will be seen from the results
presented in paper III, a2(r) is certainly nonzero, and a
complicated angular distribution is expected for the grav-
itational radiation.

In Sec. II of this paper we review the geometry of a sin-

gle black hole moving at the speed of light, giving an im-
pulsive plane-fronted wave. The axisymmetric collision
of two such shock waves is then studied (Sec. III). After
the initial collision, the shocks lie on curved surfaces to
the future of regions of Minkowski space-time. To the
future of both curved shocks lies the curved interaction
region of the space-time, which contains the gravitational
radiation. As already described, in the approach used
here a large Lorentz boost is applied such that one in-
coming wave has an energy v much greater than the ener-
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gy k of the other wave. The scattering of the weak shock
off the strong shock is regarded as a characteristic-initial
value problem for the perturbed space-time, with charac-
teristic initial data known just to the future of the strong
shock, which in lowest approximation appears as a null
hyperplane between two portions of Minkowski space-
time. In Sec. III the characteristic initial data is de-
scribed, and the region of validity of the perturbation
theory is studied. As with many strong-field problems in
general relativity, when subjected to perturbation
methods, the perturbation series is expected to be nonuni-
form, corresponding to a singular perturbation problem.

In Sec. IV the first-order field equations are studied and
the first-order news function found. On boosting back to
the center-of-mass frame, one finds ao(r). The second-
order field equations are solved in terms of integrals in
Sec. V, leading to an integral expression for the second-
order news function and hence ultimately for a2(r). This
expression is however intractable numerically in this par-
ticular form. Sections III—V draw heavily on the unpub-
lished work of Chapman [11].

In Sec. VI we derive a new mass-loss formula for the
axisymmetric finite-y collision, which shows that if the
product of the collision is a single black hole, and the
burst of radiation whose form we are calculating is the
only gravitational radiation present in the space-time,
then the final mass of this hole is determined, with frac-
tional error tending to zero as y~ ~, by only the first
two coefficients, ao(r) and a2(r), in Eq. (1.3). This pro-
vides further motivation for computing a2(r}. Section
VII summarizes the paper.

In paper II following, we then go on to show that in
the speed-of-light collision, in the boosted frame of refer-
ence, the metric possesses a conformal symmetry at each
order in perturbation theory. This, along with the obvi-
ous axisymmetry, enables us to reduce all the field equa-
tions from four dimensions to two. This reduction to two
dimensions makes the numerical computation of the
second-order metric practicable. We analyze the reduced
field equations, show that they are hyperbolic partial
differential equations, and find their Green's functions.
The numerical calculation of the second-order metric
perturbation entails extensive computation, and is not en-
tirely straightforward. We also show that there are lnr /r
terms present in the second-order metric. The existence
of such terms in second-order perturbation theory in har-
monic gauges is well known [17]. We eliminate them by
an explicit transformation to a Bondi coordinate system
[4].

The numerical results are presented in paper III of the
series. We show that our mass-loss formula makes the
unphysical prediction that the final mass of the residual
hole will be approximately twice the initial energy of the
colliding waves, indicating either that the collision prod-
uct is not a single black hole, or else that there is some
other gravitational radiation present in the space-time.
The latter possibility is more likely, and we indicate how
this radiation might be generated. We also give an es-
timated upper bound on the final mass of the residual
hole, using the conventional formula of Bondi, van der
Burg, and Metzner [4].

II. THE BOOSTED METRIC

+ 1+ [dr +r (d8 +sin 8dg )] .
2r

(2.1)

Make an appropriate coordinate transformation so that
the black hole moves with speed P=(1—

y )' in the -z
direction (our units are such that the speed of light c is 1).
The energy of the black hole is then @=my. Aichelburg
and Sexi [3] have shown that as P~1 with p fixed, the
metric approaches a limit, which can be put in the form

ds =du dv+dx +dy 4p, ln(x—+y )5(u)du (2.2)

where u =z+t and v=z —t. The axisymmetric space-
time described by Eq. (2.2) is flat, except on the null hy-
persurface u =0 where the curvature has a 5-function
singularity. For x +y )0 the space-time is purely radi-
ative since the infinite Lorentz boost has changed the
algebraic type of the Weyl tensor from type D, for the
Schwarzschild metric (2.1), to type N for the metric (2.2).
It can be shown that the energy-momentum tensor has
the form T' =p5(u)5(x)5(y)1'1", where the null vector
l' is orthogonal to the hypersurface u =0. Hence there is
a massless pointlike particle of energy p traveling at the
speed of light along the axis of symmetry in u =0. The
impulsive plane-fronted shock wave represented by the
metric (2.2) is the gravitational field generated by the null
particle. Owing to the infinite boost the black-hole prop-
erties have been lost and there is no event horizon
present.

Making the discontinuous coordinate transformation

x =x —4pu 8(u )
x y

y =y —4pu 8(u )
X +y

u =u
(2.3)

~+4 8(~)1 (~2+ 2) 16@ u8(u)
X

where 8(u ) is the Heaviside step function, the metric
(2.2}becomes

ds =du dv+[1+4pu8(u)p ] dp

+p [1 4pu8(u)p ] dP— (2.4)

where p =x +y and P=arctan(y/x ). The half-space
u )0 in Eq. (2.2) has been mapped into the region u )0,
4pu ~p by (2.3). The "boundary" 4pu =p is in fact
the axis of symmetry p=0. The metric (2.4} is continu-
ous but there is the disadvantage that the metric form is
no longer Minkowskian behind the shock (in u )0) [18].

Consider a Schwarzschild metric with rest mass m,
written in isotropic coordinates:

2
1 —m /2r

dt
1+m /2r

4



662 P. D. D'EATH AND P. N. PAYNE

Apart from a discontinuity at u =0, the Christoffel
symbols I b, are well-behaved functions of u, v, x,y.
From the geodesic equation

ds ds
(2.5)

we immediately see that in the careted coordinate system
a geodesic crossing the shock u =0 will be continuous
and have a continuous tangent vector. Returning to the
uncareted coordinates u, v, x,y and using Eq. (2.3), we see
that the value of v will change discontinuously by 8p lnp
on crossing the shock, and that the geodesic will simul-
taneously be bent inwards.

The metric (2.2) transforms very simply under Lorentz
boosts along the z axis. Define u ', v ', x ',y' by

space-time; one behind shock 1 before shock 2 comes by,
and its "mirror image" behind shock 2 before shock 1

makes its presence felt. The metric in the union of these
various regions will be simply the "sum" of the individual
metrics for each wave. In its C form this is

ds =du dv+[I+4pu8(u)p ] dp

+[—8pv8( —v)p +16p v 8( —v)P ]dp

+p [1—4pu8(u)p ] dP

+p [Spv 8( —v )p + 16@ v 8( v)p —]dP

(3.1)

Before the collision, the null generators of shock 2 (say)
are the lines

x =x', y =y',
(2.6) u=A, —v=0, x=g, y=q, (3.2)

Thus the e6'ect of the Lorentz boost is simply to scale the
energy by a factor e, which from the Doppler formula

E'=E 1+
( 1 P2)1/2

(2.&)

u =e u', v=e v',

where e =(I+P)' /(1 —P)' (the primed system is
therefore moving with speed 13 in the +z direction with
respect to the unprimed system). Written in terms of
u', v', x', y', Eq. (2.2) becomes

ds =du'dv'+dx' +dy' 4pe —ln(x' +y' )flu')du'

(2.7)

where the affine parameter A is negative. These null geo-
desics will intersect shock 1 at the spacelike collision sur-
face u = —v =0. Their continuation into u )0 will mark
the future boundary of one of the flat space-time regions
mentioned above, the metric having the form (3.1) to its
past. Since geodesics are C' when viewed in careted
coordinates, the null generators of shock 2 will still have
dv /d A =dx /d A =dy /d A =0 at u =0+. Inspection of
Eq. (3.1) now shows that their continuation into u )0 is
simply given by Eq. (3.2) with A)0. A similar result
holds for the null generators of shock 1. Thus the metric
form (3.1) is valid in the regions denoted by I, II, and III
in Fig. 1. Region IV to the future of the shocks wi11 be

is exactly how we expect the energy of a massless particle
to transform. It is obvious that in the boosted frame the
metric in its continuous form will be

ds =du 'dv '+[I+4pe u '8(u ')p' ) dp'

+p' [1—4pe u '8(u ')p' ] dP (2.9)

To obtain the metric (in its C form) describing an
identical wave traveling in the opposite direction, we
merely replace z by —z in Eq. (2.4); or equivalently u by—v and v by —u. Thus the metric will be

ds =du dv+[1 —4pv8( —v)p ) dp

+ ~Q[ I +4 $8( g )~ Q ]QdPQ (2.10)

III. THE AXISYMMETRIC COLLISION

We now consider the head-on collision of two such
plane-fronted waves. Initially, we work in the center-of-
mass frame and denote the energy of each wave by p.
The region ahead of each shock is flat and so, before the
waves collide, they propagate freely, each unaware of the
other's presence. We shall choose the origin of coordi-
nates so that the trajectories of the waves before the col-
lision are given by u =0 (call this shock 1) and —v =0
(shock 2), respectively. In addition to the region ahead of
the waves, there wi11 be two further flat regions in the

FIG. 1. A schematic space-time diagram for the speed-of-
light collision. At the collision (u =&=0), the null generators
of each shock will acquire shear, and will thereafter be both
shearing and converging. Hence to the future of the collision
the shocks will appear to lie on curved null surfaces when

viewed in flat coordinates from the flat regions II and III {see
Fig. 2). Region IV of space-time to the future of the curved
shocks 1 and 2 will be curved.
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e(A)1 (gP+ P) 16@ A8(A)
(2+~2

4p.Ae(A)
f2+ ~2

(3.3)

4pA8(A)y=ri 1 —
z

Thus, viewed in these coordinates, a geodesic generator
of shock 1 crossing shock 2 suffers an instantaneous
translation of magnitude 4p In(g +vP) along the hyper-
surface u=0 and is simultaneously bent inwards and
backwards. Following this geodesic into A&0 we see
that after a finite affine distance [A=(g +q )/4p] it
crosses the axis of symmetry p=0. This means that
shock 2 intersects itself at a caustic, given by

p=0, v=4pln(4pu) —4p . (3.4)

The geometrical configuration is shown in Fig. 2. An
analogous (inverted) picture can, of course, be drawn for

4I

ock 2
erator

Shock 1
generator

FIG. 2. The curved shock 2, as viewed from the flat region
III, which lies between the curved shock 2 and the incoming
plane shock 1. The curved shock 2 originates at the collision
surface v =4@in(p ); its generators intersect one another at the
caustic p=O, v=4pln(4pu) —4p. After passing through the
caustic, the generators enter the curved region IV of the space-
time.

curved, and the metric there can be found only by in-

tegrating Einstein's equations in some appropriate way.
The geometry of the shocks can be most easily under-

stood if we view them from regions II and III when using
Hat coordinates. Therefore let us transform to coordi-
nates defined by Eq. (2.3). In this coordinate system the
null generators of shock 2 are clearly parametrized by

u=A,

shock 1. These results were first worked out by Penrose
[8]. In the finite-y collision the gross features of the
geometry will be similar to those shown in Fig. 2; the
main difference being that the shock and caustic struc-
tures will taper off at distances of O(y) from the axis of
symmetry on the initial surface and so will not extend out
to infinity.

In the finite-y collision it was shown [7] that the curva-
ture within each shock is O(y) before it reaches the caus-
tic. In the limit y~ao this O(y) structure becomes the
5-function profile of the impulsive speed-of-light shock.
It was also shown in Ref. [7] that in the caustic region it-
self the curvature rises to O(y ). This means that in
the speed-of-light collision there will be a curvature
singularity at each caustic, this singularity being, in some
sense, worse than just a 5 function. This has in fact been
shown by Corkill [19] and Stewart [19],who by integrat-
ing Einstein's equations have, in addition to deriving the
metric form (3.1), shown that the 5-function part of the
%eyl tensor is singular at 4pu=p on —U=O and at
—4@v =p on u =0 (the former being simply the caustic
equation (3.4) written in terms of careted coordinates,
and the latter its equivalent for shock 1). One might have
expected a breakdown in predictability to the future of
each singularity, the Cauchy horizon coinciding with the
continuation of the shock generators beyond the caustic.
However, at finite y it was found [7] that although the
shock s profile is altered by its wavelike self-interaction in
the caustic region, it continues to travel in a nearly null
direction beyond the caustic into the analogue of the
curved region IV. This indicates that the singularities in
the speed-of-light collision should be quite harmless, the
space-time having a natural extension through the sup-
posed Cauchy horizons alluded to above. The fact that
we can do perturbation theory exactly as if such a con-
tinuation does exist and obtain sensible results using it
(results that agree exactly with the radiation calculation
of Ref. [7] at finite y) supports this view, and we shall as-
sume it is the case.

In the finite-y collision the curvature of each shock has
the form y /(1+ Ap ) just before the caustic, where

yp measures the distance from the peak of the shock and
A is some constant [7]. As mentioned above, this shock
profile is the finite-y analogue of the 5 function in the
speed-of-light collision. Owing to the shock's self-
interaction, its curvature profile just beyond the caustic is
approximately y

~ /q when q is large, where again yq
measures the distance from the center of the shock [7].
This indicates that the impulsive structure of the shocks
in the speed-of-light collision will be destroyed at the
singularities, the curvature having a rather odd 1/s form
to leading order near the continuation of the shocks
beyond their respective caustics. That this 1/s form con-
tinues all the way out to 2+ can be seen from Ref. [7], for
ao(r) has a logarithmic singularity and so the curvature,
which is given by the time derivative of the news func-
tion, has a I/(r ro) term. —

One consequence of the self-intersection of each shock
is that any point on a null shock generator to the future
of that shock's caustic will be timelike connected with
points on the same shock to the past of the caustic [20],
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and will lie within the curved space-time region IV in
Fig. 1. This means that the null surfaces on which the
shocks lie cannot be used as characteristic initial surfaces
(for solving Einstein s equations) beyond their caustics,
since nu11 data cannot be freely given there. This is con-
sistent with Eq. (3.1), which provides initial data only for
4pu (p on —v =0 and for —

4((2v (p on u =0 (i.e., up
to the caustics but not beyond). This difficulty with caus-
tics is a common feature of the characteristic initial value
problem in general relativity (for a general discussion and
possible resolution see Ref. [21]), but we shall see that it
does not affect our perturbation problem.

One should note that the portion of each null hypersur-
face on which data can be given [and which is given by
Eq. (3.1)] does not intersect future null infinity. This is

easily seen for shock 2 (say), since Eq. (3.4) shows that the
caustic does not reach 2+( —U~ —~ as u —+ ~ on the
caustic), and therefore neither does the precollision shock
(see Fig. 2). This would appear to create problems if one
were to try to construct the whole spacetime numerically

by evolving the initial data off the null shock surfaces (see
Ref. [22] for a general discussion of the numerical con-
struction of space-times from characteristic initial sur-

faces), since one cannot reach J'+ by making a series of
finite jumps off these surfaces. But perhaps one could dis-

cover all the essential features of the space-time without

going too far out from the center.
Penrose [8] has found an apparent horizon on the

union of the two null planes that describe the trajectories
of the incoming shock waves in the speed-of-light col-
lision. The horizon is formed by the union of two flat
discs whose common boundary is a circle p=4p in the
collision surface u = —v =0, having area 32mp . If cosm-
ic censorship holds, there will be an event horizon outside
this apparent horizon [9],and its area cannot decrease, so

I

that if the space-time eventually settles down to the
Schwarzschild geometry, as seems likely, the area of the
final black hole must be greater than 32~@; or in other
words it must have a mass greater than (1/V2)2(u. (A
figure —,

' X2p was wrongly quoted in Ref. [7].) We expect
a horizon of a very similar nature to be formed in the
finite-y collision, and the lower bound on the mass of the
final hole there should be the same, to within a relative
error tending to zero as y~ ~. It is interesting that the
lower bound which cosmic censorship places on the ratio
(mass of final black hole)/(initial energy) should be the
same for the ultrarelativistic encounter and the collision
of two black holes starting from rest at infinity.

The null particles lie within the apparent horizon and
are therefore trapped, and presumably will eventually run
into an unpleasant space-like singularity, which should be
hidden from infinity by the event horizon, assuming
cosmic censorship holds. The inner portions of each
shock (certainly for p (4(u) should fold up into the same
singularity. It is likely that this singularity will be
formed at the point where the particles collide
(u = —v =p=O). This would certainly be the most satis-
factory outcome, since it would remove any ambiguities
concerning the particle-particle interaction. It is reason-
able as the limit of the finite-y collision, in which the
small, fast-moving, black holes should stop each other
when they collide.

In order to calculate the form of the gravitational radi-
ation in the speed-of-light space-time, we make a large
Lorentz boost and observe the collision in a frame of
reference moving with velocity p [where (1 —p)((1] in

the +z direction with respect to the center-of-mass
frame. From the discussion leading up to Eq. (2.9) it is
clear that in the boosted frame the precollision metric
takes the form

ds =du 'dv '+[1+4vu '0(u ')P' ] dp' +[—8lu '0( —
U ')p' +16k, u

' 0( —
U ')p' ]dp'2

+p' [1—4vu '0(u ')p' ] d(t +P' [8Au '0( —
U ')P' +16k U

' 0( —
U ')p' ]dP (3.5)

gab Iab +~hah +~ hab (3.6)

where the only nonzero components of h, b and h, b are
w( I ) w(2)

where v=pe, A, =((2e, and e'=(1+P)' /(1 —P)'
The collision appears to be between a weak shock wave of
energy A. and a strong shock of energy v, where A, /v (( l.

We now consider the evolution of the weak shock in
the region behind the strong shock. For convenience we
drop the prime on coordinates in the boosted frame, since
we will be working exclusively in this frame of reference.
The boundary data on u =0 for the characteristic initial
value problem whose solution describes the propagation
of the weak shock in u )0 is

are of O(v) (call this region R„), the contribution to Eq.
(3.6) from the weak shock appears as a small perturbation
of O(k/v) to the "background" metric of the strong
shock. Therefore, in that region of space-time to the fu-
ture of the initial surface which can be influenced only by
R, the metric should possess a perturbation expansion in
powers of k/v. We shall demonstrate this explicitly
below.

The geometry is easier to visualize if we transform to a
coordinate system (u, U, x,y ) in which the background
metric of the strong shock in u )0 is manifestly Min-
kowskian. An appropriate coordinate transformation is
given by Eq. (2.3) with p replaced by v:

I (11 ~ —2f (11 8gg0( ~ )~ —2

PP

(11' '= I1' '=16k. U 0( —U)p
PP

(3.7)

x =x [1—4vu 0(u )p ],
y =y(1 —4vu 0(u )p ),

On the initial surface u =0, in the region where & and p U =U+8v0(u )lnp —16v u 0(u )p
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The metric transforms as
gab V Dab g hab (3.18)

gab
BX

gcd . (3.9)

On u =0+ one easily finds

0 0 0

d
Pg,

axb

—16v p 1 —Svxp —Svyp

4vxp 0 1 0

4vyp 0 0 1

(3.10)

,+ (p')' 2pp'—cos(0 4')+—p'
2Q

(3.19)

In principle we can find h,'b', h,'b', . . . by successively solv-

ing the linearized field equations at first, second, . . . or-
der in A. /V.

We now comment on the region of the validity of this
expansion. In Fig. 3 we show the locus of intersection of
the past null cone of a point P =(u, v, p, P) with the initial
surface (0, U ',p', P'). It is a paraboloid, given by

+old +new (3.11)

where x '=(u, u, x,y) and x =(tt, u, x,y). If we rescale
the coordinates by a factor v (to exhibit more clearly the
perturbative behavior mentioned above), letting

We shall see in the next section that, as might be expect-
ed, the gravitational radiation in the space-time is con-
centrated in the region surrounding the continuation of
the weak shock generators beyond the caustic. From Eq.
(3.3) it is clear that these generators are parametrized by

and redefine u and v through u =(z+t)/V2 and
U = (z —t ) /&2, then the form of the metric in the unhat-
ted coordinate system on u =0+ is

u =&2A,

v =4&21n(v+g +rj ) — A,
16&'2

f2+.~2
(3.20)'2

gab
=V blab + —

hab + hab
2 ~ (I) ~ (2)

v v

Here

h,'„' =0, h„„=(y —x )p F
)=(x2—2) g Q( )=Q ))) =Q,

yy
= X P P

= —2xyp E, h„=xp
h'"=0 h")=yp-'a

vy ~ uy ~P

where

A =32p f(81n(vp) —&2v),

8 =4&2p f(8 ln(vp) —v'2v ),
F. = p f( 8 ln( vp —) —&2v ),

and f(x)=8x8(x). Also

h ~2) =0
uu ~ vv ~ xx ~ yy

(3.12)

(3.13)

(3.14)

SAx=g 1—
f2+ ~2

8A

Therefore let u, v, and p be given by

h(2) 0 h(2) 0 h"'=0
xy (3.15)

) =xp ~1~2) h ~2) =0 h ~2) = pux vy s uy &P

where

H' '=32p g(81n(vp) —V2U),

I' '=4&2p g(8 ln(vp) —&2U),

D' '=p g(81n(vp) —V2U), (3.16)

ds =Y/abdx'dx =2du dv+dx +dy (3.17)

To the future of u =0, the metric will possess the per-
turbation expansion

and g(x)=16x 8(x). The fiat background metric rt, b is

given by

FIG. 3. This shows the locus of intersection of the past null
cone of a point I' with the initial surface u =0, on which the in-
coming shock 1 lies. The initial data for the perturbation prob-
lem is zero inside the collision surface u =4&2 ln(vp).
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u =&2A,
16&2 E

u =4&2 ln( vpo) — A—
po

8A
p 2

1 po
Po

(3.21)

where future null infinity is reached by letting A~ ~.
(As K increases, the paraboloid sweeps up the initial sur-
face in the —u direction. ) Then

2(4/po)
tan8—:+= +O(A '),

1 —(4/po)'
(3.22)

I

u
' =4&2 ln( vpo)

—1 —icos(P —P')
po

(3.23)

Using Eqs. (3.13)—(3.16), we find that, at this locus of in-
tersection,

and so tan(8/2)=(4/po)+O(A '), from the standard
trigonometric formula. For the point (3.21), Eq. (3.19)
reduces to

terest surrounding E =0.
Note that these rough estimates indicate the possibility

that the metric perturbations may grow exponentially
with time at late retarded times. Such nonuniform be-
havior is typical of singular perturbation theory, encoun-
tered in a variety of strong-field problems in general rela-
tivity. In fact it seems that h,'b' and h,'b' are well behaved
at late times, at least as far as is borne out by the behav-
ior of the corresponding parts ao(r) and az(r) of the
news function, computed in Secs. IV and V and in papers
II and III. However it is very likely that the higher-order
perturbations h,'b', . . . do grow exponentially at late
times, for reasons to be discussed further in paper III.

It is easy to show that the caustic in the initial surface
u =0 is at

8 ln(vp) —&2u = P
4(A, /v)

(3.28)

IV. THE FIRST-ORDER CALCULATION

This lies well beyond the region in which perturbation
theory is valid, and so can be ignored in our present cal-
culation.

h,'b'~ S8(S}(p')™,m =2, 3, or 4,
h,'b'~S 8(S)(p') ", n =4, 5, or 6,

(3.24) The field equations for h,'b' in u ~ 0 are

where S is defined by
r

I I

S=81n +8+8 cos(P —P')+E .
Po Po

(3.25)

—,+ cos(P —P')—,=0,8 8, mS

P Po p

16 16, nS
, + cos(P —P') —,=0 .

P Po p

At these points

(3.26)

Because of the form of the initial data (3.13)—(3.16), the
metric perturbations become small at early retarded
times or equivalently as E~—~. For simplicity then,
let us consider the worst case in which K is large and pos-
itive. Differentiating Eq. (3.24) we find that ~h,'b'~ and

~ h,'P ~

take their respective maximum values when

h
N(1) b 0ab,

in u ~0. Then Eq. (4.1) reduces to

a2 a2 a2

Q u Bx By

(4.2)

(4.3)

We now prove that for Eq. (4.2) to hold it is sufficient
that h,„'"satisfy

(4.4)

where h,'b =h,'~" ,'r),bh—"—',', B/Bx' is denoted by, , and

indices are raised and lowered using q,&. We solve Eq.
(4.1) in the usual way by making a gauge transformation
x'=x '+(A/v)P such that the new first-order perturba-
tion h,b"'=h J'+2(~, b~ satisfies the de Donder gauge
condition

h'" ~ tan —e
0

ab 2

h' '~ tan —e
0

ab 2

m

n
(3.27)

The general solution to the wave equation ClF=O in

u ~ 0, with F given on u =0 (subject to the restriction
F~0 sufficiently rapidly as u ~ ~ ), is [23,24]

F(u, u, x,y)= f f p'dp'dP', F{0,u', x',y')
2&0 0 0 Bv

Since, roughly speaking, the metric perturbations de-
crease as we move away from the initial surface along the
past null cone of P, we see that the perturbation series
(3.18) will converge everywhere in this null cone only if
( A, /v) [tan( 0/2)exp(K /8 ) ] is small. (If desired, this

property can be checked more carefully using the integral
representation of the metric perturbations, as employed
in Secs. IV and V.) But since A, /v can be made arbitrarily
small, our perturbation theory is valid in the region of in-

(4.5)

where x =p cosP, y =p sing, x'=p'cosP', y'=p'sing', and
v

' is determined as a function of x ' and y' through

u'=u+[p 2pp'cos(P P')+—p' ]/2u . — (4.6}

The functional form of Eq. (4.6) is such that (O, u', x', y')
lies in the past null cone of (u, u, x,y). It can be seen
from Eq. (4.5) that if BF/Bu~„o=0, then F=O every-
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(i) (1)
2 (hav, xx + hauyy } & (4.7)

where the h,'„"„,term has been eliminated using Eq. (4.3).
For a =v both sides of Eq. (4.7) vanish identically; the
right-hand side by virtue of Eq. (4.1) with a =b =v. Sub-
stituting the initial data (3.13) and (3.14) we find that the
other three equations (4.7}for g, on u =0 are

ag(„„,——0, ag(, „,
——0,

(4.8)——2(Cl(g, „+gy y+2$„„)= 128p e(8 ln(vp) —&2U ) .

We look for a solution which has a power series expan-
sion near u =0:

where in u ~ 0. Now if CIA,b =0, then also

Qh+"),&s=0. Hence h "',&"„~„0=0will ensure that
Eq. (4.2) holds [our initial data (3.13) and (3.14) do go to
zero sufficiently rapidly as u~ ao]. Thus any solution to
the combined system Clhab"'=0, h,b'" „~ —0=0 will

also be a solution to the field equations (4.1).
On rewriting Eq. (4.4) in terms of g, and h,'i, ' we find

that g, must satisfy

c (1) (1) (I)+I[a,u] 2 b'av +kc, ax, xu +hay, yu +hau, vv

of Eq. (4.3). Thus Eq. (4.3) reduces to

gI N( I ) 0ab (4.13)

It is clear that (4.13}preserves the metric form (3.13) in
u &0.

Bondi, Metzner, and van der Burg [4] have shown that
the gravitational radiation in an axisymmetric,
reAection-symmetnc space-time is described by a single
real function co(r, e} of retarded time and polar angle,
known as the news function. The news function is an in-
variant quantity, but for convenience we use the
definition

co(r, 8)= —
—,
' lim r '(sin8)

p~ 00 a~
(4.14)

[Strictly speaking, Eq. (4.14) is valid only when the
metric is written in Bondi coordinates in the radiation
zone. However, it gives the correct answer here even for
our Minkowskian coordinates. We defer an explicit
verification of this technical point to the fo11owing paper
II.] Here (r, r, B,P) are defined in terms of (u, u, x,y)
through

g, (u, u, x,y ) =g( )((),x,y )+up(, "(U,x,y )+
One possibility is

(4.9)
r =v(x +y +z )

~=vt —r,
g(0) —0 g(i) —g(i) —g(i) —0

(4.10)
g(„"=—16p ~(81n(vp) —V'2v } (9(81n(vp) —&2v) .
The gauge transformation (4.10) retains the form (3.13)
for the metric coefi|cients on u =0, but (3.14) becomes

A =32p f(81n(vp) —&2U)

—4p (8 ln(vp) —&2v )f(8 ln(vp) —V2v ),
8 =4&2p f(8 ln(vp) —&2v ),
E= p f( 8 ln( vp ) —&—2v ) .

It can be verified that Eq. (4.4) is satisfied in this gauge.
The metric perturbation h,b"' is traceless on the initial

surface:

8=arctan, ((}=arctan
Z X

(4.15)

Using Eq. (3.13) we find that the first-order news function
in the boosted frame is

c() (r, 8)= ——— lim
1 A,

2 V r +oo

aEr
(}1

(4.16)

where

e '~E(„0=8p e '~[8ln(vp) —&2U]6)(8ln(vp) —v2u) .

Since Oh„(„"=Clh'"=0, the metric function E(u, v, p)
satisfies

Cl(e '~E)=0

h)v("~ = 'bh)v")~ =(} (4.12) (4.17)

and it is therefore traceless everywhere in u 0 by virtue Using the integral representation (4.5) we find

2iyE 4 2 f f 2~dp
dy 2ip p81 ( ') i/2 + P 2PP (cto' s(0 }+Puoop' 2Q

(4.18)

Eliminating u, U, p using Eq. (4.15), we find

—sv 2m 8p 2E(r, r, 8)= f f, de cos(2(0)8 81n(vp')+ —sec (8/2)+2 tan(8/2)p'cosco+O(1/r)~[r+2r cos (8/2)] «p' V

(4.19)

Defining s =2p'tan(0/2) and letting r u ao, the first-order news function is found to be
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c'' r, 0)= ——sec (0/2) des cos(2')5 8 1ns+s cosco+ —sec (0/2) —8 ln
0 0 S V

I

2 tan(0/2)
(4.20)

(4.21)

where T=(r/v)sec (0/2}—g in[2 tan(0/2) lv] and

Performing the angular integration, Eq. (4.20) reduces to

c"'(r,0)= —sec (9/2)Ho( T),0

u =0, and the initial data (3.13) will then not be a smail

perturbation. This implies that in the center-of-mass
frame Eq. (4.26) is valid only in the neighborhood of 0=0
(and by symmetry near 0=m). Thus the right-hand side

of Eq. (4.26) should really be written as

4 ds T+8 lns
H (T)=— 2Ds' s

'2 1 w 1
H0 —+sin 0 —H0 —+-

@ 4 IM 4
1 IH 0
JM

(4.27)

T+8 lns
X 1—

2 ' —1/2

(4.22)

Here D is the domain in which

—s ~(81 ns +T) ~s . (4.23)

~=~/K, r =Kr,
tan(0/2) =e tan(0/2),

(4.24)

while the news function transforms as

(4.25}C0 =C0/E

Here K ( 0 ) =cosha —sinha cos0. Using Eqs. (4.24),
(4.25), we find that (4.21) transforms to

The reason for the appearance of the
8 in[2 tan(0/2)/v] term in the expression for T can be
traced to the logarithmic delay across the strong shock.
In fact, if we look at the null geodesic generators of the
weak shock in u ~ 0, as given by Eq. (3.20), and let the
affine parameter A~ ~, then we find that at their inter-
section with g, T=8—ging. The news function has a
logarithmic singularity at this value of T and is

significantly nonzero only in the surrounding region, dy-

ing away asymptotically on either side of the weak shock.
We now transform back to the center-of-mass frame to

see what Eq. (4.21) tells us about the sin 0 series (1.3) for
the news function. Let ~, r, 0 denote the center-of-mass
coordinates. Then [4]

Hence all Eq. (4.26) tells us is that the isotropic term
ao(r) in Eq. (1.3) is Ho(~/p). We cannot say at this stage
what the sin 0, sin t9, . . . terms are, since there will be
contributions to these from the second, third, . . ~ order
news functions in the boosted frame.

The expression Ho(rip) for ao(r) agrees with that de-
rived previously in Ref. [7] as the isotropic part of the
news function in the finite-y collisions on angular scales
of order 1. This is pleasing, for it indicates that the
matching ideas of Ref. [7] outlined in the Introduction
are working. The form of ao(r) is shown in Fig. 4. The
singularity at ~=0 is logarithmic. The magnitude of
a (r) is such that if the radiation were isotropic [i.e., if0
a2„(r}=0, 't'n + 1] then the total energy carried off by
gravitational waves would be 25%%uo of the initial energy
2p.

V. THE SECOND-ORDER CALCULATION

We now show that, by finding the news function to
second order in A, /v in the boosted frame, we may deter-
mine the coefficient az(r) of sin 0 in Eq. (1.3), and there-

by get some idea of the angular dependence of the total
news function.

Near the axis, the series expansion for the news func-

0.6

co(&, 0) = Ho(T),
1+cosO

(4.26)
0.5

ao(vlP)
0.4

where now T= [2&/p(1+cos0)] —8 in[2[tan(0/2)j/IM I.
By making a supertranslation, r=r '+41n[2 tan(0/2)l

]/ (1+cosO), which leaves the news function invariant

[4], we may eliminate the logarithmic term from T. nIn
terms of r', one has T=2r'Ip(1+cosO), but for con-

venience we shall omit the prime on ~' and merely write
T=2rlp(1+cos0) in what follows.

The expression (4.21) for the first-order news function
in the boosted frame is valid only for values of 0 not too
close to ~ [i.e., for (~—0)—1; but not, for example, for
(vr 0)=O(A, /v)]. —It is easy to see this from the para-
metric representation (3.20) for the weak shock genera-

tors; for if (a—0}((1 out near 2+ then (g +g ) (( I on

0.3

0.2

-&2 -8

FIG. 4. The isotropic part ao(~) of the news function, ap-
pearing in the expansion (1.3) about the symmetry axis for the
gravitational radiation. The singularity at ~=0 is logarithmic.
For convenience, the origin of retarded time f has been shifted
(supertranslated) by a constant amount (8—8 ln8)p.
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tion in the center-of-mass frame is

co(r, 8)=ao —+a2 —sin 8+O(sin 8), (5.1)

+Sill 8 1

pg g 2 pg

+0 sin 0
SC4

(5.2)

in which we have so far found the first term
ao(7/p)=Ho(alp) [F.or convenience we write r/)M in-
stead of w~ and in fact w and p will appear in this com-
bination at every order. That is, in this section we make
the replacement a2„(r)~a2„(r/)M). ) In the boosted
frame (5.1) becomes

where

IC ( 8)=cosha+ sinha cos8

=e cos (8/2)[1+e tan (8/2)] .

Combining Eq. (5.3) with Eq. (5.2) we find

(5 3)

co(r, 8)=e sec ( 8/2)K 0[(r /v)sec (8/2)]

+e [4tan (8/2)sec (8/2)a2[(r/v)sec (8/2)] —2tan (8/2}sec (8/2)Ho[(r/v)sec (8/2)]
(r/—v)sec (8/2)tan ( 8/2)H o[(r /v)sec(8/2)]]+ (5.4)

v2(r) +e —2ah(1)+e —4ah(2)+ . . . ) (5.5)

Thus the e 4 term depends solely on Ho(r/)u) and
a2(r/Ib). Conversely, by finding the news function to
second order in the boosted frame we may determine the
first two coefficients in Eq. (5.1).

To find the field equations satisfied by h,'b', write Eq.
(3.18) as

As before, a sufficient condition for this to hold is
h ' ',b „~„0=0.The argument is identical to that used
in Sec. IV, since by Eq. (5.9) we again have
gh N(2) b 0ab,

Before proceeding, we must first find the change in the
second-order initial data induced by the first-order gauge
transformation with parameter P. This takes the form

Then 2g (ahb)'d'+2gd(ag b)+gda( b . (5.10)
ab

[
ab —2ah (1)ab

V2 "
e

—4a(h(2)ab h(1)adh(1) b)+ . . . ] (5 6}

(where indices on the right-hand side are raised and
lowered with g,b). Using the properties
h'", '=h"',

b =0, it is straightforward to show that the
e term in the Ricci tensor is

g(2) —1(h(2)c +h(2)c h(2) c h(2) c
ab 2 a bc b, ac ab, c c,ab

(1)cd {1) (1) {1) (1)
(hca, bd+hcb, ad hab, cd hcd, ab }

+ ) h(l )cd h(1) ~ h(1) c (h(1) d h(1) d)
, a cdb 2 ad bc cb,

(5.7)
Rearranging terms slightly, we may write the second-
order field equation R,b =0 as

(5.8)

where h,'b'=h, 'b' ——2g,bh' ', ' and T,b is equal to twice
the sum of all the h,'b' terms on the right-hand side of Eq.
(5.7). Equations (5.8} are similar in forin to those of
linearized theory with a source term; the first-order
metric perturbations h,'b' giving rise to an effective
energy-momentum tensor T,b. It may be easily verified
that T,b satisfies the conservation equation

T, =0.ab, (5.9)

As in the first-order case, we look for a gauge transfor-
mation x'=xN'+e 5' such that h ' '=h' '+26ab ab (a, b)
satisfies the de Donder condition h N(2)

b
b=o in u ~0.

As before, we look for a solution

6, =uf, (p, u)+O(u ) .

(5.12)

(5.13}

When a =u both sides of Eq. (5.12) vanish identically.
We therefore choose f, =O. For a =x and a =y, Eq.
(5.12) has the form

82
,f (p, U)=g„(p, U),

a2
, f~(p, U ) =g~(p, U ),av' '

(5.14)

which can be integrated directly to find f„and f . Using

However, from Eq. (4.10) we see that the only nonzero
Pd on u =Ois

P „=—16p [81n(vp) —v 2U] 8(81n(vp) —&2v) .

(5.11)

Thus although the first-order gauge transformation will
change h,'b' on u =0, it will not affect the radiative com-
ponents of the field, h„'„', h ' ', and h„' '.

The equations that 6' must satisfy on u =0 are identi-
cal to those in the first-order case, except for an extra
term in T,b.
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h,'b' —TQQ (5.15)

The most general form that h,'b' can have in u ~ 0 is

these functions, the remaining equation can be written
r3 f„(p, v)/Bv =g„(p,v), determining f„. Thus a solu-
tion of the form (5.13) does exist. However, there is no
need to calculate it explicitly since it will not alter the ini-
tial data for the radiative components of the field. In this
gauge the field equations for h,'b' reduce to

is contained in D' '+E' ', but in addition there are some
spurious gauge terms which must be eliminated by trans-
forming to Bondi coordinates. This will be carried out in
paper II.] A straightforward, though tedious, analysis of
Eq (.5.15) shows that D' ' satisfies

D' '=p 'BE, +BE„——,'(B „) +2E „E„

+4p 2E'+2p )EE p+(E p)2+E,E p, (5.19)

and E' ' satisfies

tt & tx P

ty P ~ tz

h '2'= G ~2' h '2'= &/@~2]
zz zx P (5.16)

+ —,'(B „) EE ——
p 'EE

+4p E ]. (5.20)

(e '~E' ') =e '~[ AE „„+ 'BE, +BE„E,B—

h (2) —lyp(2) h (2) —D (2) + (
2 x 2) —2E(2)y —x p

h (2) 2' —2E(2) h (2) D (2)+ (x 2 2) —2E(2)
xy ~yp

These equations are each of the form

HF=H, F(0,v, x,y) known . (5.21)

The initial data for the radiative part of the field are
given in Eqs. (3.15) and (3.16):

D' )
~ „o=p g [8 ln(vp) —&Zv ],

(5.17)

From the definition (4.14) of the news function we find

The solution to Eq. (5.21) at P with coordinates
(u, v, x,y) may be expressed as the sum of two integrals
[24]: (1) a surface term, given by Eq. (4.5), which arises
from integrating over the two-surface where the past null
cone of P intersects u =0; and (2) a volume term which
comes from integrating down the past null cone of P to
the initial surface u =0. It is given by

co '(r, 8)= ——— lim r (D' '+E' )) . (5.18)
2 V r~oo 87

J

[We shall see in paper II that this is not quite correct.
A11 the information about the second-order news function

1 H(t —ir —r '~, r ')
d

4m u o ~r
—r'~

The contribution to BD' '/B~ in the far field from the
surface integral is easily found to be

~DIurf 16 sec (8/2)tan (8/2) 2rr ds r q 2 tan(8/2)
B7 mr 0 0 V V

(5.23)

The volume terms, however, are by no means easy to
compute. If the source terms in Eqs. (5.19) and (5.20) are
inserted into Eq. (5.22), then we see that to find the func-
tional forms of D' ' and E' ' would require the evaluation
of triple integrals whose integrands are themselves prod-
ucts of single integrals. To do this analytically is clearly
out of the question, since the single integrals are them-
selves not analytically tractable. On the other hand, any
numerical computation would suffer from two difficulties.
First, one wou1d have to identify the regions of integra-
tion which contribute most to the total integral. Second,
and perhaps more importantly, the accurate numerical
computation of what are essentially four-dimensional in-
tegrals with infinite ranges of integration would require
an exorbitant amount of computer time: indeed it is quite
impractical ~ However we shall see in paper II that the
perturbative field equations can be reduced to equations
in only two independent variables rather than three, and
that this allows an accurate numerical computation of
the second-order news function, or equivalently of a~(v).
The results are presented in paper III.

VI. A NKW MASS-LOSS FORMULA
FOR THK AXISYMMKTRIC COLLISION

To provide further motivation for the computation of
the function az(r) in Eq. (1.3), in this section we shall
show that if the product of the high-speed black-hole col-
lision at finite y is a single black hole at rest, plus outgo-
ing gravitational radiation whose form close to the axis of
symmetry is fully described by Eq. (1.1), then the final
mass of this residual black hole is determined by Qo(r, g)
and Q2(r, g), up to small corrections of O(y ). Fur-
ther, if Eqs. (1.1) and (1.2) match smoothly then an alter-
native, more useful, formula relating the final mass to the
first two coefficients ao(r) and a2(~) in Eq. (1.3) can be
obtained. It is the latter that we derive first. The argu-
ments used are similar to those employed in Ref. [16] for
studying Smarr's zero-frequency limit.

Since this system is axisymmetric and reflection sym-
metric, we may use the results of Bondi, van der Burg,
and Metzner [4] concerning the form of the geometry
near J+. In particular, we shall make use of the supple-
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mentary condition (Eq. (35) in Ref. [4])

aM ac
'

1 a a'c -ac
ar- ar" 2 ar" a0' a0

M( —~,8)=py j [1+cos8(1—y z)) ~~]

+ [1—cos0(1 —y )'~ ]

(6.10)

(6 1)

Here M(r, 8) is the mass aspect of the system, and
()c(r,8)/()r is the news function. In the Bondi metric, M
appears in

with @=my. One can easily show from the above that
M( —~,0)=O(y ') when 8 is O(y ' ).

The news function is given by Eq. (1.1), which, refor-
mulated, says that

while

2M(&, 8)
w7 r

(6.2) o( 4=r 0) —g r '"Q .( 4)=o[y '"'"],
n=0

(6.11)

2Cg- —r I+ — +88 r

2 ' 2~ 2g-=r sin 8 I — +
r

(6.3)

M is thus a generalized mass suitable for nonstatic sys-
tems. The mass aspect of a particle of rest mass m mov-
ing with speed u [and Lorentz factor
y=(1 —u )

'~ =cosh'] in the 8=m. direction is (Ref
[4], Appendix 3).

Vm as y~00 with r, it) fixed It c.an be seen from Eq.
(6.9) that J' " co(r, f)dr and its first two angular deriva-

tives must exist, otherwise M(ao, 6)) will not be well
defined. In order to make use of Eq. (6.9), we must as-
sume that Eq. (1.1) satisfies a kind of uniformity condi-
tion, by which we mean that in addition to Eq. (6.11) it
will be assumed that the news function satisfies (for each
fixed g)

r
m

y' + co(r-, g) —g y "Q,„(r,f) (f (r, Q),
n=0

(6.12)

M(8)=
(cosh)) +cos8 sinhA, )

Reexpressing this in terms of v, we find

m(1 u2)3/2
M=

(1+u cos8)

(6.4)

(6.5)

Vm, Vy& I where I' is some constant, for some func-
tions f (F,g), where every j"„f(F, f)dr exists. If
this is the case then Eq. (6.11) may be integrated to yield

CP 7& i f 2n 'T&

n=0

I.et the rest mass of each body now be m. Before the col-
lision one particle moves with speed U in the 0=0 direc-
tion, while the other moves with the same speed in the
0=~ direction. The respective mass aspects of these two
particles are thus

m(1 —u ) m(l —u )
M, = „,, M, =

(1—u cos0) (1+u cos8)
(6.6)

M(r= 0(), 8)=m„„,( .

Integrating Eq. (6.1), over v. we find that

ms„,(=M( —ao, 8)—f (eo) dr

(6.8)

+— +3cot8 —2 (ci" ),1

ae' oo
(6.9)

under the assumption (6.8). We shall examine Eq. (6.9) in
the region where (1.1) is presumed to match with (1.2);
that is, where y

' «0«1.
From Eqs. (6.4) and (6.7) we have

In the distant past the total mass aspect of the system is
simply the linear superposition of M& and M2.

M( —0(), 0)=M) (8)+My(0) (6.7)

If the Anal product of the collision is a single black
hole, then

O(
—( +i)) (6.14)

Vm as y~a() with y
'~ g fixed The rea.son why

=O[y ( + )] (6.13)

Vm as y~m with 1{) fixed. Clearly, I"„Qz„(r,f)dr
has to exist if Eq. (6.12) is to hold, so that each Qi„(r,g)
must ~0 as r~(x) [presumably according to some in-

verse power law, if Q()(T, Q) is an. y guide]. But more im-

portantly, in order that the news function satisfy Eq.
(6.12) it is necessary that the burst of radiation described
by Eq. (6.11), and its continuation to large angular scales,
be the only gravitational radiation in the space-time, the
system approaching isotropy asymptotically after it
comes by. Another way of looking at this is to say that if
Eq. (6.12) is to be valid, the news function must have the
form (1.1) even in the limit r~ 0() (with y large but fixed)
when the perturbation theory breaks down near the ini-
tial surface. It is plausible only if the Q2„(7., f) do all fall
oft'according to various inverse power laws as F~ ~.

We also assume that (1.1) matches smoothly to (1.2), so
that (1.1) is still a good asymptotic expansion in the inter-
mediate region where 1((g((y. The analogue of Eq.
(6.13) when 1( is O(y '~

) will then be

m

f co(F, P)dr gy "f —Q2„(r,g)
n=0
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y
' " appears on the right-hand side instead of

y
' + ' is that the Q2„(~,g) must grow as f" when

1( ~ oo, in order to match to the sin "8 terms in Eq. (1.3),
and so Q2„(r,1( } will be O(y") when p is O(y'~ ).

Indeed, if matching works, Qz„(r, g) will have the
form given by

and

y f Q2(r i)'r)d~-sin 0 f a2(r)dr+ ' +

(6.18)

y "Q2„(r=r+8pln(g/p), 1(}

( )+ fn(r) + fry(r) + (6.15}

can make an order 1 contribution to the last term in Eq.
(6.9) as y~ ~ with y

' g fixed. Diff'erentiating these
expressions with respect to 0 we find

as y~ ~ with r, y' g fixed (the origin of the 8pln(g/p, )

term can be traced to the logarithmic delay across the
shocks [7]),and

y "f Q2„(r,g)dr

00 ~n1 ~n2-sin "8 az„(r)dr+ +
2

+
oo

(6.16)

as y —+oo with y
'~ g fixed. This is consistent with the

calculation of D'Eath [15], who showed thatf" Qo(r, g)dr=[1( /(1+1(t )]f" ao(r)dr
It is clear from the form of Eq. (6.16) that only

T

Qo(F, Q)dr = ao(r)dr 1 — +1

oo p2

(6.17)

a'
+3cot8 —2 (c~"„)ae' ag

= f [4a2(r) —ao(r)]dr+0(y '
) (6.19)

as y~~ with y
'

g constant. [Note that it is for-
tunate, or perhaps significant, that A,01 vanishes, since it
would otherwise give a y /P contribution to Eq. (6.19).]
Clearly f" (co) dr= f ao(r) dr+0(y '

) in the
same limit, so collecting the various results we find that

m„„„=—f [ao(r)] dr

+f [4az(r) ao(r)]dr—+O(y '
) (6.20)

as y ~ ~ with y
'

1( fixed, proving our assertion at the
beginning of this section.

One derives the equation relating m„„,~ to Qo(r, g) and
Q2(w, 11 ) by examining Eq. (6.9) in the limit $~0. It is

a2 r

m„„„=p(8y —2)+ —lim y +— f [Q (T,g)+y .
Q (F,f)]dV +O(y ) .

aq' q aq
(6.21)

As noted previously, it is rather hard to calculate Q2(r, g), which is why we shall use Eq. (6.20), rather than Eq. (6.21),
to calculate m„„,1.

Clearly a formula similar to Eq. (6.21) could be derived for any process in which the initial momenta are known and
the final product is a sing1e body at rest.

The first term in Eq. (6.20) has been calculated numerically [7,11] and found to be p, /2 to three significant figures
(here 2p is the initial energy). The term f" ao(r)dr can be calculated exactly. From Eqs. (4.22) and (4.27) we have

4 ~ ~dsao(r)= —f f dw cos(2w)5 81ns+s cosw+—
'IT 0 0 S p

Hence

f ao(r)d~= f f dw cos(2w )[9(8lns+s cosw+x }]~'„="„
oo 7T 0 0 S

x=oo
4p OS

x=

(6.22)

(6.23)

where

cosfo = 8 lns+x (6.24)

When x ((—1, the domain in which ~cosgo~ (1 is con-
nected, bounded below by SI ———x, and unbounded
above. Hence

f ~ dS

x~ —oo —x $

2 1/2
X1—
s

f d
4

Qs
lim singocosgo

x ~ cospo~ 1 S

(6.25)
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When x ))1, the range of integration has two disconnect-
ed regions. One is bounded below by Sl ——x and un-

bounded above, and clearly contributes —n. /4 to the to-
tal integral. The other is approximately
[e " (1—

—,'e " ),e " (1+—,'e "~ )] and so does not
contribute to Eq. (6.22). Therefore

ds
sinPocosPo

~cosgo~ + 1 g
(6.26)

and J
" an(r)d r= —2p. Substituting this into Eq.

(6.20), we find

m„„„= +4 a2(~)d~+o(1),3p ao

(6.27)

where o (1) denotes a term tending to zero as y ~ ao.

VII. SUMMARY

We have studied in this paper the axisymmetric col-
lision of two black holes at the speed of light, with a view
to understanding the more physically realistic collision of
two black holes at large but finite y. Following earlier
work of Curtis [10]and Chapman [11],the curved region
IV of the space-time depicted in Fig. 1, resulting from
this collision of two impulsive plane-fronted waves, has
been treated by means of perturbation theory. A large
Lorentz boost applied to the incoming states (each with
energy p) yields two null particles with energies A, , v,
where A, «v. The metric of the curved region IV can be
found as a perturbation of flat space-time, in powers of
the small parameter A, /v, by solving a sequence of
characteristic initial-value problems with initial data
given just to the future of the strong shock with energy v.
The perturbation theory is expected to be singular: It
should give a good description of the parts of the space-
time near the forward and backward directions in which
the incoming shocks have been delayed and deflected by
small angles during the interaction at large distances
from the symmetry axis. But it will give a less and less
accurate description of the geometry as one examines re-
gions further into the center of the space-time, where for-
mation of a single final Schwarzschild black hole should
take place, with associated further emission of gravita-
tional radiation.

In Sec. IV the metric was calculated to first order in
A, /v. On boosting back to the center-of-mass frame this
yielded the contribution ac(r) (shown in Fig. 4) to the
series conjectured for the news function in Eq. (1.3). This
agrees with the form found in Ref. [7] for the gravitation-
al radiation at angles 8 fairly close to the axis, obeying
y «8 « 1, in the finite-y collision. The form of ao(~)
is such that 25% of the initial energy 2p would be emit-
ted in gravitational waves, if the radiation were isotropic.

The calculation was continued to second order in Sec. V,
leading to an integral expression for the next coeScient
a2(r) in the angular expansion (1.3) of the news function
near the axis. Further motivation for the computation of
a2(r) was provided in Sec. VI, which showed that if all
the gravitational radiation near the axis in the finite-y
space-times is accurately described (in a certain precise
sense) by Eq. (1.1), and if Eqs. (1.1) and (1.2) match
smoothly at angles obeying y

' «8 «1, then the mass
of the (assumed) final static black hole can be found from
a knowledge only of ao(~) and a2(~), up to corrections
which tend to zero as y —+ac. Since Penrose [8] has
found an apparent horizon for the speed-of-light collision
on the union of the two incoming shocks, the collision
space-time is thus providing an interesting test of the as-
sumption of cosmic censorship, which gives a lower
bound of 1/2p for the final mass.

In the following paper II we show how the perturba-
tive field equations can be reduced to equations in only
two independent variables, because of a conformal sym-
metry at each order of perturbation theory. This yields
an alternative integral expression for a2(r) which has al-

lowed us to calculate this quantity numerically. The re-
sults are presented in the concluding paper III, where it is
found that the mass-loss formula of Sec. VI makes the
unphysical prediction that the mass of the assumed final
static black hole is approximately twice the initial energy
of the colliding waves. The most likely explanation for
this apparently surprising result is that there is some oth-
er gravitational radiation present in the space-time. A
"second burst" of radiation produced deep inside the
space-time will be delayed by an amount proportional to
in8 relative to the "first burst" described by Eq. (1.3),
which is in part produced at very large radii. As dis-
cussed further in paper III, this will have the conse-
quence that the expansion (1.3) is not valid uniformly
with respect to retarded time, so that the assumptions
made in Sec. VI fail to hold. Nevertheless, knowledge of
az(~) together with ao(~) does give some further infor-
mation about the angular distribution of radiation, and
allows a rough estimate of the emitted energy following
the conventional formula of Bondi, van der Burg, and
Metzner [4].
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