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Static solutions of large-N quantum dilaton gravity in 1+ 1 dimensions are analyzed and found to ex-

hibit some unusual behavior. As expected from previous work, infinite-mass solutions are found describ-

ing a black hole in equilibrium with a bath of Hawking radiation. Surprisingly, the finite-mass solutions
are found to approach zero coupling both at the horizon and spatial infinity, with a "bounce" off of
strong coupling in between. Several new zero-mass solutions, candidate quantum vacua, are also de-

scribed.

PACS number(s): 04.60.+n, 11.17.+y, 97.60.Lf

I. INTRODUCTION

In his seminal work [I) Hawking argued that the laws
of quantum mechanics, when applied to black holes, pre-
dict their own demise: a pure state that collapses into a
black hole evaporates into a mixed final state. In the in-
tervening fifteen years, progress in verifying or refuting
his claims has been stymied by several formidable obsta-
cles. One of these is that regions of Planck-scale curva-
ture and strongly coupled quantum gravity probably arise
in four-dimensional gravitational collapse. While string
theory provides a model for describing weakly coupled
quantum gravity, a description of strongly coupled quan-
tum gravity is well beyond our reach. Another obstacle
is the problem of analyzing the back reaction of Hawking
radiation on the gravitational field. There are indications
that this is qualitatively important in resolving the puzzle
of information loss; yet practical methods for describing
it have not been forthcoming.

Recently, a strategy for sidestepping the first obstacle
and overcoming the second was proposed [2]. A great
simplification occurs by considering the problem of black
hole formation and/or evaporation in a renormalizable
theory of "dilaton" gravity in 1+ 1 dimensions coupled
to conformal matter. This "toy" problem contains most
of the important conceptual issues present in the four-
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dimensional case, yet is computationally much more
tractable. The region of strongly coupled quantum gravi-
ty can be analyzed within the framework of a 1/1V expan-
sion where N is the central charge of the conformal
matter. The problem of black hole formation and/or
evaporation, including the gravitational back reaction, is
thus formally reduced to a system of second-order partial
differential equations. In addition to serving as a two-
dimensional model for four-dimensional gravitational col-
lapse, this two-dimensional theory is also directly
relevant to four-dimensional physics as the effective
theory describing the absorption and/or reemission of in-
cident particles by certain extremal dilatonic black holes
in four dimensions [2—4].

The analysis of [2] expanded the theory around the
"linear dilaton vacuum*' configuration. This is a static
solution of the large-N equations of motion for which the
dilaton varies linearly across space. Since the dilaton
governs the strength of quantum loops, quantum fluctua-
tions are large in half of space (referred to as the "Liou-
ville region") and small in the other half (the "dilaton re-
gion"). There is a sharp line dividing these two regions
along which the dilaton take the critical value P=P„. A
black hole is potentially formed by sending matter in
from the dilaton region to the Liouville region. While
the equations describing this process were not solved, it
was conjectured in [2] that the collapsing matter loses all
its energy via Hawking radiation before the black hole
has a chance to form.

This conjecture was shown in [3,5] to be false. In fact
something rather different occurs; when the collapsing
matter tries to cross P„ from the dilaton to the Liouville
region, a singularity appears [3,5]. This singularity is
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quite difFerent in nature from the black hole singularities
of the classical theory: it occurs at the finite value P=P„
(as opposed to the strong-coupling value P= ~), and the
metric also remains finite at the singularity. Its physical
significance is somewhat mysterious.

In an attempt to better understand the nature of the
critical line P=P„separating the two phases, and the
physical implications of the singularities, in this paper we
investigate numerically and analytically the static solu-
tions of the large-N equations. %e find that there is a
rich variety of solutions with some rather unexpected be-
havior: there is a tendency to "bounce" off of the critical
line. %e also find vacuum solutions with greater symme-
try than the linear dilaton vacuum that lie wholly within
the Liouville region, as well as a zero-mass black hole
with a singular horizon that lies entirely within the dila-
ton region.

After a brief summary of the relevant formula in Sec.
II, some static solutions are discussed in Sec. III. %e
also argue there that the end point of evaporation of
black holes formed in the linear dilaton vacuum is a trun-
cated linear dilaton vacuum terminated just before a
singularity at P„. In Sec. IV we argue that the singulari-
ties at P„signal a breakdown of the 1/N expansion, and
are conceivably resolved in the exact quantum theory.
The related possibility of defining the large-N theory by
boundary conditions at P„is also discussed.

II. SUMMARY OF RELEVANT PREVIOUS RESULTS

Classical dilaton gravity coupled to N conformal
matter fields is described by the action

—4B+B /+48+$8 /+28+8 p+A, e~~=O. (2.5)

Because the action (2.2} is gauge fixed, these equations of
motion should be supplemented by the constraint

12
"[a,pa, p

—a',p+t, ( )]=0, (2.6)

as well as a similar equation for T . t+ is an integra-
tion function which must be fixed by boundary condi-
tions. Solving these large-N equations includes the effects
of Hawking radiation as well as the gravitational back re-
action.

An important solution of these equations is known as
the linear dilaton vacuum:

p=O, P= ——(o+ cr—) .
2

(2.7)

This vacuum is divided into two regions by the critical
line

P= ——ln
1

(2.8)

across which, as easily seen from (2.2), an eigenvalue of
the kinetic operator changes sign. Quantum effects are
small in the region P (P„,which is referred to as the di-
laton region. The gravitational dynamics are governed
by the Liouville action in the region P )P„, which is re-
ferred to as the Liouville region.

S= fd o& ge —~&[R+4(VQ) +4k, ]
1

2m'
III. STATIC SOLUTIONS

N——g (Vf;)
2

(2.1) In this section we shall describe some static solutions
of Eqs. (2.4)—(2.6). In the static limit these equations be-
come

where g, P, and f; are the metric, dilaton, and matter
fields, respectively, and A, is a cosmological constant.
The matter fields can be explicitly integrated out to pro-
vide an effective action for the metric and dilaton. In the
conformal gauge this action is

S„= fd a—e ~[8+(2P—p)B (2P —p) —A, 'e ~]

O=T+ =e ~ ——P"+P' —
A, e ~ + p",

2 48

O=T =T =e ~ P'p' —P" — —(p' p"+t)—1 „N
(3.1)

+ —e 8+pB p12
(2.2} 0= ~p —p ——p +A, er,&2 1 ti 2 2

5$ 2

where we have chosen the conformal gauge

+ = —
—,e, g =g++ =0 .J 2p (2.3)

The term proportional to N is the Liouville term induced
by the matter fields. The equations of motion for p and P
are

where t is a constant and a prime denotes d/der, with
o= —,'(o+ —o ). These equations are of course redun-
dant; the T+ and dilaton equations imply the vanishing
of (T++ —T+ )'. The T+ and dilaton equations can
also be rewritten in the form

T+ =e ~(2d+d P 4d+QB P ke r )— —

12' a P=o, (2.4)

~However, we note that the Bianchi identity implies that any
solution of (2.4) and (2.5) is also a solution of the constraints for
some choice of t~.
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ton vacuum in the gauge (2.7). The resulting equations
can be put in the form

¹ ¹

(y&2 g2 2p)
2 12 24

which will be convenient for later use.

(3.2) 2A5(tr'+ 2)(, 5p —j(.5p' = e t,—u
48

5rI)"=5p" 1 — e
24

(3.4)

A. Quantum kinks

Solutions to Eqs. (3.1) may be specified by fixing p, rtr,

and their derivatives at infinity. The mass of a solution
asymptotic to (2.7) is

M=2e ()r.5p+5$') (3.3)

evaluated at infinity where 5p, 5r)rr are the deviations from
(2.7). We are in particular interested in solutions asymp-
totic to the linear dilaton vacuum, with a finite mass and
with no incoming or outgoing energy flux at infinity.
These are candidates for the final state of black hole eva-
poration. The asymptotic behavior of such solutions can
be determined by linearizing (3.1) around the linear dila-

—2X +0( —42,
)

M
2i

—22.o+ 0(e —42.
)2~'

(3.5)

Solving (3.4) for the asymptotic perturbations of the
linear dilaton vacuum yields an infinite-mass solution for
tWO. This makes physical sense: tWO corresponds to a
constant incoming and outgoing energy flux, and the
solution has divergent Arnowitt-Deser-Misner (ADM)
mass. Such solutions, while perhaps interesting for other
reasons, are therefore not candidates for the final state of
black hole evaporation.

%'ith t =0, the asymptotic solutions are of the form
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FIG. l. (a) A plot of P vs cr for quantum kinks of mass M=A. , IOr(, , SOj(. for ((),„=—2. Integrating in from infinity, the solutions

closely resemble the linear dilaton vacuum until rt),„ is reached, at which point the solutions bounce back towards weak coup ing at

minus infinity. (b) A plot of p vs o for quantum kinks of mass M j(,, IOr(. , SOr(. for 4),„=—2. Integrating in from infinity, p is nearly

zero until the bounce occurs. It asymptotes to minus infinity at o.= —~ with a constant linear slope plus logarithmic corrections.
This implies that o = —err is a finite distance away, and that there is a horizon there. (c) A plot of ri) vs s =e for quantum kinks of
mass M= j(,, IOA„SO)r, for P,„=—2. The horizon is pulled into s =0 in these coordinates, and it is evident that the dilaton goes to zero

coupling there. (d) A plot of p vs s = e for quantum kinks of mass M =A, , 101,SOP. for rtr, „=—2. p diverges on the horizon.
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and have a finite mass M. To find the geometry of these
solutions one can integrate Eqs. (3.1) in from infinity.
t=0 defines an invariant surface of fixed T++ —T+
Different orbits are chosen by initial data on this surface
as illustrated in Figs. 1(a)—1(d). These are solutions with
distinct masses that asymptotically approach the linear
dilaton vacuum.

These solutions may be qualitatively understood as fol-
lows. Asymptotically they approach the linear dilaton
vacuum plus the perturbations in (3.5). Integrating in
from infinity, for a positive mass one finds from (3.2) that
P" & 0 and so they begin to turn over. P" becomes very
large and negative in the critical region
= —

—,In(N/12). In this vicinity an approximate solution
can be found by setting p=const=O and (()=P„+y,
where ~y~ && ~P„~. (The consistency of this can then be
checked using the full equations. ) The resulting equation
1s

(3.6)

with first integral

.2 (3.7)

p+ao. +b,

where A is an integration constant. For positive mass,
3 )0 and the equation is that for motion of a particle in
a repulsive potential centered at y=O (note that p &0).
Hence P bounces near P=P„(P' fiips from roughly —

A,

to +A, ) and then begins to decrease towards cr= —ao.
The sharp turnover in P also forces p' to jump, by (3.2). p
is then found to be asymptotically linear and approaches
minus infinity.

The qualitative behavior as o.~—~ can also be un-
derstood, using the fact that e p becomes negligible as
p~ —00. Without this term the equations can be in-
tegrated to find

zero coupling.
As the mass goes to zero, the solution gets closer and

closer to P„before bouncing back to weak coupling.
Furthermore, it is very close to the linear dilaton vacuum
outside a region whose boundary gets closer to P„. A
configuration can be defined in the zero-mass limit that
agrees with the linear dilaton vacuum up to P„,but then
bounces back to weak coupling (P= —ao) rather than
continuing on to strong coupling ((()=+~). The ex-
istence of distinct "solutions" that agree up to P„but
then disagree afterwards is due to the fact that the equa-
tions themselves degenerate at P„. To resolve this ambi-

guity one must go beyond the large-X limit, as will be dis-
cussed in the last section.

Is this zero-mass bounce solution a plausible end point
for black hole evaporation? We think not. As described
in [5,3], the black holes formed by f-wave collapse have a
dilaton that increases monotonically up to a singularity at

The static solutions described here are nonsingular
at P„: rather they bounce off of P„and reach a singulari-

ty at P= —~. It is hard to see how the black holes
formed in a collapse process could smoothly evolve into
such a configuration.

It is tempting to try to instead interpret the zero-mass
bounce solution as the true quantum vacuum of the
theory. The singularities described in [5,3] might then be
viewed as punishment for expanding around the wrong
vacuum. Making sense of this idea would require finding
some sensible choice of boundary conditions at the hor-
izon, as well as for propagating through the kink at P,„;
we have done neither.

B. Quantum black holes

The conditions for solutions with regular horizons are
most easily investigated by introducing a new spatial
coordinate s = —x+x, so that the horizon is at s =0.
In terms of this coordinate the static equations become

e e
N
12

1/2 (3.&) —2P' —2sg" +4s(t' —
A, e ~

e ~(sp" +p') (+ —),
12

ln e 2&-
12 12

+e & =-ao-+c,
4P'p' —2P"= e ~ p' —p"+— (++,——),12 s2

e ~- acr+ —ln( —ao )+.. .
24

48am /N
ds — (1+ )( —dr +do ) .

(3.9)

One sees that o.= —~ is in fact an event horizon at finite
distance, and its vicinity is more easily investigated by in-
troducing the new coordinates

+ 24ao + /N — —24ao /Nx = —e (3.10)

From (3.9) one finds infinite curvature at x+=0 and
x =0; the horizon is singular. The singularity occurs at

where a, b, and c are constants. These have asymptotic
solutions as o-~ —~: (3.11)

A
2 2p(0)

p'(0) =—
2 1 —(&/12)e &'t '

z (o) 1 (E/24)e ~' '

2 1 (N/12)e ~' '—(3.12)

4P'+4sg" 4sg' 2p' —2sp—"+1, e —~=0 (dilaton) .

The conditions for the solution to be regular at the hor-
izon then follows from the finiteness of P" and p" or,
equilvalently, the vanishing of sP" and sp" at s =0. One
finds
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E= —— (B~—t) )p+2$(B+ —8 )g
1

(3.17)

from which it is evident that E=O for configurations
asymptotic to (3.13). A nonzero conserved quantity

—Jd~ (2a q+ya p)'+(2a y+ya p)'1

2

+2k, f e ~+ f—[(B+p) +(t) p) ]

(3.18)

e 2~=, g =8e 2~& cj p= —4&2
N
24' +—

is a solution. In static coordinates p is given by

p= —1n(&2A, o') .

(3.19)

(3.20)

can also be defined by virtue of the fact that t+ are func-
tions only of x +—. Note that for f (N ll2, which defines
the Liouville region, P is positive semidefinite, which
constrains possible choices of t +.

There is also a static solution corresponding to anti-de
Sitter space with a constant dilaton. It is easy to see
directly from (2.4) and (2.5) that the field configuration

down in a region of width of order A,
' containing the

critical line or, equivalently wherever P differs from P„
by an amount less than one. Large N fails to suppress
quantum fluctuations of the dilaton and metric within
this region.

In a sense this brings us back to where we started from;
the interesting physics occurs in a region outside the
reach of perturbation theory. Large N has failed to fully
tame strongly coupled quantum gravity. However, some
small progress has nevertheless been made in the follow-
ing sense. The breakdown of large-N perturbation theory
is limited to a small region of width A,

' (in contrast with
ordinary perturbation theory, which is bad in half of
spacetime). If we restrict our attention to processes on
scales large compared to A, ', this region is effectively a
one-dimensional line.

Progress might then be made if one assumes that the
exact quantum theory has a well-defined evolution. (Of
course we have no evidence in favor of this; it is impor-
tant and difficult to find out if this is indeed the case. )
This exact quantum theory will then imply some effective
boundary conditions along the critical line in the effective
theory at scales larger than A, '. Constraints on these
boundary conditions can be derived from consistency of
the low-energy theory. In the following we consider two
possible types of boundary conditions.

IV. DISCUSSION A. Bouncing off the singularity

In [5,3] it was argued in the quantum theory that a
small perturbation of the linear dilaton vacuum produces
a black hole. The black hole then evaporates leaving in
its place a configuration close to the linear dilaton vacu-
um until very near P =P„, at which point there is a singu-
larity. Thus the linear dilaton vacuum is unstable under
small perturbations, and is in this sense not the true vacu-
um of the theory. A candidate for the true vacuum is the
zero-mass configuration with a singularity at P=P„. One
should endeavor to understand this configuration.

Can we really reliably conclude that there is a singular-
ity at P=P„? The answer to this is no, because the I/N
expansion breaks down before the singularity is reached,
and the equations used to find the singularity are not a
good approximation to the quantum theory described by
(2.1). In terms of Feynman diagrams for perturbation
theory about the linear dilaton vacuum, the large-N ac-
tion (2.2) describes graviton-dilaton tree diagrams plus
one-loop matter. Graviton-dilaton loops are suppressed
as long as the propagator is of order 1/N. Equivalently,
the determinant of the matrix K governing small fluctua-
tions of p, P should be of order N . That determinant is
given by

In this picture the Universe ends at p=p„(or just be-
fore there, so that the large-N equations are valid), and
boundary conditions must be imposed there. In the vacu-
um, this line is timelike (if it is drawn just before p„), so
it might appear sensible to apply Dirichlet or Neumann
boundary conditions there. One might hope that, rather
than leaving the Universe, information can be reflected
off of the boundary line. However, there appears to be a
severe problem with this: the effect of throwing matter at
the line p=p„ is to change the trajectory of the bound-
ary from a timelike one to a spacelike one [5]. No local
boundary condition can alter this conclusion. It does not
seem possible to define sensible, unitary dynamics for a
system with spacelike boundaries.

B. Sailing through the singularity

Another possibility is that the boundary conditions
give a prescription for continuing through the singulari-
ty. It is well known that there are certain types of mild
"shock-wave" singularities in general relativity that do

12
(4.1)

This is indeed of order N in both the Liouville and dila-
ton regions for e ~ of order N, except when e ~ is near
N/12, which demarcates the two regions of the linear di-
laton vacuum. Since P= —

A,o, the 1/N expansion breaks

This is in any case necessary if the two-dimensional theory is
viewed as an effective theory for four-dimensional black holes.

4This is reminiscent of the problem of fermion-monopole
scattering analyzed by Callan and Rubakov [6].
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not prevent a unique and consistent evolution. The
present class of singularities are in fact quite rnild-
neither the dilaton nor metric diverge, while their first
derivatives typically blow up like t ' as the singularity
is approached. There is a substantial literature on the
problem of continuing through singularities arising in
partial differential equations of this general type. It in
fact appears likely that it is possible to find a rule for con-
tinuing through the singularity —the difficulty is in keep-
ing all the fields real while doing so. Work on this issue is
in progress.

Noted added in proof. The work of Hawking has ap-
peared in Caltech Report No. CALT-68-1774
(unpublished) and hepthxxx/9203052, and the work

of Susskind and Thorlacius has appeared in Stan-
ford Report No. SU-ITP-92-12 (unpublished) and
hepth@xxx/9203054.
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