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Dynamics of extremal black holes
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Particle scattering and radiation by a magnetically charged, dilatonic black hole is investigated near
the extremal limit at which the mass is a constant times the charge. Near this limit a neighborhood of
the horizon of the black hole is closely approximated by a trivial product of a two-dimensional black
hole with a sphere. This is shown to imply that the scattering of long-wavelength particles can be de-

scribed by a (previously analyzed) two-dimensional effective field theory, and is related to the formation
and/or evaporation of two-dimensional black holes. The scattering proceeds via particle capture fol-

lowed by Hawking reemission, and naively appears to violate unitarity. However this conclusion can be
altered when the effects of back reaction are included. Particle-hole scattering is discussed in the light of
a recent analysis of the two-dimensional back-reaction problem. It is argued that the quantum-

mechanical possibility of scattering off of extremal black holes implies the potential existence of addi-

tional quantum numbers, referred to as "quantum whiskers, "characterizing the black hole.

PACS number(s): 04.60.+n, 11.17.+y, 97.60.Lf

I. INTRODUCTION

Consider the theory consisting of Einstein gravity cou-
pled to electromagnetism. This theory contains charged
black hole solutions for which the mass M equals or
exceeds, in Planck units, the charge Q. For M (Q, a
naked singularity appears. According to Hawking [l], a
quantum-mechanical black hole of mass M )Q will evap-
orate incoherently until it reaches the extremal value
M =Q, at which point the Hawking temperature van-
ishes and the evaporation ceases. Thus the extremal solu-
tions are expected to be the end points of Hawking eva-
poration and correspond to stable quantum ground
states.

Let us now consider throwing a long-wavelength parti-
cle into the extremal black hole. This results in a nonex-
tremal black hole with a nonzero Hawking temperature.
It should therefore decay back to (one of) its extremal
ground state(s) via Hawking emission. ' This raises the
following interesting question: how does one describe the
scattering of long-wavelength particles in the presence of
an extremal black hole7 A naive application of
Hawking's calculation suggests that it cannot be de-
scribed by a unitary S matrix, but rather should follow
from a nonfactorizable (but probability-conserving) "J
matrix" [2] mapping density matrices to density matrices.
On the other hand, the stability of such objects suggests
that their scattering might be similar to that of an ele-
mentary particle, indeed many have speculated that in a

strong sense extremal black holes are equivalent to ele-
mentary particles.

As emphasized by Preskill et al. [3] the semiclassical
methods used by Hawking to estimate decay rates of
highly nonextremal black holes break down when applied
to this problem. The reason for this is that the back reac-
tion of the emitted radiation on the black hole inevitably
becomes very large near the extremal limit. Consequent-
ly new approximation methods must be found to describe
particle-hole scattering.

In this paper we investigate some basic features of par-
ticle capture by charged dilatonic black holes (such as are
found in string theory) followed by reemission. It is also
true in this context that near extremality a discussion of
the Hawking process is incomplete without including the
effects of the back reaction of the emitted particles on the
black hole. Several features of the dilatonic black holes
render them more amenable to analysis. First, as stressed
in [4], the extremal, magnetically charged, dilatonic black
holes are (unlike their Reissner-Nordstrom cousins) com-
pletely nonsingular. The upper bound on the curvature
can be made arbitrarily small by increasing the charge.
Thus there is no reason to believe that short-distance
physics plays any role in low-energy particle-hole scatter-
ing. This strongly suggests that the scattering of low-
energy particles ofiof extremal black ho1es is essentially a
problem in lou-energy quantum gravity, and is indepen-
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tAlthough for Q ) l it might also decay to several extremal

black holes. We shall ignore this possibility in the following.

2This is, however, for slightly different reasons than those
given in [3]. Unlike the Reissner-Nordstrom case, the tempera-
ture of a charged dilatonic black hole does not rapidly vary near
extremality. The back reaction is nevertheless important be-
cause energy conservation implies a large change in the
geometry during a typical emission process.
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dent of the cuto+ Therefore the role played by string
theory in the present developments is not to provide a
consistent cutoff for quantum gravity, but rather to sug-
gest modifications of the low-energy theory which render
the computations more tractable.

Second, we shall see that the low-energy dynamics of
near-extremal dilatonic black holes reduces in a simple
way to a two-dimensional problem. This allows us to in-
troduce a two-dimensional effective theory to summarize
the essential physics. Progress in understanding this
two-dimensional problem, and in particular in treating
the back reaction, was recently made in [5], and will be
applied to higher-dimensional physics in the present
work.

Our understanding of the two-dimensional problem is
unfortunately insufficient to answer the basic question of
whether or not there is loss of coherence in scattering
from black holes. The discussion of [5], translated into
the present higher-dimensional context, suggested the
possibility that the extremal black hole behaves like an
ordinary quantum system with a possibly infinite
ground-state degeneracy. The existence of a unitary S
matrix then follows if the number of ground states is
finite. However if the ground state degeneracy is infinite,
scattering may still lead in practice to quantum incoher-
ence because the quantum state of the black hole is not
observable. However, it is argued that even in this case
there can be superselection sectors leading to coherent
scattering. This must be so if the accessible black hole
entropy is finite, as indicated by Hawking s area law. The
superselection sectors are labeled by conserved quantum
numbers which are examples of quantities we refer to as
"quantum whiskers. " These are a potentially infinite set
of new parameters which are determined by direct
scattering off of the black hole ground state

This paper is organized as follows. Section II contains
a description of the near-extremal geometry of four- and
five-dimensional dilatonic black holes, reviewing and ex-
tending results of [8,9,4, 10,11]. In Sec. III we explain
how coupling to the dilaton imparts an effective mass to
most modes in a large region surrounding the black hole.
Section IV contains a discussion of semiclassical Hawk-
ing radiation in a regime for which the back reaction can
be ignored, and a brief comment on stringy black holes at
or above the Hagedorn temperature. In Sec. V a two-
dimensional effective field theory is derived for the
description of low-lying excitations of the extremal black
holes. Section VI addresses the issue of quantum coher-

This is less evident, but we suspect nevertheless true, in the
Reissner-Nordstrom case because the extremal solutions are
singular. We also note that this conclusion could be affected if
there is a tendency for large Q black holes to quantum-

mechanically fracture to minimal Q black holes, for which the

curvature is large and quantum gravity effects may be impor-

tant.
~However very recent work [6,7] rules out some of the conjec-

tures made in [5], at least in the form given therein. The
relevance of [6,7] of the present work will be discussed in Sec.
VI.

ence of particle-hole scattering. The implications of the
two-dimensional analysis of [5] are discussed, and the no-
tion of quantum whiskers is explained. Brief concluding
comments are made in Sec. VII.

Although there are occasional references to issues in
string theory throughout the paper, we believe that the
implications of our work extend beyond string theory and
hope to have written this paper in a manner accessible to
nonstring theorists.

II. APPROACHING THE EXTREMAL LIMIT

We begin by describing the peculiar behavior of dila-
tonic black holes near the extremal limit where the mass
M equals a constant times the charge Q. As will be seen,
the geometry greatly simplifies in this limit. We first con-
sider the case of large Q (in Planck units} and restrict at-
tention to the region near or outside the horizon. In that
case the curvature is everywhere weak and cr model per-
turbation theory should be valid.

The four-dimensional black hole solutions of string
theory described in [8,4] have higher-dimensional gen-
eralizations as found in [10]. In particular, the five-
dimensional member of this family of solutions (studied
in [9,12,11])has a simple and interesting structure which
makes it a natural laboratory, along with the four-
dimensional solutions, for studying black hole dynamics.
We begin with this five-dimensional case.

A. The five-dimensional case

2(y —y, ) Q Q +b s+Ascosh2o.
2h~cosh o.

H =Qe, ,

(2.2)

where the quantity b, s is related to the mass M (in the
o -model metric g} by

' 1/2
M Q4+3 (2.3)

5The following metric is a simple coordinate transformation of
the expression found in [10].

Note that the present definition of the mass differs from [11]
but agrees with [10].

The five-dimensional black hole can be derived as a
solution of the low-energy effective action for string
compactification down to five dimensions:

Ss = J d xv' —ge ~[R+4(VQ) ,'Hz], —(2—.1)

where H =d8 is an antisymmetric tensor field strength,
fields which do not enter into the solution are omitted
from (2.1}, and we have set a'=1. The solution can be
expressed as [10]

ds = —Q tanh o dH

+(Q Q +b s+ b &cosh2cr }(do +d 03),
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dO& and e3 are the line element and volume form on the
unit three-sphere; and Q is integrally quantized in units of
a'. A black fivebrane solution of ten-dimensional string
theory may be obtained from (2.2) by simply tensoring
with the Hat five-dimensional metric.

The extremal limit is

65~0, (2.4)

Region (i) is far from the black hole where the metric is
nearly flat and the dilaton nearly constant. Region (ii) is
the mouth of the black hole at which the curvature be-
comes large. At the mouth one enters the long throat re-
gion. The proper length of the throat region is

1n(Q/b, , ) (2.5)

which diverges as 65—+0. The dilaton varies nearly
linearly along the throat, and the radius of the three-
spheres of constant o and r is nearly constant. The
throat then ends at the horizon. The coordinate system

which implies M =2Q/3. Near this limit one can distin-
guish four regions of the black hole (see Fig. 1):

(i) 0 » —,'1n(Q/b, 5) AF region,

(ii) cr ——,'in(Q/b, 5) mouth

(iii) —,'ln(Q/6s) »o »1 throat

(iv) 0 =0 horizon .

(2.2) does not cover the region inside the horizon, where
in any case o. model perturbation theory breaks down.

The distinguishing feature of this geometry, shared by
the four-dimensional black hole discussed in the next sub-
section, is that the distance from the mouth to the hor-
izon diverges in the extremal limit. This will be seen to
have interesting physical consequences. It also leads to
several inequivalent ways of approaching the extremal
limit. In the first approach, one keeps the AF and mouth
regions (i) and (ii) fixed, while allowing the horizon to
move off to infinity as As~0. The geometry is then [9]

T

ds = —Q dr + 1+ (dyi+y~dQ~i),

e '=1+ (2.6)

H =Qe3,

where y =+26,scoshcr Thi. s describes a supersymmetric
"black hole" with no horizon or singularity. Rather
there is a semi-infinite throat attached to the AF region.
The dilaton grows linearly and therefore the action (2.1)
becomes strongly coupled far down the throat. As ar-
gued in [9], in string theory there is an enhanced (4,4)
world-sheet supersymmetry in this limit, which implies a
nonrenormalization theorem. Thus (2.6) describes an ex-
act solution to the classical string equations of motion
[9]

A second method of approaching the limit [11] is to

keep the horizon and e '=255e ' fixed while letting
—2&o 2&0

the AF region move off to infinity as 65~0. One then
obtains

ds = —
Q tanh cr dr +Q do +Q dQ3,

'o
e ' =Q cosh o,
H =Qe3 .

(2.7)

Horizon

Throat

Mouth

which describes the horizon region attached to a semi-
infinite throat. The dilaton again grows linearly along
the throat, but approaches weak coupling at the end.
This limit can also be shown [11]to correspond to an ex-
act classical string solution by constructing the underly-
ing conformal field theory as the tensor product of
SU(1, 1)/U(1) and SU(2) Wess-Zumino-Witter (WZW)
theories. This construction corresponds to a spacetime
which includes the region inside the horizon and near the
"singularity. "

It is also of interest to consider the "throat limit" in
which both the horizon and the AF region tend to
infinity, leaving an infinite throat described by

FIG. 1. (a) Pictured is the Penrose diagram for the four- or
five-dimensional dilatonic black hole. Also shown is a spatial
slice through the geometry. (b) The intrinsic geometry of the
spatial slice of (a) is that of an asymptotically Hat region with an
attached long tube. In the extremal limit the length of the tube
becomes infinite.

ds2= —Q dr +Q der +Q dQ3,

0= —~+No

H =Qe3,

(2.8)

with $0=$0+In(2&Q ). At one end the linear dilaton is
strongly coupled, while at the other it is weakly coupled.
This liinit also corresponds to a string solution [9], given
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by a level Q, SU(2) WZW model together with a Feigin-
Fuks-like theory.

B. The four-dimensional case

The extremal limit of the four-dimensional magnetical-
ly charged black hole of [8,4) has behavior similar to that
of the five-dimensional black hole of the previous section.
It is a solution of the effective action arising in string
compactification to four dimensions:

S4= jd xv' —ge ~[R+4(VP) —
—,'F ] . (2.9)

where F is the electromagnetic field strength and ir-
relevant terms are again omitted. The black hole is given

by

ds = —4Q tanh o d r + (2M +h~sinh cr ) (4 d cr +d Q z ),

2(p p ) 2M+54sinh o.
e (2.10)

64cosh 0.

F =Qe~,

ds2= 4Q2d++4Q2d(r2+QZdQ2

(t
= —o+(to

F =Qe2 .

(2.14)

We note that at the classical level there are also electri-
cally charged [8,4] as well as dyonic solutions [8,14].
However in a theory with massless charged fermions,
such as heterotic string theory, the electric charge will be
rapidly discharged through Schwinger pair production.

III. PERTURBATIONS ON THE THROAT

dimensional solutions, and that again one of them is the
low-energy limit of the exact black hole solution of [13].
This means that the extremal four-dimensional black hole
should correspond to an exact solution of string theory
which is the product of two conformal field theories [11].
The theory describing the angular variables corresponds
to the round two-sphere penetrated by uniform magnetic
flux. Finally, there is the limit corresponding to the
infinite throat with linear dilaton as in (2.8):

where diaz and e2 are the line element and volume form

on the unit two-sphere. M=e 'M~0M is again the o-
model mass, the magnetic charge Q is quantized, and b,4

is given by

54=2M— (2.11)

In the extremal limit the throat length approaches
infinity as before. Therefore at 64=0 there are three dis-

tinct solutions. The AF region plus infinite throat is given

by
2

ds = —4Q dr + 1+— (dy +y dQ2),
y

2(p —po) Q'+y
F =Qe2

(2.12)

Unlike the five-dimensional case, this extremal limit is
not supersymmetric [4]. The horizon plus infinite throat
1S

ds = —4Q tanh o dr +4Q do + Q d Qq,

2(P —Po)

F =Qe2 .

cosh a
(2.13)

As previously, in the extremal limit M~Q/2 there are
four regions:

(i) cr » —,'ln(Q/b«) AF region

( ii ) o —
—,
( 1n( Q /b, 4) mouth

(iii) —,'ln(Q/b~) )&cr )&1 throat

(iv) o =0 horizon .

S&= —Jd x&—ge "~(Vg) (3.1)

governing the generic perturbation 1(, and the constant b

depends on the mode in question. Were it not for the di-

laton background this action would describe a free, mass-

less propagation a1ong the throat. However, the linear
dilaton modifies the dispersion relation. This can be seen

by defining a new (canonically normalized) fiuctuation by

(3.2)

We have argued that near the extremal limit the essen-
tial features of the geometry are the asymptotically flat
region and the attached long throat. For the purpose of
studying emission and absorption of particles it is impor-
tant to elucidate the propagation of fields along this
throat. In particular, in the Hawking process particles
are emitted in the vicinity of the horizon and must propa-
gate up the throat to escape to infinity. In this section we
will argue that the interaction with the linear dilaton re-
sults in significant attenuation for most low-energy parti-
cles. (This simple conclusion was also independently de-
rived in the more detailed analysis of [15];there the argu-
ment was made in the "canonical" metric, which differs
from the metric herein by a dilaton rescaling. )

This propagation is described by considering small per-
turbations of the fields about the linear-dilaton solution;
the equations governing these perturbations are obtained

by linearizing the equations arising from the actions (2.1),
(2.9), or their generalizations incorporating other fields.

Although straightforward, this is somewhat complicated
due to the mixing between the perturbations, etc. How-
ever, for perturbations moving along the throat, the cou-
plings to the background are quite simple: the metric in

the direction along the throat is flat, and there is an ex-

ponential coupling to the linear dilaton. Thus when one
diagonalizes the kinetic matrix one finds actions of the
form

Note that this solution is a product of two two- One then finds



46 DYNAMICS OF EXTREMAL BLACK HOLES 631

S=—f d x& —g [(Vg) +b'(Vp} 1''+bVQVQ'] .

(3.3)

Along the throat the last term is a total derivative and
the effect of the linearly varying dilaton is simply to give
amass m =b (Vp} to 1':

S,„„„=—f1 xV g—[(VQ) + 11 ] . (3.4)

The mass is m =b/&Q in the five-dimensional case and
m =b/2Q in the four-dimensional case. Propagation of
excitations below the mass gap is exponentially
suppressed. This is in accord with the observation of [4]
that there is a barrier surrounding the near-extremal
black hole that suppresses emission and absorption.

In order that the range (4.3) be large we need Q))1.
This also implies that the temperature is small as com-
pared to the Planck temperature, T &(1, and that, within
the context of string theory, higher mass string modes
may be ignored.

As argued in the preceding section, perturbations
propagating along the dilation throat into or out of the
hole are governed by the action (3.4). The radiation rate
for such perturbations can be calculated by the usual
Hawking [1] methods. This rate may be estimated for
small b& as follows. (We describe the four-dimensional
case, although the five-dimensional case is similar. ) The
number of particles emitted from the vicinity of the hor-
izon of the hole per time in the energy range (E,E+dE)
should be governed by the usual thermal factor

IV. SEMICLASSICAL EVAPORATION
NEAR THE EXTREMAL LIMIT

dE 1d11-
2n. e}1~+I

(4.4)

A dilatonic black hole formed from gravitational col-
lapse will in general emit ordinary Hawking radiation.
Holes with arbitrary mass M & M,„„,,&

will thus eventu-

ally approach the extremal limit. In this section we will
use semiclassical methods to investigate the properties of
the radiation near the extremal limit. As will be
quantified shortly, these methods break down before the
extremal limit is reached due to a large back reaction.
However, for large Q, there is nevertheless a range of
near-extremal values of M for which the back reaction is
negligible. As we will see, in this range the radiation has
some rather novel features.

The inverse temperatures

Pq=81rM, P5=21r(QQ +b +5 )' (4.1}

of the black holes are given by the periodicity of the Eu-
clidean sections. Note that as the extremal limit is ap-
proached these temperatures approach finite values

T4 = 1/4' Q T5 = 1/21r&Q (4.2)

However at the extremal limit, no identification is re-
quired to make the Euclidean section regular, and the
temperature vanishes.

A. Radiation for Q »1
Consider the near-extremal range

Q»h, »1/Q (D =4),
Q»h, »1/&Q (D =5) . (4.3)

For 5 less than the upper bound the length of the throat
exceeds its width. The lower bound is required in order
that the back reaction can be neglected. The back reac-
tion is important whenever the energy of an emitted
quantum is comparable to the deviation of the mass from
extremality since then the geometry changes significantly
during the emission of the quantum. Near extremality
this deviation is proportional to 6, so the back reaction
becomes important when 6-T; the temperature rela-
tions (4.2) then give the lower limits in (4.3). The impor-
tant case where 5 is less than this bound will be discussed
in Sec. V.

(with + for bosons or fermions) times the transmission
coeScient for a particle of energy E to escape from the
vicinity of the horizon to infinity. In the case of an ordi-
nary black hole this latter coeicient is of order unity;
however, the effective mass in (3.4) modifies this behavior
near extremality. Indeed, propagation of excitations
below the mass gap, E & b /2Q, is exponentially
suppressed with amplitude

A (0)exp( }/b 4—Q E o—) . (4.&)

4Q2E2 b 2 (4.6}

for E )b/2Q. This yields an estimate of the rate loss of
mass from the hole:

dM I E dE (4Q2E2 b2) 1

dt bl2Q e ~ +$ Q2
(4.7)

7This can equivalently be seen without the field redefinition
(3.2) if one takes into account the factor e ~ in the normaliza-
tion.

Since the throat has an extent -ln(Q/b), this means
that the tunneling rate has a suppression factor —6 for
energies far below the gap.

This is not, however, suScient to imply the vanishing
of the radiation rate in the extremal limit. The reason is
that the temperature in this limit is T-1/Q and there-
fore there is appreciable probability for producing parti-
cles with energies above the mass gap. Since the proper
radius of the mouth is also of order Q, the energy needed
for a particle of angular momentum I to be transmitted
into or out of the throat is given by
E -b /4Q +l(1+1)/Q . Therefore the s wave (1=0)
dominates. A rough estimate of the evaporation rate can
then be made by approximating the transmission
coefficient by unity for E &[b /4+1(1+1)]/Q and
zero otherwise. Then the sum of transmission probabili-
ties over angular momenta is approximately

T(b, E)= g (21+1)6[+4Q E b &l (1 +1—)]—
I
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B. Radiation for Q —1

Now we turn briefly to the question of Hawking radia-
tion for near-extremal five-dimensional black holes with
small values of Q = n (Al.though similar statements
could in principle be made for the four-dimensional
holes, the exact form of these solutions for small n is not
known. ) One might expect that quantum effects will al-
low extremal black holes to bifurcate. For the five-
dimensional case supersymmetry suggests that higher Q
black holes are neutrally stable, but they might be split
up into lower Q black holes by particle scattering. If this
is the case, Q = 1 black holes would behave the most like
fundamental particles and would be the most interesting
objects to study. However it is clear that quantum gravi-
ty effects are then important. In the context of string
theory the low-energy field theory approximation is not
valid because the Hawking temperature near 65=0,

1T5-
2irv'na'

(4.8)

is high enough to excite massive string modes. (Here we
have momentarily restored the suppressed factor of a'. )

Indeed the Hagedorn temperatures are

T, = (type II),1

2 ir 2a'

Note that the rate approaches a nonzero value in the ex-
tremal limit. (This is contrary to [3] but in accord with
the independent observations of [15].)

This naive estimate might seem to suggest that eva-
poration could continue beyond extremality to produce a
naked singularity. However, a crucial ingredient has
been neglected: the back reaction of the radiation on the
geometry of the black hole. As stated above, this will be-
come relevant when h4- I/Q (b5- I/&Q ). It is clearly
very important, and difficult, to investigate the physics of
the black hole in this limit to resolve the issue of what
happens in the end stages of the Hawking process. Al-
though we cannot at present give a full treatment of the
four- or five-dimensional problem of the back reaction,
progress can be made in this direction by exploiting the
connection between the higher-dimensional solutions and
the two-dimensional black hole. This wi11 be discussed in
Sec. V.

V. THE LOW-ENERGY EFFECTIVE FIELD THEORY

In the preceding section we have argued that very near
extremality, 6 & T, the back reaction must be included in
examining the subsequent evaporation of the black hole.
Though the dynamics in this region are not well under-
stood, it is reasonable to suppose that the energy of an
emitted quanta in this region is bounded by
M —M,„„,,&, since the emission of a quanta exceeding
this bound would result in a naked singularity. For
sufficiently small M —M,„„,,&, this implies an exponen-
tial suppression for emission of modes which are massive
along the throat. The dynamics are then dominated by
those modes which are massless along the throat, i.e.,
have b =0 in (3.1). As we shall see, such massless modes
do arise in string theory, despite the generic tendency for
dilaton-induced masses.

The regime 6 ((T is also the regime of interest for the
problem discussed in the introduction of scattering parti-
cles off of an extremal black hole. If the energy of the in-
coming particle is sufficiently low, the extremal black
hole can never be excited to a state with b,&-1/Q
(b,5-1/i/Q ). The hope is that particle-hole scattering
can be described by perturbation theory about the ex-
tremal black hole.

Since all the relevant dynamics for b,4 « 1/Q
(h~ && I/i/Q ) occurs at length scales much greater than

Q (&Q ), it is useful to derive a low-energy effective ac-
tion to describe these dynamics. The back-reaction prob-
lem may then be analyzed in this context. It will turn out
that this effective action is partially two dimensional, and
leads to a direct and simple relation between the process
of absorption and reemission of a particle by a higher-
dimensional extremal black hole with the process of for-
mation and reevaporation of a two-dimensional black
hole.

A. The throat limit

Let us first consider the throat limits (2.14) [(2.8)] of
the four- (five-) dimensional black holes. In that limit the
geometry is the product of two-dimensional Minkowski
space with a two- (three-)sphere of radius Q (~/Q ). The
effective action at scales longer than Q (v'Q ) can be de-
rived by the usual Kaluza-Klein procedure for
compactification from four (five) to two dimensions on a
two- (three-)sphere. The result is

1
(heterotic) .(1+v'2)mi/2a'

(4.9) Si= fd ai/ ge ~[R—+4(VP) +4k, ], (5.1)

with A, =1/4Q (1/Q) for four dimensions (five dimen-
sions). In addition there are two-dimensional gauge fields
arising both as relics of higher-dimensional gauge fields
and from isometrics of the compactification spheres.
These gauge fields may lead to dyons and other interest-
ing effects (they do not propagate in two dimensions), but
it is consistent to set them to zero as shall be done in the
present analysis. Corrections to (5.1) are suppressed by
powers of Q.

Equation (5.1) has a two-dimensional black hole solu-
tion given by

Thus in the heterotic case the n =1,2 black holes are
above the Hagedorn temperature in the heterotic theory,
as is the n =1 hole in the type II theory. Furthermore,
the n =2 hole is precisely at the Hagedorn temperature
in the type II theory. This obviously brings some new
and fascinating issues, beyond the scope of the present
work, into the study of extrernal black holes. Recent
work [9,13,11] obtaining the five-dimensional extremal
black holes as exact solutions of string theory may be use-
ful in this regard.
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A@2= —g 2tanhzg Jr +g 2jg2
—2(P—

Pp)
e '=A, cosh cr .

(5.2)

which is precisely the two-dimensional portion of the
higher-dimensional black hole solutions described in the
previous sections (as well as, for 1, =k/2, the low-energy
limit of the exact conformal field theory discussed in
[13]). Thus the effective action (5.1) actually describes all
the configurations of the horizon limit.

One key to the relation between the two- and higher-
dimensional scattering problems alluded to above is now
apparent. The masses of the four-dimensional and five-
dimensional black holes are related to the value of the di-
laton at the horizon by

'p2p„2e h4

+4Q'+ a,'+a,
and e

QQ +b,,+65

(5.3)

from (2.2) and (2.10). But recall [13]that the mass of the
two-dimensional black hole is given by the value of dila-
ton at the horizon:

—2P„—2'qt'p 4, 5
M2& ~e ~e (5.4)

where we work near the extremal limit. Thus the eva-
poration of or scattering by higher-dimensional black
holes near extremality is closely related to analogous pro-
cesses for two-dimensional black holes near zero mass.

While (5.1) does have interesting black hole solutions,
it is a theory with no propagating degrees of freedom; the
two constraints and two gauge conditions of two-
dimensional gravity absorb the 3+1 degrees of freedom
of the metric plus dilaton. This means that gravitational
collapse and Hawking radiation cannot be studied in the
theory (5.1). However, within the context of an enlarged
theory such as string theory, there are additional massless
fields, neglected in (2.9) and (2.1), which do lead to propa-
gating degrees of freedom in (5.1). The precise form of
these fields differs between the four- and five-dimensional
case, and also depends on the type of string theory under
consideration.

For a four-dimensional compactification of heterotic
string theory there are for example typically massless sca-
lars M resulting from compactification moduli. These are
governed by an action of the form

S~=fd x& ge ~(—VM) (5.5)

[compare (3.1)]. This should be added to (2.9). The fac-
tor of e ~ appears in front of all terms in the classical
action. As in (3.2)—(3.4) it may be eliminated by the field
redefinition Q=e ~M. Would-be massless contributions
to the two-dimensional effective action arise from modes

of M which are constant on the compactification two-
sphere. However, as in (3.4) it is clear that even this
lowest-energy mode does not give rise to a massless two-
dimensional mode, since the dilaton background pro-
duces a mass of order 1/Q (1/t/Q ). More generally,
massless bosons in four dimensions with the e ~ prefac-
tor will not lead to massless two-dimensional fields.

The situation is different in some cases for fermions.
The effective action for a four-dimensional heterotic
string compactification contains the charged fermion
term

S&=f d x& g—e ~XIX, (5.6)

where D here is the gauge-covariant derivative. The e
prefactor may be absorbed by defining X=e-4X

S = d4x —gy y. (5.7)

F=e df, (5.10)

where e is the Hodge dual. Further reducing to two di-
mensions on the three-sphere, one obtains the effective
action

S/= fd o& g(Vf)— (5.11)

Thus f is a massless scalar which moves along the throat.

Unlike the case of bosons, this redefinition does not pro-
duce an effective mass term. Sz will lead to a massless
field in (5.1) if y has a zero mode on the two-sphere. An
index theorem relates the number of such zero modes to
the integral of F over the two-sphere. One finds that (5.1)
can be supplemented by a charged Dirac fermions f con-
taining both chiralities:

S~= fd crag/. (5.8)

These can be seen to be the only low-energy modes on the
throat for the four-dimensional black holes.

The situation again differs for the five-dimensional
black holes. In this case the two-form field strength I' is
replaced by the three-form H. However since fermions
do not couple directly to the corresponding potential 8,
there are no corresponding zero modes. In fact for
heterotic string theory it can be seen that there are no
zero modes at all. This is not the case for type II strings.
For example, the type II a string contains a Ramond-
Ramond four-form field strength I =d A governed by the
low-energy action

S fg 10x i/ g F FMNPQ (5 9)

The usual factor of e ~ could be reinstated in (5.9) by
redefining A, but this would result in an A d P term in F
and a nonstandard gauge transformation law for A.
After reducing to five dimensions, F is equivalent to a sin-
gle scalar field f defined by

8This is in accord with the suggestion of Witten [13,16] that
the two-dimensional vacuum be interpreted as an extremal
black hole.

%e are grateful to Mark Alford for useful conversations on
this issue.
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B. Interacting efFective field theory

In the previous subsection the effective field theory
governing long-wavelength excitations of the throat was
derived. The effective field theory governing the AF re-
gion outside the mouth is given by (2.1) or (2.9), supple-
mented by terms describing the other fields. The full
effective field theory is obtained by gluing the two field
theories together at the black hole mouth, as we now de-
scribe.

For notational simplicity we consider only the five-
dimensional black hole and only the dynamics of the
massless scalar field f, treating the metric and dilaton as
fixed backgrounds. Let us separate the scalar field f into

f2 and f» which have support on the throat and asymp-
totic region, respectively. The scalar field on the throat is
governed by the action

reexpress the functional integral in terms of a two-
dimensional field theory with a fixed Dirichlet boundary
condition fz(0, r)=0 and operator insertions at o =0.
The result is

Z= f2)D fp)f
where

Sl= f deaf»(X"(r))B f~(0, r)

(5.18)

(5.19)

and the subscript D on the integration measure denotes
that f, (0, r)=0.

More generally one must include effects due to the
finite mouth size. The technology for including these
effects has been developed in the context of wormhole
theory. The most general expression consistent with lo-
cality and energy conservation is

(5.12)
Sii= f d rC,,8(»X(r))6 (20, r), (5.20)

where —~ (~( ~ and 0(o.( ~. The mouth of the
throat is at o. =0, and boundary conditions there will be
discussed shortly. Outside the black hole, the scalar
modes f, are governed by the five-dimensional eff'ective

action

S»[f»]=f d x(Vf») (5.13)

Thus the full long-distance action has two pieces: one
corresponding to the region where the universe is
effectively five dimensional, the other where it is
effectively two-dimensional.

The field theories corresponding to the two different re-
gions are matched along the world tube X"(~)+Rn "(0)
of the black hole mouth. [Here n "(0) is the unit normal
to S .] The values of the scalar fields f along this world
tube must agree as the mouth is approached from inside
or outside, and this in general leads to the boundary con-
dition

fi(r, cr =O, Q) =f»(X"(r)+Rn "(0)) . (5.14)

Within the functional integral this functional constraint
may be enforced by Lagrange multipliers. In the low-

energy limit where modes with nonzero angular momen-
tum are neglected, the mouth is replaced by a point and
(5.14) reduces to the Q-independent constraint

fi(0, r)=f»(X"(r)) . (5.15)

This boundary condition is enforced by introducing a sin-

gle (time-dependent) Lagrange multiplier, P(r), into the
functional integral:

Z = f2)f2 2)f, 2)p e (5.16)

where S» and Sz are given by (5.13) and (5.12), and S& is

given by

Sp= fdr/3(~)f»(X(~)) f d~P(r)f, (0,r) .—(5.17)

Z involves a weighted integral over all possible
Dirichlet-type boundary conditions at the boundary o. =0
of the two-dimensional field theory. One can then in-

tegrate out both the boundary value f (0, ~)anted f3(r) to

where the 8's are complete sets of local operators in the
theories and a detailed calculation is required to deter-
mine the constants C;, . The coefBcients C;, for the
angle-dependent modes will be suppressed due to the
large effective barriers.

This analysis extends in an obvious way to incorporate
the other fields in the theory. S2 and S5 and the measure
in (5.18) are promoted to the full expressions involving
the metric and dilaton. Since (e.g. ) the dilaton has no
propagating massless excitations along the throat, a low-

energy dilaton pulse incident on the black hole cannot
enter the throat unless it turns into an f pulse, a process
which occurs only at higher orders. The boundary condi-
tions lead to the important constraint that the (fixed)
value Po of the dilaton zero mode in the asymptotic re-
gion match the value of the dilaton at the mouth o.=0 of
the two-dimensional region.

While the four-dimensional case is largely similar,
some new features arise due to the well-known peculiari-
ties of the charged Dirac equation in the presence of a
magnetic source. This will be the subject of a separate
publication [17].

In summary, the low-energy effective action contains
an asymptotically Aat four- or five-dimensional and a
two-dimensional piece joined along the black hole mouth.
Interactions between the two pieces are represented by
local operators integrated along the mouth world line.

VI. IS THERE A UNITARY S MATRIX?

We now return to the issue of how to describe scatter-
ing from extremal black holes. In the present context we

may wish to consider, for example, scattering of low-

energy f particles off of extremal black holes.
There are two distinct possibilities that have previously

been discussed in the literature: either black holes exhibit
intrinsically nonunitary dynamics or they undergo
coherent quantum-mechanical evolution. In the former
case it has been argued [2] that black hole dynamics may
be described by a probability-conserving but nonunitary
5 matrix. Such a matrix linearly maps density matrices
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to density matrices, but allows an arbitrarily large loss of
information or increase in entropy.

Although nonunitary dynamics is a logical possibility
that cannot be ruled out at present, there are several
reasons to favor the alternative. One of these is the clas-
sical thermodynamical result that a fixed entropy should
be associated with a black hole of a given mass: this is a
result that would be expected if at the fundamental level
the black hole were a quantum-mechanical system.
Indeed, with the definition S = —Tr(p lnp) of the entro-

py, an N-state quantum system has a maximum entropyln¹ This latter result is suggestive that not only are
black holes quantum systems, but that they have finitely
many accessible states at a given mass level. (We will ex-
amine a different possibility shortly. )

In the present context this problem naturally divides
into two parts. The first is unitarity of the two-
dimensional effective field theory of Sec. VA (argued
there to describe particle-hole scattering after the f parti-
cle enters the throat region). If this two-dimensional
theory is not unitary (e.g., due to singularity formation),
then it is highly unlikely that low-energy f-particle-hole
scattering is unitary. On the other hand, unitarity of the
two-dimensional field theory (5.1) does not necessarily
imply that there is a unitary S-matrix for f-particle-hole
scattering. The reason for this is simple: from the
higher-dimensional viewpoint, the state of the two-
dimensional field theory inside the black hole mouth is
unobservable and should be traced over. ' More explicit-
ly, one first computes the S matrix for the full S5+Sz
field theory. This maps the initial density matrix
p(0)=p2(0)p&(0) to the final density matrix Sp(0)S~.
One then traces over the unobservable f2 field theory to
obtain the five-dimensional density matrix,
p5=tr2[Sp(0)S ]. This will in general correspond to a
mixed state.

Some progress on the question of unitarity of the two-
dimensional theory was made in [5], in which the process
of black hole formation and evaporation in the two-
dimensional field theory (5.1) (the two-dimensional analo-
gue of particle-hole scattering) was analyzed. It was sug-
gested that a collapsing f wave (that is an fwave heading
toward 0 = Dc) dissipates its energy via Hawking eva-
poration and that the classical singularity at
(strong coupling) is removed. The absence of any singu-
larities would imply the existence of a unitary S matrix.
However more recent work [6,7] has provided strong evi-
dence that, while this strong-coupling singularity may
indeed not appear, other types of singularities occur in
the quantum theory at a fixed, critical value P, of P. In
the linear dilaton vacuum (which corresponds to the ex-
tremal black hole) P =P, is a tiinelike line which
separates the vacuum into two regions governed by
different dynamics. The singularities found in [6,7] occur

This is somewhat different than the Reissner-Nordstrom
case, where the traced-over state of the black hole is inaccessi-
ble due to an event horizon, and the consequent loss of unitarity
is perhaps physically less disturbing.

when an incoming f particle hits this critical line. " The
proper interpretation of these singularities is not evident
to us at present. However in the present context we note
that they might be avoided as follows. ' The description
of f-particle-hole scattering does not require the full
two-dimensional field theory, since the latter is glued on
to the higher-dimensional theory near the line P=Po,
where Po is approximately the higher-dimensional asymp-
totic value of P. If we choose Po) P„ then the singular
line of the two-dimensional field theory is avoided entire-
ly. By introducing a large number X of f particles, this
may be accomplished within the weak-coupling regime,
and the corresponding scattering processes perhaps com-
puted perturbatively. However it is not clear to us at
present that the problems do not pop up somewhere else,
and this suggestion should be regarded as tentative.

%'hile the resolution of these issues is extremely impor-
tant, to proceed for the moment we assume that the two-
dimensional field theory is unitary, and consider the
consequences for higher-dimensional f-particle-hole
scattering. In general, whether or not this scattering is
efFectively unitary depends both on the internal theory of
the black hole (as given by the two-dimensional theory of
Sec. VA) and on the couplings between this theory and
the external world. There are important constraints on
these couplings in the present context, as follows. The re-
sults of [5] suggest that the interaction time scale for f-
particle-hole scattering is of the order of the black hole
size; i.e., the interaction Lagrangian of the low-energy
field theory is local in both time and space. Therefore the
effect of the incident f particle in the low-energy approxi-
mation is simply to induce transitions among the ex-
tremal black hole ground states. This corresponds to an
interaction Lagrangian of the form

SI= Jd~C;, 8's(X(~))T', (6.1)

where the T' are time-independent operators which act
on the black hole ground states. ' If the number of
ground states is X (where N may be infinite) then the T'
can be taken to be the generators of U(N).

If the number of ground states N is finite, this has the
important consequence that there can be no real loss of
quantum coherence. In that case the final density matrix,
though not that of a pure state, is of the form which
arises in the example of scattering off of a molecule with
E degenerate ground states whose quantum state is ini-
tially unknown. This is of course the usual case for real
laboratory experiments. Initially, scattering experiments
which induce transitions among the molecular ground

These singularities were noted in perturbation theory tn [5],
but it was not known if they persisted in the nonlinear theory.

'2The following idea was independently discussed in [7].
Note that a mixed functional integral-operator formalism is

being used here. Because the operators T' do not in general
commute with one another and are multiplied by time-
dependent functions 8, it is necessary to time order the evolu-
tion generating exponentials.
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states will lead to an increase in the entropy of the experi-
mental apparatus. However, its entropy cannot increase
to more than in%. After many scattering experiments,
the quantum state of the molecule is eventually deter-
mined, and further experiments do not then lead to a fur-
ther increase in the entropy of the experimental ap-
paratus. Thus, if the black hole has a finite ground state
degeneracy, the incoherence which arises from scattering
experiments is no more alarming than that encountered
in real laboratory experiments.

While not much is known about the ground states, the
possibility of an infinite degeneracy certainly cannot be
ruled out. In fact the recent analysis of [5] suggests that
the black hole could have an infinite number of ground
states labeled by different values of a global conserved
charge. While an infinite degeneracy is a necessary con-
dition for effective quantum incoherence (here we mean
over and above what ordinarily occurs in the laboratory),
it is not a sufficient condition, as can be seen from the fol-
lowing example. Suppose the infinite ground states ~m ),
m EZ of the black hole are characterized by
q~m ) =m~m ) where q is an operator, and that the only
coupling to the observable sector is given by

H, =f (X(r))q, (6.2)

where X(r) is the world line of the black hole and f is a

quantum field operator which creates f particles. This
theory has a superselection rule forbidding transitions
among the ground states. Off-diagonal elements of the
density matrix cannot be measured, and may be set to
zero. The density matrix is then of the form

(6.3)

This means that the black hole is in the state ~m ) with

probability p . The eigenvalue m of q, which determines
the quantum state of the black hole, may then be mea-
sured (to arbitrary finite accuracy) in a finite number of
f-particle scattering experiments. Once the state is deter-
mined, the results of further scattering experiments can
be predicted with quantum-mechanical determinacy.

The eigenvalue of q in this example is a new type of
quantum number which can label the internal state of an
extremal black hole. Classically black holes are charac-
terized by only a few parameters which are generally con-
served charges. Quantum mechanically they may carry
an additional few varieties of "quantum hair" which can
be measured by long-range interference experiments in-

volving strings [18]. We are finding here that there exists
the possibility of additional observable parameters
characterizing the internal state of the black hole. These
are detectable precisely because black holes are not black:
the parameters determine how an incoming particle
scatters to an outgoing one. The number of such pararne-
ters is potentially infinite when one considers all possible
scattering experiments. Whether there are sufficiently

many of them to completely characterize the internal
quantum state of the black hole depends on the details of
the scattering process. Like quantum hair, these new pa-
rameters exist only at the quantum level. Unlike quan-
tum hair, they can be detected only in a short-range

scattering experiment. We therefore refer to them as
"quantum whiskers. "

We wish to emphasize that it is a logical possibility
that the quantum whiskers as specified are determined
purely by the hair, either classical or quantum, on the
black hole. In that case they would not further distin-
guish different black holes. But it is also possible that the
quantum whiskers are independent quantities that can
take on infinitely many values, perhaps providing a
memory of the initial collapsing state which formed the
black hole. A more detailed dynamical analysis is re-
quired to answer this question.

The coupling given in (6.2) is of course very special.
The general situation is as follows. The linear combina-
tion of operators q~ —=H;~, q' appearing in the coupling
H; of the black hole to the external world form an alge-
bra of observables that generates a subgroup G of the
group U(N) of unitary transformations of the N
dimensional (where N may be infinite) space of black hole
ground states. G need not be simple or finite dimension-
al. The space of ground states then decomposes into irre-
ducible representations V„of dimension d„of G. The
general density matrix describing the black hole assigns a
probability p„ for the black hole to be in the representa-
tion V„(off-diagonal elements which mix representations
can again be set to zero. ) If a finite number of representa-
tions occur, the irreducible representation can be deter-
mined (e.g., by measuring the Casimirs) after a finite
number of experiments. The irreducible representation is
a conserved quantum whisker labeling the black hole.
(The quantum whiskers corresponding to values of the
other observables are not necessarily conserved, as they
may be changed in scattering experiments. ) If the irre-
ducible representation so determined is finite dimension-

al, the subsequent increase in entropy of the experimental
apparatus is bounded as before by lnd„. The quantum

state of the system can eventually be determined, and

quantum coherence is not effectively lost. An infinite

value of d„ is a necessary condition for an effective loss of
quantum coherence. We do not know the sufficient con-
ditions: we hope to return to this question in a future
publication.

Finally, there is an important question we have been
postponing: why should there be superselection sectors
among the black hole ground states? Of course they
might arise as a consequence of symmetries, but we have
no strong reason to believe that this is the case. Rather
we are arguing that it is a logical and interesting possibili-

ty. One piece of evidence is the following: according to
Hawking the black hole entropy is proportional to the
area and in particular is finite. This entropy should be
identified as lnd„ the entropy within a given superselee-

tion sector. On the other hand the possibility of arbitrary
values of global charges for black holes suggests, as in [5],
that the number of ground states is infinite. This is con-
sistent with finite d„only if there are indeed superselee-

tion sectors. Thus apparently something must give: ei-

ther (a) there are an infinite number of states within each
superselection sector, quantum coherence is effectively
lost and Hawking's area law for entropy is incorrect, (b)

the superselection sectors have a finite number of states,
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the area law is correct and quantum coherence is not tru-

ly lost, or (c) the black hole does not behave like a quan-
turn system.

VH. CONCLUDING COMMENT

In conclusion, we would like to comment on the gen-
erality of the previous discussion on quantum whiskers
and incoherence. It might appear that our discussion de-

pended heavily on specific properties of dilatonic black
holes and did not apply for example to the Reissner-
Nordstrom case. At the beginning of the previous sec-
tion we assumed, partially motivated by [5], that the
black hole is described by a quantum state, and that the
only potential source of information loss is tracing over
the quantum state. More generally, the who1e system
might be described by a density matrix together with a
S-matrix governing its evolution. However, these ma-

trices are subject to powerful physical constraints such as
probability conservation, locality and energy conserva-
tion. It is plausible, though we have been unable to prove
this, that every system compatible with these constraints
can be obtained by tracing over some internal, unmeasur-
able quantum system modeling the black hole (some re-

suits in this direction can be found in [19]). If this is true,
then our considerations are quite general and apply to
scattering off of any type of extremal black hole. If it is
not true, it would be very interesting to characterize
counterexamples in which particle-hole scattering can
truly lead to information loss without violating energy or
probability conservation, or storing the information in
the black hole.
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