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@CD with eight flavors is studied on 16 x Nt, lattices with Nq ——4, 6, 8, 16, and 32, a dynaznical
quark mass ma = 0.015, and lattice coupling P = 6/g between 4.5 and 5.0. For Nt, ——16 and
32, hadron masses and screening lengths are computed for a variety of valence quark masses. The
previously observed, strong, first-order transition for N& ——4, 6, and 8 is seen, for N& ——16, to become
a P-independent, zero-temperature transition characterized by a factor of = 3 change in lattice scale.
This strong, first-order transition restores chiral symmetry, at least for ¹= 4, 6, and 8, producing
a chirally symmetric, weak-coupling phase. However, as N& increases to 16, the chiral-symmetry
properties of the weak-coupling side of the zero-temperature transition are unclear and offer a hint
of a normal, finite-temperature, chiral-symmetry-breaking transition in the weak-coupling phase.

PACS number(s): 12.38.Gc, 11.15.Ha

I. INTRODUCTION

Among the possibilities offered by the numerical sim-
ulation of quantum chromodynamics (/CD) is that of
studying a variety of values of the physical parameters
of the system. In particular, a deeper understanding of
the physics of /CD may result from studying its depen-
dence on the dimension of the fundamental representa-
tion of the gauge group (the number of colors, N, ) and
the number of quark favors, Nf. In this paper we pur-
sue the latter alternative by considering the case of /CD
with eight light-quark Qavors.

By considering a range of lattice shapes and couplings
we intended to study the effects of eight quark favors on
both the finite-temperature /CD phase transition as well
as the hadron spectrum at zero temperature. However, as
we will see, such an investigation of the hadron spectrum
is seriously impeded by the complex phase structure of
eight-favor /CD.

Our work extends earlier T ) 0, eight-favor calcula-
tions [1—4] to larger lattices, smaller quark masses and
smaller lattice spacings, with perhaps surprising results.
The earlier work on 8s x 4 [1, 3], 64 [2], 84 [2, 3] and
16s x 4 and x6 [4] lattices shows a quite strong, first-
order transition. Comparing the transition for Nf = 2,
3, 4 and these eight-flavor calculations reveals a strength-
ening of the transition as the number of favors increases
[4, 5]. Both greater metastability at the critical value of
P and an expanded window of small quark mass within
which the transition occurs are found as Nf is increased.
Regardless of the number of Bavors, significant variation
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of P, is seen as the number of sites in the temperature
direction, Nt, , is increased from 4 to 6, as is expected for
a "finite-temperature" transition.

As we show below, this pattern changes significantly
for larger lattices with Nf = 8. First, the variation of P,
with Nq has vanished for Nt, ) 8; both 16s x 8 and 16s x 16
lattices show a strong, first-order transition at the same
value of P. Thus the temperature-dependent transition
seen for Nt, ( 8 has become a temperature-independent
"bulk" transition for Ni ) 8, which we describe as sepa-
rating "strong"- and "weak"-coupling phases of the eight-
Havor theory. (The presence of a bulk transition for large
Nt, is suggested by earlier N&-independent jumps seen in

Nf = 8 calculations with heavier quarks [2].) Second, al-
though the valence quark inass dependence of (gg) sug-
gests that the transition seen for Nt, ——4, 6, and 8 is one
of chiral-symmetry restoration (as is the case for Nf = 2,
3, and 4), the situation is less clear for Nt, ——16, where

gy) shows nonlinear behavior for a small valence quark
mass in the weak-coupling phase.

However, if P is increased to = 0.3 above P, for the
bulk transition, chirally symmetric behavior is seen for
both gy), which now depends linearly on the valence
quark mass, and the hadron correlation functions. This
suggests that in addition to the first-order, bulk tran-
sition separating strong- and weak-coupling phases, the
weak-coupling phase may itself be divided into two dis-
tinct phases separated by a normal, finite-temperature
(i.e., Ni-dependent) transition or crossover region. In
fact, the nonlinear behavior seen for (gg) in the weak-
coupling phase is reminiscent of the mass dependence
of (gy) seen in four-favor calculations on 10 x 6 when
p=p, [6].

This behavior is described by the phase structure in
the P Nq plane show-n in Fig. l. (The figure depicts a
lattice of infinite spatial extent. ) The solid line repre-
sents the strong, first-order transition, which varies with
Nq for Nq & 8 and becomes a zero-temperature or bulk
transition for Nq & 8. The dashed line expresses our
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FIG. 1. A phase diagram in the P-¹ plane for eight-flavor
@CD in infinite spatial volume consistent with the results
presented here. ¹~ is the temporal extent of the lattice and
P = 6/g is the lattice-coupling strength. The solid line,
becoming vertical for ¹ & 8 locates a "zero-temperature, "
first-order transition —a lattice artifact. The dashed line sug-
gests a possible, continuum finite-temperature transition that
occurs in the weak-coupling phase. The system shows chiral
symmetry to the right of and below this dashed line while we
speculate that chiral symmetry will be spontaneously broken
to the left of and above this line. The solid squares label pa-
rameter values where we have performed simulations, while
the open squares locate critical values.

speculation that a normal, finite-temperature transition
or crossover region is also present in the weak-coupling
phase. This line is drawn with a slope given by the per-
turbative renormalization group, since this gives the de-
pendence of P, on Nq as Nt, —+ oo for a physical transition
and/or crossover. The N& value of the intercept of this
dashed line with the solid line is also quite uncertain and
taken here to be N& ——20 based on numerical evidence to
be presented later,

The dotted line in Fig. 1 is an extension of the dashed
line to values of P smaller than P, for the bulk transition,
since the strength of the bulk transition and the proper-
ties of our updating algorithm make it possible to study
the weak-coupling phase when it is only metastable. It
should be emphasized that this dotted extension of the
weak-coupling, finite-temperature phase transition does
not correspond to an actual phase transition line in the
strong-coupling phase represented by the area to the left
of the solid line. Rather it describes a metastable, "super-
cooled, " continuation of the weak-coupling phase into the
nominal strong-coupling region. In other words Fig. 1 de-
scribes a phase diagram possessing more than one sheet,
with the dotted line lying on a second sheet. The solid
squares locate parameter values that we have studied and
the open squares mark values of P, that have been iden-
tified.

Unfortunately, a study of T = 0 hadron masses in
the weak-coupling region must be performed within the
wedge-shaped region in Fig. 1 that is bounded below by
the dashed line and to the left by the solid line. As will

be discussed, volumes larger than 16 will be required to
unambiguously recognize this region, let alone perform a
meaningful mass calculation there.

In Sec. II we describe the calculations that have been
performed and the methods used in both generating the
gauge configurations studied and constructing the vari-
ous observables computed. The transition for X~ ——4,
6, and 8 is considered in Sec. III, where we present ev-
idence that it separates chirally symmetric and asym-
metric phases. In Sec. IV the bulk transition, isolated
on 16s x 16 and 16s x 32 lattices, is discussed while in
Sec. V we consider the weak-coupling phase on 16s x 32
volumes for larger P and hence higher temperature. In
Sec. VI we discuss the relation between the phase struc-
ture presented here for eight flavors with that seen for
smaller numbers of flavors. We suggest that the famil-
iar cross-over region separating strong and weak coupling
in the zero-flavor theory strengthens with increasing Ny
and becomes our Ny = 8 bulk transition. Finally in
Sec. VII various concluding remarks and speculations are
presented.

II. DESCRIPTION OF THE CALCULATION

We have carried out a Monte Carlo evaluation of the
Euclidean-space, Feynman path integral for full /CD us-
ing the R algorithm of Gottlieb et al. [7]. The calculation
required about five months on the 256-node Columbia
machine, a 16 x 16 mesh of fast array processors which
achieves a sustained performance for these calculations of
6.4 Gflops [8]. The R algorithm evolves the gauge fields
according to the action

1 18 = —-P) Retr U~ —-Ny 1ndet[(D+ma)(Dt+rna)].
3

Here the first term is the usual Wilson action with Ur the
product of the four SU(3) link matrices that border the
plaquette 'P. The second term represents the efFects of
Ny degenerate flavors of dynamical fermions of mass rn
The factor of 1/4 preceding this term compensates for the
fermion doubling present in the staggered Dirac operator
D. The additional doubling introduced in Eq. (1) by
squaring the Dirac operator is removed by restricting the
squared operator to even lattice sites. The operator D
can be defined by its action on an SU(3)-triplet field P:

1
(D4)- = , ).n-,,(U.',„4.—.—U.—.,,4.—,) (2)

Here U„„andq„„arethe link matrix and staggered
fermion sign factor associated with a lattice link extend-
ing from the site n in the direction p to the site n+ p, .

In simulating eight flavors of staggered fermions, we
have a choice between two well-established methods: the
A algorithm, which contains finite time-step errors of or-
der (6w), and the exact hybrid Monte Carlo method
of Duane, et al. [9], which requires twice the number
of Dirac propagator inversions per unit of Monte Carlo
time when used to simulate Ny = 8. We chose the 8
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algorithm with a time step b,r = 0.0078125 for this ex-
ploratory calculation both because code to perform the
exact, eight-flavor update was not ready when we wished
to begin the simulation and we wanted to reduce the re-
quired computer time. We have explicitly studied the
eKects of the finite time-step errors and made a compar-
ison with results from the hybrid Monte Carlo algorithm
in our determination of p, for the transition on 16s x 8
and 164 lattices as is discussed in Secs. III and IV. The
comparisons presented there show the expected quadratic
dependence on b,r. Although the b,r errors found are
quantitatively large (e.g. , 5%%uo in P,), the qualitative fes
tures of the calculation appear unaffected.

Thus, except where otherwise noted, this calculation
is performed with a time step b,r = 0.0078125 and a
molecular dynamics trajectory of length 0.5 time units.
We have used three types of starting configurations in
this calculation: hot starts where the gauge fields are
disordered, cold starts where all the gauge link matrices
are unit matrices and mixed starts which are described
in detail in Sec. III. After each trajectory, the molecular
dynamics "momenta" are randomized and measurements
on the link variables carried out. In particular, after
each trajectory we compute average values of the Wilson
action and the fermion operator (gg). Our gauge action
is (1 —siRe tr U~} and our convention for (gy) is

where the sum is over all points in the lattice. gy} is
estimated by

(4)

where for each site n, h„is an independent, complex
thr==vector of Gaussian random numbers and (( )) de-
notes an average over gauge fields and the random thr==-
vectors h„.For the work in this paper, we have used
three sets of Ii„'sfor each gauge configuration. Also, we
restrict the h„'sto even sites in evaluating the squared
operator in Eq. (4) and multiply the result by two.

Hadron propagators are calculated every 5 units of mi-
crocanonical time from quark propagators determined us-
ing Coulomb gauge wall sources whose spatial size is the
spatial volume of the lattice. The quark propagator from
a source at time slice t is calculated, for each color index
a = 1—3, using as a source an SU(3)-triplet field h~,

„

given by

where n = n mod 2. For a given source time slice, the
three quark propagators are then combined into hadron
propagators corresponding to matrix elements of the five

conventional local hadron operators [10]. In order to
improve the statistical accuracy of our results, we use
the average-over-time-slice (AOTS) method [11]in which
this hadron propagator calculation is performed Nq times
placing the wall source on each time slice in the lattice.
The resulting Nq propagators are then averaged together.

In both the updating steps and the calculation of the
hadron propagators we must solve a Dirac equation of the
form (D+ ma)y = h. We perform the required inversion
of D + ma using the conjugate gradient algorithm. We
iterate this method until our approximate solution after
the ith iteration y; yields an appropriately small residual
vector r; = [DtD+ (ma)z]y; —(D+ ma)h. Specifically,
we perform the inversion on the even sublattice (since
the solution on the odd sublattice can be found from
this) and iterate until

g(r;, r;)/(h, h) & b, (6)

where the inner product (a, b) of the complex vectors
is over even lattice sites and colors. For the inversions
that occur in the updating steps and gy) we use b. =
6.38 x 10 s/QN& and perform typically between 300 and
700 conjugate gradient iterations, depending on P, for
Nt, ——32. For the hadron propagator calculation we use
the somewhat more stringent condition b, = 2.21 x 10 s,
yielding 700 to 800 iterations for N&

——32 with ma =
0.015.

Much is to be learned in calculations of this sort by
varying the quark mass used in the simulation. Perhaps
of greatest interest is the variation of (gy) and m~ with
quark mass. A nonzero value of (gy) and a zero value m
in the m ~ 0 limit are both definitive indicators of the
spontaneous breaking of chiral symmetry. Unfortunately,
in the exploratory calculation reported here only the sin-
gle value ma = 0.015 has been used. However, we have
computed the dependence of (gy) and the hadron masses
on the quark mass that appears in the quark propagators
that explicitly enter the evaluation of the right-hand side
of Eq. (4) and the hadron masses. We have only consid-
ered the case where all quark propagators used to form
a hadron propagator have the same quark mass.

Thus we distinguish two quark masses that enter our
calculation: the "sea" quark mass m,« that enters the
quark determinant in the path integral and the "valence"
mass m«~ which appears in the quark propagators that
make up the various observables. In this way we can
define, for example, m (m,«, m ~). A consistent cal-
culation with Ny flavors of degenerate quarks requires
m„~= m„,. We might call the quantity m (m„„m„~)
a "quenched" approximation to the proper quantity
m~(m«~, m«~). However, a non-vanishing limit of (gy}
as mv~~ —+ 0 is nevertheless an indicator of spontaneous
symmetry breakdown, although the observable in ques-
tion is no longer local. Likewise the Goldstone theorem
implies that if this quenched gy}(m«~, m«~) is non-
vanishing in the limit m~~ —+ 0, then the corresponding
m (m,«, m«~) will also vanish in that limit. Clearly, the
limit m~~ ~ 0 provides us with interesting information
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about the character of the small eigenvalues of the Dirac
operator.

In fact, if the masses rn„,and rn, i are sufficiently
small that ms and gg) depend on them linearly, and if
(gy) is nonvanishing for both the limits m«i = m,« ~ 0
and ms« fixed, m«i ~ 0, then necessarily the two values
of m2 agree,

rn (rn,«, rn»i) = rn (rn«i, rn„,i) +O(m ),2 2 (7)

since both sides are linear functions of rn»i which agree
at two points, m«i = ms«and m«i = 0. Because the
majority of the linear mass dependence of (gg) comes
from the quadratically divergent term proportional to
m„iwe might also expect this quenched calculation of
(gg) to be quite accurate. Our Nf = 2 calculations [12],
in which four values of m,«were used, bear these ex-
pectations out. In Fig. 2 we show mz and gy) for the
four normal points [12] m «a = m,«a = 0.01, 0.015,
0.02, 0.025 and a fifth, quenched point [13]m„,a = 0.01,
m»ia = 0.004. The values for the quenched point are
m a = 0.173(5) and gy) = 0.0157(1). A linear fit to

Quark mass rn
q

FIG. 2. The quark mass dependence seen for (gy) and
m in earlier two-Qavor calculations. The ma = 0.01, 0.015,
0.02, and 0.025 points are calculations properly including the
effects of dynamical quarks [12], while the ma = 0.004 point
is obtained using that value in the explicit quark propagators
but the value ma = 0.01 in the fermion determinant. The
lines correspond to the fits in Eq. (8).

(X'/N» = 14/3)

Although the yz for these fits is large, one can see from
Fig. 2 that the m„,a = 0.015 point is the dominant
contributor to the large yz, not the point at ma = 0.004.
Leaving out the rn„,a = 0.015 point gives fits with slopes
and intercepts that are the same within errors and which
have y /NDF = 0.2/2 and 0.5/2, respectively.

III. CHIRAL-SYMMETRY RESTORATION:
Ng ——4, 6, ANDS

As noted in the Introduction, previous studies on lat-
tices with Nt & 8 have observed a strengthening of the
chiral transition for an increasing number of quark fla-
vors. For Nf = 8, (gy) has been seen to change by about
a factor of two across the transition for quark masses of
0.1 on lattices with Nq ——4, 6, and 8 [2,4]. Previous eight-
flavor work did not include an extrapolation of gy) to
zero quark mass in the weak-coupling phase to demon-
strate that the transition restored chiral symmetry. In
this section we report on our investigation of this tran-
sition for N~ ——4, 6, and 8 lattices —both the accurate
determination of P, and the m, i ~ 0 extrapolation of
(gy) which gives evidence that this transition does re-
store chiral symmetry. Our Nq ——4 results were obtained
from a series of simulations described in Table I while Ta-
bles II and III contain a similar description of the Nt, = 6
and 8 runs. All the lattices had a spatial volume of 16s.

The accurate determination of P, for a strong, first-
order transition presents a familiar dilemma: if we work
with a large spatial volume, the considerable metasta-
bility of both phases implies a large range of P within
which each phase appears to be stable, even for quite
long Monte Carlo evolution times. (At least if we use ex-

TABLE I. A list of the parameters for the runs with N~ ——4. The mix 1 start was produced

by thermalizing a hot lattice at P = 4.5 for 80 time units and then varying P for 95 time units.
The mix 2 start was produced by thermalizing a cold lattice for 70 time units at P = 4.5 and then
varying P for 112.5 time units.

0.0078125
Start
Mix 1

Mix 2

4.50
4.55
4.58
4.60
4.65
4.55
4.60
4.65

Total ~
100

25
100

15
200

50
50
25

0.004

0.004

50-100

l.50—200

Valence run parameters
m'&cL1 Valence w

0.004 50—100
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TABLE II. A list of the parameters for the runs with N~ ——6. The mixed start was produced

by thermalizing a hot lattice for 50 time units at P = 4.70 aud then varying P for 135 time units.

0.0078125
Start
Mix

Cold

Hot

4.65

4.68

4.70

4.73

4.70

4.70

Total v

25

50

50

50

100

100

Valence run parameters
oval Valence w

0.004 0—25
0.010 0—25
0.004 0—50
0.010 0—50
0.004 0-50
0.010 0—50
0.004 0—50
0.010 0—50
0.004 0-100
0.010 0-100
0.004 0-100
0.010 0-100

isting, local updating algorithms. ) If a sufficiently small
spatial volume is used to eliminate this metastability, the
transition may be significantly distorted by finite-volume
effects. We solve this problem by working with a large
volume but beginning with a configuration in a mixture
of phases. Starting with such a mixed phase, very small
changes in the choice of P cause the system to rapidly
evolve into either of the two phases [14].

Our results for P, and (gy) at Nq ——4, 6, and 8 have
been obtained by starting from mixed-phase configura-
tions generated as follows: An initial P value was cho-
sen for which hot and cold starts gave two metastable
phases, with difFerent values of (gy) and gauge action,
which were stable for 50 or more units of microcanonical
time. We then chose a configuration from one phase and
evolved it, changing P every 10—20 units of time until

the configuration had a value of (gg) and action close to
halfway between their values in the two phases. (Both
(gg) and the action reached their halfway values concur-
rently. ) The final value of P used in evolving this mixed-
phase configuration was chosen to keep both (gy) and
the action roughly constant for 10—20 time units, thus
diminishing any "inertia" the lattice might have pushing
it in the direction of either phase.

The upper curve in Fig. 3 shows the evolution of gy)
produced when generating a mixed-phase configuration
from a hot start for an Nq ——4 lattice. The first 80 time
units show normal evolution with P = 4.5. During the
next 95 time units P was continually adjusted to produce
the intermediate value of (gg) shown.

After generating a mixed-phase configuration, P, was
found by performing a series of evolutions, with different

TABLE III. A list of the parameters for the runs with N~ ——- 8. The mixed start was produced
by thermalizing a cold lattice for 40 time units at P = 4.60 with b,7 = 0.0078125 and then varying
P for 60 time units. The b,r = 0.005 runs had a trajectory length of 0.625 time units.

hv.
0.0125

0.0078125

0.005

0.002

Exact

Start
Mix

Mix

Mix

Cold
Mix

Mix

5.20
5.25
5.28
5.30
5.35
4.70
4.73
4.75
4.80
4.60
4.63
4.65
4.73
4.59
4.55
4.58
4.60
4.62
4.58
4.60

Total ~
25
50
50
50
50

100
125
165
50

93.75
62.5
62.5

93.75
50

105
25
25

145
75
75

Valence run
mva
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004

parameters
Valence ~

0—25
0—50
0—50
0—50
0—50

25-100
75-125
40-165
25-50

0-93.75
0—62.5
0—62.5
0-93.75

0—50
0-105
0—25
0—25
0-145
0—75
0—75
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FIG. 3. Generation of a mixed-phase con6guration from
a hot start for N& ——4. The lower, cold-start trajectory es-
tablishes the value of (gg) for the chirally symmetric phase
while the upper trajectory both gives a value of (gg) in the
symmetry-broken phase and with a subsequent tuning of P
becomes our candidate "mixed" phase.

values of P, each starting from the given mixed-phase
configuration. An example of this procedure is repre-
sented in Fig. 4. There we show the evolution of (gy)
for five values of P, starting from the mixed-phase con-
figuration generated from an initial hot start. Clearly
P = 4.5 lies on the strong-coupling side of the transition
while P = 4.65 falls on the weak-coupling side. The slow
evolution of the P = 4.58 run locates P, while the short
runs at 4.55 and 4.6 suggest P, = 4.58(1) as a reasonable
conclusion for P, with errors.

In order to demonstrate the reliability of this pro-
cedure we repeated the determination using a second,
mixed configuration generated instead from an initial
cold start. The evolutions for three choices of P shown
in Fig. 5 behave in a manner very consistent with Fig. 4
and the value P, = 4.58(1) deduced above. This indicates
that our mixed-phase configurations are independent of
whether they were made from a hot or cold start and
argues against any bias toward one phase. In addition,
we have never seen an evolution beginning from one of
our mixed-phase configurations begin to change in the
direction of one phase and then reverse itself. This indi-

FIG. 5. Determining P, for a mixed-phase configuration
generated from a cold starting lattice with N~ ——4. From this
figure we conclude that the critical value of P is P, = 4.58(1).

cates that our mixed-phase configurations have no inertia
toward a particular phase.

The series of evolutions used to determine P, for N& ——

8 is shown in Fig. 6, from which we deduce P, = 4.73(1).
Although not shown, the evolutions of the action are very
similar to those for (gy). Table IV lists our results for
P, for Nq ——4, 6, and 8. For comparison this table also
includes the Nt, ——16 results which are discussed in the
next section.

Given the ease with which we can determine P, and its
importance in our later considerations, it is reasonable to
study the effects of finite time-step errors by computing
P, for a number of choices for h7. We concentrated on
the Nt, ——8 case with the results given in Table IV. As is
indicated in Table III these values of P, were determined
by the procedure described above, starting from the same
mixed phase (generated with A7 = 0.0078125) and evolv-
ing using a series of updating schemes with b,r = 0.002,
0.005, 0.0078125 and 0.0125 and with the exact hybrid
Monte Carlo algorithm.

Figure 7 shows the dependence of P, on b,r. Leaving
out the point at b,w = 0.0125 and the point from the
exact algorithm, we find that P, is fit by

P, (A&) = 4.58(1) + 2460(250) (b,r)

I I I I
i

I I i I

4.5

O

V
O

4.58
A
OC

v

50 100 'I 50 200 50 150

FIG. 4. Determining P, for a mixed-phase configuration
generated from a hot starting lattice with N~ ——4. Prom this
figure we conclude that the critical value of P is P, = 4.58(1).

FIG. 6. Determining P, for a mixed-phase configuration
generated from a cold starting lattice with N~ ——8. From this
figure we conclude that the critical value of P is P, = 4.73(1).
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TABLE IV. Values for P, for Ng ——4, 6, 8, and 16.

Ng

4
6
8

16

0.0078125
0.0078125
0.0125
0.0078125
0.005
0.002
exact
0.0078125
0.005

P.
4.58(1)
4.71(1)
5.29(1)
4.73(1)
4.64(1)
4.59(1)
4.59(1)
4.73(1)
4.62(1)

IV. EVIDENCE FOR A T=O TRANSITION

The eight-flavor results described in the preceding sec-
tion and earlier work of others look much like the chiral-

CO

I I I I I I I I I I I I I

5x10 0.01 0.015

step size h~

FIG. 7. P, versus 67. for Nz ——8. The curve is a quadratic
fit to the points Dv = 0.002, 0.005, and 0.0078125.

with ys/NDF = 0.02/1. (The fit for P, using the points
up to 0.0078125 is good enough to make it hard to fit the
0.0125 point, even if higher-order terms are included. )
Clearly, we find the expected (b,r)z dependence of P,
and good agreement between the constant term in the fit
and the value of P, from the exact algorithm.

Finally, let us examine the values of gg) obtained
from these various runs and their dependence on m„,i.
Tables V—VII give gg) for the masses used. The ther-
malization times 7'~ given in these three tables are esti-
mates obtained by eye from the plots of gy) and vary
because the thermalization time depends on P—P„which
is not constant for the difFerent runs.

As can be seen in Fig. 8, (yg) extrapolates linearly
to zero as m„~i ~ 0 for Nq ——4, 6, and 8 on the P )
P, side of the transition. The fits are forced through
the origin and have y /NDF = 0.39/1, 3.9/2, and 5.1/1,
respectively. The figure clearly shows that our results
are consistent with a chirally symmetric, weak-coupling
phase. In addition, for Nq ——8 we can check that similar,
chirally symmetric behavior is seen as the time step is
varied by examining b,~ = 0.0125 and 0.005. For these
cases we also find good linear fits for (gg) as a function
of quark mass. When forced through zero, the fits have
ys/NDF = 0.74/1 and 0.007/1, respectively.

symmetry-restoring phase transition seen for four flavors
of light quarks on lattices of similar size. These results
are usually interpreted as a lattice approximation to a
phase transition at non-zero temperature for the contin-
uum field theory. The variation of the value of P where
the transition occurs (P,) with Nq supports this interpre-
tation. One expects the physical temperature of the lat-
tice at the critical point, T = (N&a), to be fixed so that
changes in the lattice spacing a resulting from changes in
P must be compensated by changes in Nq. Such behavior
is quite well established in pure /CD where the variation
of a (and hence N&) with P predicted by the perturbative
renormalization group is seen [15] on lattices as large as
243 x 16.

However, for the eight-flavor transition we find the crit-
ical value of P does not change when Nq is increased from
8 to 16. For Nt ——16 we continue to see a very strong,
first-order transition even though the 164 lattice now has
a spatial size no larger than the temporal extent. This
apparent space-time volume independence of P, suggests
the transition will persist with this fixed value of P, even
for a system of infinite spatial and temporal extent. We
conclude that for Nf = 8 there is a strong, first-order
T = 0 or bulk transition separating the strong- (P & P,)
and weak- (P & P,) coupling regimes.

Although the strong-coupling phase seen on 164 lat-
tices appears much like that found for N& ——4, 6, and
8, the weak-coupling phase is difFerent in three respects.
First, the precisely linear dependence of gy) seen in
Fig. 8 for Nq ——4, 6, and 8 as m~i ~ 0 becomes signifi-
cantly nonlinear for the 164 lattice. Second, for P = 4.65
(gy) doubles as N& is increased from 4 to 16.

Finally for m~~a = m„,a = 0.015 the hadron spec-
trum does not show the degree of parity doubling that
might be expected for a phase in which chiral symme-
try has been restored. For example, we see nearly exact
parity doubling for larger P as is described in Sec. V. In
fact, the values of the hadron masses and (gy) seen here
at P = 4.65 are more similar to those found for two fla-
vors in the low temperature, chirally asymmetric phase
using the same quark mass and lattice size. However, we
do find parity doubling in the limit m„,i ~ 0. We ten-
tatively interpret these results as suggesting that these
p = 4.65, 16s x 16 and x32 lattices lie in a transition
region that occurs in the tseaIO-coupling phas" a finite-
temperature transition and/or crossover leading to spon-
taneous chiral-symmetry violation on lattices of larger
spatial and temporal extent.

Let us now describe these results in greater detail. Ta-
bles VIII and IX give the particulars of the 16s x 16 and
16 x 32 calculations on which our conclusions are based.
Again, except where explicitly noted, we used the inexact
B algorithm with the step size Lv = 0.0078125. Because
of the limited length of some of these runs, the amount
of data discarded as not in equilibrium will be discussed
on a case-by-case basis below.

Figure 9 shows the evolution of (gg) starting from hot
and cold starts for P = 4.65 on a 16s x 16 lattice. The
persistence of two phases over more than 300 time units,
a time scale considerably greater than the initial thermal-
ization time of & 50 time units, is evidence for a strong,
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TABLE V. Results for (XX) and the gauge action for ¹= 4.

0.0078125
Start
Mix 1 4.50

4.65

&eq

50
50

Action
0.6344(6)
0.4939(1)

(XX)
0.418(2)
G.0343(3)

Valence results

(XX) i

0.004 0.410(4)
0.004 0.0094(4)

first-order transition. As further evidence for a first-order
transition, Fig. 10 shows an evolution for the 16 x 32,
P = 4.60 cold-start run in which a tunneling event occurs
at 7. = 250 time units, suggesting that the weak-coupling
phase becomes unstable as P is decreased from 4.65 to
4.60.

The critical coupling P, on the 16 lattice is determined
by the same procedure described earlier for N&

——4, 6,
and 8. We created a "mixed" start by beginning with the
weak-coupling configuration whose evolution is shown in
the lower curve in Fig. 9 and then varying P by hand
for 55 time units to obtain a configuration with a value
of (XX) lying midway between the strong- and weak-
coupling values seen in the figure, i.e. , (XX) —0.2. This
final configuration is then used as the beginning for the
three different runs shown in Fig. 11. This figure estab-
lishes P, = 4.73(l), precisely the result found above for
Ni ——8. Because of the significant time-step dependence
seen earlier for P„wecarried out this procedure a sec-
ond time for A7 = 0.005 and determined for that case,
P, = 4.62(1), again in agreement with the Ni ——8 result
for that smaller time step. We conclude that this strong,
first-order transition has become independent of the lat-
tice size for Ni & 8 and hence is a T = 0 transition.

The lack of dependence of P, on Ni seen for N, & 8
is quite consistent with the Ni dependence of the discon-
tinuity in the gauge action across the transition. For a
normal, finite-temperature transition, an increase of Nq

by a factor of 2 would correspond to a decrease of the lat-
tice spacing a by a factor of 2. Since for such a transition
the discontinuity in the action is proportional to a phys-
ical latent heat, the jump in the action should decrease
by a factor of 2 = 16 when N& increases from 8 to 16.
In fact a, similar factor of (4/6)4 is seen for the Nf = 4
latent heat when Ni is increased from 4 to 6 [16]. How-

ever, our 16 x 8 and 16 results given in Tables VII and
X show a large 20% jump in the action which changes
relatively little between Ni ——8 and 16. In particular, for
Nq ——8 the decrease in the action between P = 4.70 and
4.75 is 0.1202(5) while for Nq ——16 the difference between
the action in the two metastable phases at P = 4.65 is
0.1150(2)—a decrease by 5% not by a factor of 16.

Next let us consider the chiral-symmetry properties of

the two phases separated by this transition. We have
computed (XX) and the hadron spectrum in each phase
for a number of valence quark masses. We work at P =
4.65, where there are two metastable phases as shown in
Fig. 9. Although this choice of P is below the critical
value P, = 4.73, at this P the weak-coupling phase shows
no signs of instability either during the 342.5 time unit
16 run (Fig. 9) or the 865 time unit run on a 16s x 32
lattice. These results, together with the P = 5.0 results
described in the next section are given in Tables X—XIII.

The second columns of Tables XII and XIII, for the
strong-coupling phase, were obtained on a 164 lattice
from the microcanonical time range 210—380. The fit-
ting was done by combining these results into blocks of
5 time units and the masses came from two parameter
fits assuming a single propagating state. The vr mass
was determined by fitting time separations 2 to 8 while
the masses for the other states were obtained from time
separations 1 to 5. The resulting x masses appear to
be well determined from the range of time separations
available. However, the correlators for the other strong-
coupling states decrease so rapidly with separation that
useful information comes only from a few time separa-
tions. As a result, we are less certain that those masses
have taken on truly asymptotic values.

For the weak-coupling phase, given in the third column
of Table XII and columns three through six of Table XIII
we use the longer p = 4.65 run on a 16s x 32 lattice dis-
carding the first 382.5 time units for equilibration. With
this larger time dimension, stable results are obtained
for a larger number of masses. We follow a procedure to
extract the masses similar to that used earlier [12]: the
vr mass is obtained from a one-propagating-state, two-
parameter fit while the other masses come from a two-
propagating-state, four-parameter fit. We used a range
of fitting separations, t;„&t & 16 as follows: For the
quark masses 0.004, 0.01, and 0.015 and the N and N'
states we used t;„=8 and for all other states t;„=10.
For the quark masses 0.025 and 0.05 we used t;„=10
for the x state and t~;„=8 for the others. With these
fitting ranges we obtain X /NDF ( 2. All the masses
given in Tables XII and XIII came from fits obtained
by minimizing y~ computed from the full covariance ma-

TABLE VI. Results for (XX) and the gauge action for N~ ——6.

0.0078125
Start
Hot

Cold 4.70

&eq

50

50

Action
0.5995(4)

0.4867(2)

(XX)
0.378(2)

0.0445(4)

Valence results
m i (XX)
0.004 0.371(2)
0.010 0.375(2)
0.004 0.0126(4)
0.010 0.0302(4)
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TABLE VII. Results for (gy) and the gauge action for Nq ——8.

0.0125

0.0078125

0.005

Start
Mix

Mix

Mix

5.25
5.35
4.70
4.75
4.60
4.73

&eq

30
30
70

100
62.5
62.5

Action
0.6908(3)
0.4168(4)
0.6006(3)
0.4804(4)
0.5793(5)
0.4838(1)

(XX)
0.472(3)
0.0272(5)
0.378(1)
0.0465(3)
0.348(2)
0.0493(6)

Valence results
m, ( 5x)„.)

0.004 0.467(5)
0.004 0.0077(5)
0.004 0.372(2)
0.004 0.0131(3)
0.004 0.341(3)
0.004 0.0132(6)

O
O

A O
O
CV
O
O

O
O

5x10 0.01 0.015

m„[a
FIG. 8. Extrapolation of (gg) for Nt. ——4, 6, and 8 as

a function of valence quark mass m &. The fits are forced
through the origin.

trix. Errors were determined with the jackknife method
using blocks of 15 time units (5 time units for the shorter
0.025 and 0.05 runs) with corrections for autocorrelations
in Monte Carlo time.

As can be seen from Table XII the strong- and weak-
coupling phases have very different values for the hadron
masses. The masses in the weak-coupling phase are
lighter by about a factor of 3, except the pion which we
discuss in detail below. The vacuum expectation value

(gg) also becomes much smaller moving from strong to
weak coupling. However, by itself, such a jump does not
imply that the transition restores chiral symmetry For.
example, naive scaling arguments would suggest that for
small quark mass (gg) should decrease by a factor of 3s
when the hadron masses decrease by a factor of 3.

To study the chiral symmetry of these two phases
we show the linear extrapolations of (gy) and m~ as
m«i ~ 0 in Figs. 12 and 13. The behavior of gy) and
m in the strong-coupling phase (Fig. 12) is easily inter-
preted. We are seeing the usual consequences of sponta-
neous chiral-symmetry breaking —behavior quite similar
to that shown for Nf = 2, P = 5.7 in Fig. 2 [12, 13].

However, the chiral properties of the weak-coupling,
Nf = 8 phase are more ambiguous. Our earlier 16s x
32 results [12, 13] for N1 = 2, P = 5.7 and m«~a =
0.015 are reproduced in column five of Table XII, allowing
easy comparison of the chiral-symmetry breaking found
in these two sets of spectra. Although the rn —m
and m~ —m~, splittings are significant for the eight-
flavor case, they are perhaps half the size of those seen

in the Nf = 2 case. In the earlier Nf = 2 calculation we
found (gy) = 0.0385(1) so the possible measure of chiral-
symmetry breaking, (gg)/ms, is the same between the
two calculations up to the 20% level.

It is also of interest to ask how (gy) changes in the
weak-coupling phase as lattice size increased. We can
directly compare the Nt, ——4 and Nq —— 16 results
for P = 4.65 recognizing an increase from 0.0343(3) to
0.0711(4). Such an increase with increasing Nr, might be
interpreted as the onset of chiral-symmetry breaking as
the temperature decreases for fixed P.

However, the notion that the weak-coupling phase seen
for Nt, ——16 and 32 shows spontaneous symmetry break-
ing is not supported by the dependence of (gy) or the
hadron spectrum on rn i. As shown in Fig. 13 (gy) ap-
pears to approach 0 as m«i ~ 0 while the corresponding
limit of m is small but nonzero. As can be seen, the
small m„,i ~ 0 limit of gy) is surprisingly nonlinear for
m„iaas small as 0.004 but certainly appears to vanish.
However, the extrapolation of ms is straightforward,

m a = 0.0391(13)+ 6.90(6)rn„,ga (y /NDp = 1.9/3),

(1o)

giving m~~(0) ~ 30 standard deviations away from zero.
This is in contrast with the behavior seen in the Nf = 2
weak-coupling phase shown in Fig. 2 where, as is shown
in Eq. (8), the extrapolated rr mass is consistent with
zero.

In Fig. 14 we show the masses of the three parity part-
ners N' —N, Aq —p, and 0 —rr as a function of m
Again even the considerable cr —rr splitting disappears
linearly as m«i ~ 0. Quantitatively, fitting to the three
smallest values of rn„,i shown in the plot we obtain

m a = 0.218(5) + 10.7(4) m ia (y /NDp = 2.9/1),
m a = 0.220(4) + 16.5(4) rn«ia (y /NDp = 5.0/1),
m~a = 0.359(14) + 10.8(12)m«~a (y /NDp = 0.1/1),

(11)
m~, a = 0.371(30)+ 14.1(24) rn ia (g /NDp = 0.003/1),
m~a = 0.704(35) + 11.2(26) m ia (y /NDp = 0.01/1),

mph' a = 0.694(42) + 13.5(31)m ~a (g /NDp = 0.08/1),

showing detailed chiral-symmetry restoration as m ~
—+

0. Note the linear fit to m in Eq. (10) (using valence
quark masses up to 0.050) and the linear fit to m in
Eq. (11) (using valence quark masses up to 0.015) give
0.198(3) and 0.218(5) respectively for m (0).
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TABLE VIII. A list of the parameters for the runs with N~ ——16. The mix start was produced
by thermalizing a cold lattice for 342.5 time units at P = 4.65 with Ar = 0.0078125 and then
varying P for 55 time units.

A7.

0.0078125

0.005

Start
Cold

Hot

Mix

Cold
Hot
Mix

4.65

4.65

5.00
4.71
4.73
4.75
4.62
4.62
4.60
4.62
4.63
4.64

Total ~
342.5

380

40
50

100
100
350
100
50
25
25
50

0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004

50-100
50-100
0-350
0-100
0—50
0—25
0—25
0—50

Valence run parameters
foal I Valence v.

0.004 0-215
0.010 215—342.5
0.004 0-210
0.010 210-380
0.010 0—40

We conclude that the strong-coupling phase seen at
P =- 4.65 for Nt,

——16 and 32 shows clear spontaneous vi-
olation of chiral symmetry while the chiral symmetry of
the weak-coupling phase is less obvious. However, the un-
usual rn„~~ dependence that we see in the weak-coupling
phase for P = 4.65 is very much like the rn„,depen-
dence found earlier in the four-flavor, 10s x 6 work of
DeTar and Kogut [6]. Their results in the critical region
(P = 5.175) show a nonlinear approach of (gy) to zero
as rn„,~ 0. Likewise, their ~ and o screening lengths,
while significantly nondegenerate for rn„=0.05, be-
come equal when extrapolated linearly to rn«~ ——0. This
behavior is precisely the rn ~

~ 0 dependence that we
see for these quantities. Therefore, we speculate that
for N&

——16 and P = 4.65, the weak-coupling phase is
itself near a standard, finite-temperature transition re-
gion separating the chirally symmetric, weak-coupling
behavior we see for Nq & 8 from a weak-coupling, chi-
rally asymmetric region that will be seen for Nq & 16 on

significantly larger spatial volumes. This speculation is
represented in Fig. 1, where the dashed line identifies
a possible finite-temperature phase transition dividing
the weak-coupling phase into low-temperature, chirally
asymmetric (upper portion) and high-temperature, chi-
rally symmetric (lower portion) phases. This line passes
near N& ——16 at P = 4.65 as is suggested by our results
for these parameter values.

V. HIGH- TEMPERATURE REGION: NT ——32

In an attempt to understand the properties of the
weak-coupling phase discussed above for P = 4.65 on
16s x 16 and x32 lattices, let us examine a 1325 time
unit calculation of (gy) and hadron masses with P = 5.0
carried out on a 16s x 32 lattice. As is discussed below,
we find clear chirally symmetric behavior for this larger
value of P. The hadron screening lengths show complete

TABLE IX. A list of the parameters for the runs with Nq = 32. The P = 4.60 run tunneled
around ~ = 250.

0.0078125
Start
Cold 4.60

4.65

4.70
4.80
4.90
5.00

Total w

485

865

100
75

100
1325

Valence run
mval

0.004
0.010
0.004

0.010

0.025
0.050
0.100
0.200
0.004
0.004
0.004
0.004
0.010

parameters
Valence ~

0-355
355-485

232.5—382.5
532.5—765
0—232.5

382.5—765
532.5-865
765—865

765—817.5
817.5—865

0-100
0—75
0-100

1182.5-1325
397.5-1182.5
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FIG. 9. The evolution of (gg) for two independent Monte
Carlo runs on a 16 lattice at P = 4.65. The upper curve
represents a run begun with a hot start while the lower curve
began with a cold start.

FIG. 11. Determining P, for a mixed-phase configuration
generated from a cold starting lattice with N~ ——16. From this
figure we conclude that the critical value of P is P, = 4.73(1).
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FIG. 10. The evolution of (gy) from a cold start on a
16 x 32 lattice with P = 4.60. We interpret the jump seen
at ~ 250 as tunneling from the metastable, weak-coupling
phase to the stable, strong-coupling phase.

parity doubling within errors, (gy) extrapolates linearly
to zero as m i -+ 0 and m varies little as m, ~

-+ 0 and
has a relatively large m i = 0 limit.

These masses or screening lengths were determined
from the evolution interval 605—1325. The results are
shown in Tables XII and XIV. The fitting procedure is
very similar to that used earlier: the rr-like states were de-
termined from a two-parameter, single-state fit while the
other states from a four-parameter, two-state fit. For all
masses we used a fitting range from time separations 10
to 16. The quark masses of 0.01 and 0.015 were analyzed
dividing the data into blocks of 15 time units while the
shorter run with the valence mass of 0.004 used blocks
of 5 time units. In contrast with the other mass fits
discussed in this paper, the gz values were very large,
typically 10 to 30 with 5 degrees of freedom. However,
the jackknife errors for these yz values were nearly as
large as the yz themselves and the gz computed ignor-
ing off-diagonal terms in the correlation matrix are quite
reasonable. We conclude that the fits are acceptable but
that small poorly determined eigenvalues in the correla-
tion matrix make the determination of yz difficult.

The hadron spectrum looks very much like that found

in earlier calculations in the plasma phase [6]. In par-
ticular the masses (or more accurately screening lengths)
show remarkable parity doubling with the parity partners
rr —o, p —Ai, and N —N' having very nearly the same
mass. Likewise we can examine the extrapolation to zero
valence mass of both mz and (gy) shown in Fig. 15. Lin-
ear fits to the data yield

m a = 0.134(6) + 1.95(52) m~a

(g /NDF = 2.0/1),

(gy)a = 0.00052(9) + 2.326(7) m„,ia

(g /NDF = 8.2/1).

In marked contrast with the behavior seen for P = 4.65,
m depends rather weakly on the valence quark mass, ex-
trapolating to a value only 10% below the m,~~ = 0.015
point, while (gy) extrapolates to a very small value.
Given the nonvanishing of ms~ as m„,~ —s 0, the statisti-
cally nonzero value of (gg) may refiect the use in Eq. (12)
of a fit neglecting the correlations between results for dif-
ferent valence quark masses.

Although the behavior seen for P = 5.0 is very clearly
that expected from /CD at finite temperature, we should
emphasize that our 16 x 32 lattice is awkward to in-
terpret as representing Gnite temperature. The nomi-
nal "temperature" direction with extent N~ ——32 and
the required antiperiodic boundary conditions for the
fermions is the longest dimension in the lattice. Prob-
ably the best interpretation of our space-time volume
is as a 162 x 32 spatial volume with a temperature di-
mension corresponding to 16 lattice units. Clearly the
behavior seen on this 16s x 32 lattice may show sig-
nificant finite-volume distortions relative to a proper,
finite-temperature calculation on a N3 x 16 lattice with
N, &&16.

The contrast between the P = 5.0 behavior just de-
scribed and the P = 4.65, weak-coupling phase discussed
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TABLE X. Results for (XX) and the action for N& ——16.

0.0078125

0.005

Start
Cold

Hot

Cold
Hot

4.65

4.65

4.62
4.62

&eq

100
Action

0.4961(1)

100
75

0.5006(1)
0.5631(3)

100 0.6111(2)

(xx)
0.0711(4)

0.3953(4)

0.0829(6)
0.314(1)

Valence results
m. i (xx) i

0.004 0.0259(5)
0.010 0.0541(5)
0.004 0.3900(11)
0.010 0.3933(6)
0.004 0.0399(8)
0.004 0.305(2)

in Sec. IV supports the hypothesis that for the 16 lat-
tice, P = 4.65 lies near a transition region. By increasing
P from 4.65 to 5.0 the degree of chiral symmetry has
dramatically increased for fixed m~i = 0.015 and the
nonlinear m i dependence of (xx) has disappeared.

VI. POSSIBLE Ng-DEPENDENCE OF +CD

In this section we present a possible picture of the
Nf dependence of QCD that connects earlier work for
Nf = 0, 2, 3, and 4 with the Ny = 8 results given here.
Although the picture described below is supported by
the presently available numerical results, it is far from
unambiguously established by our current calculations.

We would like to interpret the eight-flavor bulk tran-
sition seen here as an outgrowth of the strong- to weak-
coupling crossover region seen in pure SU(3) gauge theory
for P 5.6. The variation seen in this region provides
a connection between strong coupling, where the scale of
the physics is controlled by the lattice spacing, and weak
coupling, where the scale is unrelated to the lattice spac-
ing. (The width of the crossover region for SU(2) seen
using the standard Wilson action can be altered by in-

cluding an adjoint representation contribution to the ac-
tion [17].) As one passes through this region from strong
to weak coupling, the hadronic energy scale (measured in
lattice units) decreases at a rate faster than predicted by
the perturbative renormalization group. This was seen
quite clearly for T, a in pure SU(3) by Kennedy et al.
[18].

We hypothesize that adding additional light dynam-
ical quarks to QCD promotes a rapid crossover region

to a phase transition, the first-order, bulk transition seen
here, and that the addition of the quarks is similar to the
effect of a nonzero adjoint action in the pure SU(2) case.
The effect of this increasingly sharp crossover region on
the finite-temperature QCD phase transition might be
deduced from Fig. 16. Here we represent the crossover
region for a system of infinite space-time volume by the
interval of P between the vertical dotted lines. The more
rapid variation of N& with P, within this region joins the
relatively large value of T, a for small P with a smaller
value for large P. If this region narrows as the number
of flavors increases, sharpening into an actual disconti-
nuity, the QCD phase transition for values of P, within
this crossover region might be expected to sharpen as
well. Such a sharpening of the transition as the number
of flavors increases is certainly well established by current
simulations [5].

Furthermore, such a narrowing of the crossover region
with increasing Nf would imply a corresponding increase
in slope of Nq versus P within this region. In Fig. 17 we
plot the variation of N& with P, seen in simulations for
zero [19], two [20], and four [21] flavors together with
that seen here for Nf = 8. For the two and four flavor
cases, linear interpolation has been used to produce a
value for P, at m„,a = 0.015. The behavior predicted
by the perturbative renormalization group is shown by
the slopes of the dashed lines in the figure. This figure
is consistent with the view that temperature dimensions
between Nq ——4 and 8 lie within this crossover region
and that the slope of the Nq-versus-P, curve is increasing
with Nf.

Although far from well established, this picture is

nicely consistent with the eight-flavor results presented

TABLE XI. Results for (XX) and the action for Nq = 32. The P = 4.60 run tunneled at about
~ = 250.

0.0078125
Start
Cold 4.60

4.65

5.00

&eq

325
Action

0.62031(6)
(xx)

0.4075(3)

382.5 0.49552(6) 0.0687(1)

250 0.45125(2) 0.03539(3)

Valence
mva]
0.004
0.010
0.004
0.010
0.025
0.050
0.100
0.200
0.004
0.010

results
(xx)
0.4038(16)
0.4053(4)
0.0234(3)
0.0506(3)
0.0983(1)
0.1532(2)
0.2255(2)
0.3390(2)
0.00965(9)
0.02386(4)
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TABLE XII. Hadron masses for quark mass m„~a= m„a= 0.015. The second column was
obtained on a 16 lattice beginning with a hot start and the third and fourth on 16 x 32 lattices
with a cold start. For reference, the right column lists the results of our earlier Nf ——2, 16 x 32
calculation with m„,a = m„~a= 0.015 [11—13].

(JPC)
n(0 +)

vr2(0-+)

o (0++)

~(1 )

~2(1 )

Ai(1+ )

N(i2 )

N'(2 )

Bi(1++)

P = 4.65 strong

0.297(1)

1.60(8)

1.41(1)
1.64(2)

2.29(7)

P = 4.65 weak

0.378(2)

0.471(7)

0.465(3)

0.522(7)

0.521(4)

0.582(11)

0.872(10)

0.896(13)

0.586(26)

P = 5.00

0.405(3)

0.434(10)

0.415(4)

0.484(7)

0.490(5)

0.491(7)

0.807(7)

0.810(6)

0.512(8)

P=57
0.293(2)

0.333(3)

0.487(12)

0.455(8)

0.452(7)

0.594(22)

0.685(10)

0.833(38)

0.596(28)

in this paper. If the crossover region shown in Fig. 16
shrinks to a vertical line as Ny -+ 8, the finite-
temperature phase transition efFectively disappears for
the corresponding interval of Ni, being engulfed there by
the bulk transition. An eight-flavor phase diagram very
much like that shown in Fig. 1 results, in a manner that
might be described as follows.

(1) For strong coupling and small values of Nt one
expects to see a single phase transition that separates
very different strong- and weak-coupling regimes. Ni
should vary with P for small values of Nt, characteristic
of the small length scale important at strong-coupling
(4 & Nq & 8 in Fig. 1).

(2) For values of Nq larger than this strong-coupling
length scale, the transition becomes a bulk transition,
with a fixed value of P = P, . Now the dramatic change
in hadronic length scale, which occurred rapidly in the
crossover region for Nf & 4, happens discontinuously
across this bulk transition (a scale change by a factor
of 3 in our case for N& ) 8). The finite-temperature,

Ni-dependent transition has disappeared.
(3) An apparently independent finite-temperature

transition should occur in the weak-coupling phase at a
much larger value of Nt, This l.arger value of Nt, (deter-
mined for P near the bulk transition) should be related
to the values of N& identified in 1 above. These two scales
should be related by the same factor that describes the
jump in the length scale of hadronic phenomena across
the bulk transition. Thus, in our case we might expect
a weak-coupling, finite-temperature phase transition to
occur for P = 4.73 and values of Nt, in the range of 3 (the
jump in hadronic length scale) x 8 (the Nq where the tran-
sition becomes Nq independent). In fact, as discussed in
Sec. IV, we have some evidence for such a weak-coupling,
finite-temperature transition for P = 4.65 and Nt, = 16.
A choice of P = 4.73 and Nt, ——20 is used to locate the
dashed curve in Fig. 1.

We can compare the ratio T,/mp for this conjectured
finite-temperature transition with the value for other
numbers of flavors. For zero, two, and four flavors, ex-

TABLE XIII. Hadron masses calculated with a variety of valence quark masses. The masses
quoted in the second column were obtained on a 16 lattice beginning with a hot start while those
in columns three through six came from a cold start using a 16 x 32 lattice.

~(0-+)
7r, (0-+)
~(o++)

C(1 )
C2(1 )

Ai(1+ )

N(2 )

N'(- )

B,(1++)

p = 4.65 strong
m~~(a = 0.01

0.243(1)

1.65(12)

1.40(2)

1.63(2)

2.40(15)

= 0.004
0.257(4)

0.369(32)

0.284(3)

0.404(11)

0.407(11)

0.428(28)

0.747(30)

0.744(34)

0.429(21)

p = 4.65
= 0.01

0.328(2)

0.420(6)

0.391(3)

0.465(9)

0.468(7)

0.511(14)

0.818(21)

0.836(28)

0.511(24)

weak
= 0.025
0.465(4)

0.564(5)

0.587(5)

0.632(6)

0.634(7)

0.751(40)

0.992(15)

1.043(31)

0.765(45)

= 0.05
0.619(2)

0.767(7)

0.790(6)

0.813(4)

0.817(7)

0.951(26)

1.246(8)

1.304(29)

1.045(73)



5668 FRANK R. BROWN et aL 46

I I I
I

I

o
&xx&

D

D

D
D

I s I
I

I I I I
I

I I 1 f

D

C4

D

Iw
V

OQ

P

CC»

D

D

1 j l I
I

I I I I
I

5x10 0.01 0.01 5 DO 0.01 0.02 0.03

FIG. 12. Linear fits to (gg) and m in the strong-coupling
phase at P = 4.65 on a 16 lattice. The m fit is forced
through the origin and has y /NDF = 0.1/1.

foal
I

CI

FIG. 14. Values m, m, m~, m+1 m+ and m~ plotted
versus m ~a for a 16 x 32 lattice in the weak-coupling phase
with P = 4.65. The lines shown correspond to the fits in
Eq. (11).

trapolated to zero quark mass, T,/mz ——0.26, 0.19 and
0.13 [5]. Using m~ at P = 4.65 and assuming a mono-
tonic decrease in T,/m~ with the number of fiavors, we
find Nq & 21.

Of course, a T = 0 or bulk transition for which P, be-
comes precisely independent of Nq should separate two
phases each of whose properties are independent of Nt, .
This is not the case for a quark-gluon plasma, a natural
candidate for the high temperature, weak-coupling phase
represented by the lower right region of Fig. 1. How-
ever, the 1/N4 behavior expected for the free energy of a
quark-gluon plasma becomes sufficiently weak for Nt, & 8
as to be completely consistent with the Nt, dependence
of P, that we see. In fact, P, (N&) for our four values of
Nt, is well fit by

p, (Ng) = 4.737(6) —40(3)/N~, y /NDF = 0.6/2.

(13)

A final implication of our hypothesis, in analogy with
the pure SU(2) case, is that for large Nt, , the strong- and
weak-coupling sides of the bulk transition may be contin-

uously connected by using an action which includes sin-
gle plaquette contributions from higher representations
of SU(3). This is consistent with our picture that the
bulk transition, for large enough lattices, is between two
chirally asymmetric phases.

VII. CONCLUSION

Our Nf = 8 studies are well summarized by the P N&-
phase diagram given in Fig. 1. Let us conclude with the
following remarks.

(1) We have argued in Sec. VI that the phase structure
shown in Fig. 1 may be quite consistent with the flavor
dependence of the /CD phase transition seen previously
for Ny = 0, 2, 3, and 4. However, in that discussion we

argued that the well-known strengthening of the finite-
temperature transition for 4 & le & 8 that is seen with
increasing Ny came from approaching the strong, Nf ——8
bulk transition. Thus this important feature, which dom-

I

(m„a)2
TABLE XIV. Hadron masses for two different valence

quark masses on a 16 x 32 lattice.

&xx& D

C7

D

0C

V

D
D

0.02 0.04 0.06

fTl
I

CI

FIG. 13. (gg) and m in the weak-coupling phase at P =
4.65 on a 16 x 32 lattice. The line is a linear fit to m .

m(0 +)

mg(0 +)

~(0++)

~(1 )

~~(1 )

Ag(1+ )

N(-' )

N'(~~ )

(I++)

P = 5.00
m 6,)a = 0.004

0.386(9)

0.500(108)

0.384(9)

0.474(6)

0.485(8)

0.475(6)

0.783(22)

0.789(28)

0.487(8)

m„~a= 0.01
0.389(3)

0.422(27)

0.394(5)

0.465(10)

0.481(8)

0.469(10)

0.785(8)

0.786(7)

0.491(11)
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appears that both a proper demonstration of the Gnite-
temperature, weak-coupling phase transition and such a
low-temperature study of hadron masses in eight-Qavor
QCD forces the use of lattice volumes considerably larger
than 163 x 32.

After the completion of this work, we became aware
of a study of QCD with many flavors of Wilson fermions
in the strong coupling limit (P = 0.0) [24]. Given the
difference in the coupling and the type of fermions used,
the overlap between [24] and the present work is unclear.
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