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Interface tension and chiral order parameter profile with dynamical quarks
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We investigate the free energy distribution across the interface of coexisting quark and hadron matter
in the framework of lattice QCD. We calculate the interface tension a with the "differential method" for
pure SU(3) gauge theory and in the presence of dynamical quarks with four flavors. Using lattices with a
spatial volume 8' X 16 we discuss the agreement between the differential and integral method in the pure
gluonic case. With dynamical ferrnions it turns out that the interface tension is very small and we esti-

mate an upper bound of n/T, '(0.1. The chiral condensate indicates the same width of the domain wall

as the Polyakov loop distribution and the other thermodynamical observables under consideration.

PACS number(s): 12.38.Gc, 11.15.Ha

I. INTRODUCTION

QCD thermodynamics on space-time lattices has
demonstrated that matter can exist in two phases distin-
guishing between the confining hadron phase and the free
quark-gluon-plasma phase. In pure gluonic QCD and in

full QCD with four light dynamical fermions most nu-

merical simulations support the fact that the phase tran-
sition is of first order [1,2] which implies that the two
different phases can coexist at the critical temperature.
This opens up the possibility of the creation of an inho-
mogeneous universe which can now be studied from the
first principles of lattice QCD. The most important ob-
servable under consideration is the surface energy 0. be-
tween the quark-gluon-plasma state and the hadronic
bubbles. The numerical value of 0; is a fundamental
quantity for the inhomogeneity of the Universe and
represents an input parameter for the probability of nu-

cleation and the average distance between nucleation
centers, and further effects the nucleosynthesis of light
elements [3]. The thickness of the domain wall of a coex-
isting two-phase system can also be associated with the
skin of the fireball of a quark-gluon plasma which is

currently under investigation in ultrarelativistic heavy-
ion experiments.

To extract a one has to evaluate thermodynamical ex-
pressions demanding to differentiate the partition func-
tion with respect to the temperature, volume, and inter-
face area. This can be realized on the lattice by directly
summing over plaquettes at fixed couplings (differential
method) or by integrating the sum of plaquettes over the
coupling (integral method). Lattice simulations of pure
gluonic QCD on four-dimensional hypercubes of sizes
X XX XN2 X2 have led to a definitely nonvanishing a
for both methods [4,5] whereas on N„XN XN, X4 lat-
tices the situation is more difficult [6]. In order to com-
pare both methods we give a compilation of all existing
data. We perform an independent analysis for 1V, =4 re-

lying on the differential method. The main objective of
this paper is to study the situation in the presence of
dynamical quark fields for which we choose the number
of flavors n&-=4 and the mass m =0.05. This opens up

II. THEORY

Starting from the relation for the free energy F,

F(T, V, A)= —TlnZ(T, V, A), (2.1)

we express the partition function Z,

Z(T, V, A)= f QdU„„gdg„gdy„e (2.2)

by a path integral over the lattice action
S(»r'X)=S (U)+S (»X X) [7 g]:

1 ap
SG —g 2
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St,- =aoara3 g mg y„4

(2.3)

Ux —p, pXx —p)

In the gluonic part of the action, the plaquettes P„are
defined as

the possibility to explore the domain wall in a two-phase
system with spontaneously broken and restored chiral
symmetry. In addition to the surface tension and other
thermodynamical observables we calculate the distribu-
tion of the chiral condensate across the interface.

In Sec. II the formulas of the lattice version of the
thermodynamical quantities are outlined. Section III
presents our results with a discussion of the observables
and a comparison with other recent work on this topic.
In Sec. IV we summarize the physical interpretation of
our results and give an outlook to future extensions on
this subject.
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P„=P„(x)=tr[2—U„„U„+„„U„+„U„„—H. c. ]

(2.4) T( Tc T) Tc

and U„„means the gauge field on a link of a hypercubic
lattice. The factors 1/g; denote the couplings for an an-

isotropic lattice with the so-called Karsch coeScients
c c2 po= c +c, entering the renormalization group
equation [7]. The anisotropic couplings determine the
corresponding lattice spacings a;. In the fermionic part
of the action, according to the Kogut-Susskind formula-
tion the fermion fields are represented by single-
component Grassmann fields y, y at the sites of the lat-
tice [8]. The fermionic action describes nf flavors with
mass m and the Dirac matrices reduce to phase factors

x)+ '' +x
g =(—l)P

To perform QCD lattice thermodynamics on a two-
phase lattice of size N XN XN, XN, we place the inter-
face in the (x,y) plane (see Fig. l). To be able to take
partial derivatives with respect to one variable while
keeping two other variables constant we choose three
different lattice constants ao, a, =az=aT, a3, which are

FIG. 1. Realization of a two-phase system with an interface
at T, . The phase transition occurs in the z direction at n, =8
and n, = 16 due to periodic boundary conditions.

all set equal after the derivation of the observables. The
temperature, volume, and interface size are given by

T =1/N, ao, V=NTN3a, a3, A =NTar . (2.5)

Now we can proceed straightforward to derive the gluon-
ic thermodynamical observables we are interested in, i.e.,
the energy eG, pressure pG, surface energy aG, and entro-

py sa [4]:

1
, —c* (Pi2+Pi3+P23)—

1
z +c, (Po, +Poz+Po, ) ),

g

1 +c, (Po3+P,3+P23)—
1 —c, (Po&+Po2+P, z)

g
(2.6)

as,
ag —= A = g z

+—(c,—c, ) (2Poz Poz
—

Poz 2P—, z WP»+Pzz )),T aA Tv g2 2 t

V A 1 1zgV=(co+pc) ——ag —= Z z+ —(c,—c, ) (2P»+P»+Pzz —
Poz Poz 2Poz)) .

T T g 2

To relate the energy and pressure to the T =0 case we
have to subtract the vacuum contribution given by the
average plaquette P,„(g2) on a symmetric lattice:
e„„=—P„„=—3poP,„. A further observable of interest
is the Polyakov loop which on one hand represents the
propagator in periodic time direction for a static quark,

~ex pgf
e = det[D ( U)+m],

4

with the covariant derivative

(2.8)

N,

(L ) = zz Q U. „=,),3V „
(2.7)

7l

2ap
(2.9)

and on the other hand acts as an order parameter.
Similarly, we treat the fermionic part of the therrno-

dynamical observables. After integration over the fer-
mionic fields one obtains the fermion determinant

Performing the thermodynarnical differentiations we get
the ferrnionic parts of the thermodynamical observables:
i.e., the energy e~, pressure p~, surface energy aF, and
entropy sF. The derivation was given for the first time
for Wilson fermions in Ref. [4] and is formulated here for
Kogut-Susskind fermions:
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P1f
eF—= ( tr[DO(D +m ) '] )

nf
pF —= — (tr[D3(D+m) '])

+ ,', N, —nf ,'m—((—y„y„))T 0,

)if (tr[(D, +D2 —2D3)(D+m) ']),
(2.10)

V
sF V =(e~+pF )——aF—.

The fermionic vacuum contribution for the energy and
pressure is considered explicitly for gauge group SU(N, ).
In the fermionic system the chiral order parameter ap-
pears which is related to spontaneous chiral-symmetry
breaking and is a measure for the virtual quark density:

(2.11)

Single brackets mean path integration over the gauge
field after fermionic integration whereas double brackets
denote additional fermionic integration. The total expec-
tation value of a thermodynamical observable 0 consists
of the gluonic and fermionic parts:

0 —OG+OF . (2.12)

III. RESULTS

For the pure gluonic system we approximated the path
integral by 25 000 Monte Carlo iterations around
P, =6/g, for several values of bP=0.05, 0.10, 0.15, 0.20
(0.25) on a hypercubic lattice [9]. In Figs. 2—4 we com-
pare the results on lattices with spatial volume 8 X 8 X 16
and two different time elongations N, =2 and N, =4, re-
spectively. The Polyakov loop (see Fig. 2) as an order pa-
rameter of the gauge spin system changes smoothly from

The simulations are realized on a system with one-half in
the hadron phase at an inverse gluon coupling
P=P, —bP and the other half in the quark phase at

P=P, +b P (see Fig. 1). The partition wall is set to the
critical coupling P, . Thus, the interface is forced by con-
struction and is not created dynamically. To obtain the
physical expectation value for a coexisting two-phase sys-
tem, one has to extrapolate the observables to the critical
point.

zero to a finite value. Since we plot the absolute value
~(I. ) ~

without the factor —,
' we find a positive number in

the confinement compartment which is not only due to
the spreading of the hot phase. In Fig. 3 our results for
the thermodynamical quantities are presented. A11 ob-
servables are influenced by the interface induced between
8 ~ n, (9. The kinks are due to the discretization effects
depending on the local construction of the operators [4]
and are decreasing with 6}f)~0. Error bars correspond-
ing to the mean standard deviation have been computed
and it was seen that they exceed the symbols in general
only around the interface. Energy and pressure are plot-
ted with vacuum corrections from an 8 lattice [4] and
approach the Stefan-Boltzmann limit for an ideal gas at
high temperatures. The difference between the cold and
the hot phase is less clearly seen with increasing time
elongation due to the smaller magnetization of the pla-
quette operator (2.4). In the N, =4 case discretization ar-
tifacts become increasingly important and especially en-

ergy and pressure are difficult to be resolved. The entro-

py in Fig. 3 also increases towards the hot phase. Finally,
the distribution of the surface energy a(z) which has no
direct physical meaning is plotted.

To get the surface energy o.'we have to integrate its dis-
tribution along the z axis. The phase transition occurs
twice due to periodic boundary conditions. Thus, we
have to divide the sum by two in order to obtain the sur-
face energy for one confinement-deconfinement transi-
tion. In Fig. 4 the surface energy normalized to physical
units is compared with some other recent data obtained
by the integral method [5] and the differential method

[4,10]. There is a remarkable agreement between the
data points if one keeps in mind that the two methods are
completely different. For N, =2 the differential method

[4] yields a value of a/T, =0.24+0.06 and the integral
method [5] gives a/T, =0.12+0.02. Because the
difference between the spacelike and timelike plaquettes
decreases with increasing elongation in time the interface
tension becomes more difficult to be extracted. A11 corn-

putations for time extension N, =4 yield a value of n
compatible with zero. An exception is the extension of
the integral method employing Polyakov lines to stabilize
the interface which leads on a 16X16X32X4 lattice to
a/T, =0.024+0.004 [6]. Our data points agree within

error bars with those of Refs. [4,10] but are systematical-

ly lower for both time extensions and especially for
bP=0. 05. Performing a linear extrapolation to AP=O
we find a/T, = —0. 14+0.12 for N, =2 and

a/T, = —0.68+0.40 for N, =4. Since both analyses rely

on the differential method the deviation is a consequence
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FIG. 2. Dsstnbution of the Polyakov loop
for pure gluouic QCD across the interface for
two time elongations X, =2 and X, =4, respec-
tively, and for two-phase systems with various

coupling (temperature} gradients 2b P.
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FIG. 3. Theromodynamical observables for pure gluonic QCD as a function of the z coordinate for N, =2 (first row) and N, =4
(second row) with different temperature gradients.

of the shorter z elongation of our system, X,=16 com-
pared to N, =40. For small coupling gradients hp the
two phases begin to intermix and the resolution of the
surface energy becomes unstable. Omitting the data
points for bp=0. 05 we get aiT, = 0 14+—0. 1.2 for
N, =2 and a/T, = —0.37+0 40 fo.r N, =4. The choice of
the smallest reliable hp and the numerical extrapolation
hp~O represent a serious problem [11].

For QCD with dynamical quarks we approximated the
path integral by 5000 Monte Carlo iterations using the
pseudofermionic algorithm [12] with 50 fermionic steps
and scanned several values of hP=0. 05, 0.10, 0.15, 0.20,
0.25, 0.30. The dynamical quark field has flavor number

nf =4 and mass m =0.05 [9]. For the fermionic simula-
tion we used the corrected Karsch coeIItcients [13]. In
Fig. 5 we present the Polyakov loop and the chiral order
parameter. A clear change is seen at the transition point
from confinement to deconfinernent. The Polyakov loop
has a nonvanishing expectation value due to the broken
Z3 symmetry from the fermions in the confining phase.
The chiral symmetry is broken in the confinement and re-
stored in the deconfinement. For the chiral order param-
eter profile crossing the interface at n, =8 we find an in-

crease of the wall thickness when we approach the coex-
isting phases at b,p~O. For b,p=0. 3 the width is about
5 lattice spacings a which corresponds to roughly 1 fm.
It turns out that the chiral condensate has the same
width as the Polyakov loop distribution. The order pa-
rameter with dynamical quarks has not reached a plateau

as in pure gluonic studies on larger lattices indicating a
width of the domain wall of 2.5 fm [4,10]. The lattice re-
sults can be compared with a study of the o model which
predicts a width of about 4.5 fm [14].

Next we discuss the gluonic and fermionic contribu-
tions to the total thermodynamical observables in Fig. 6.
We start with the distribution of the energy. Its gluonic
part exhibits discretization effects at the transition point
from the vacuum contribution. The fermionic part has a
smooth behavior and clearly shows both phases,
confinement and deconfinement. The vacuum corrections
have been determined from a consistent ferrnionic simula-
tion of an 8 lattice with the same parameters. The total
energy as a sum of the gluonic and fermionic part has
discretization effects. In the deconfining phase the ener-

gy is in accordance with the Stefan-Boltzmann limit of an
ideal gas with a tendency of overshooting [15].

We turn to the z component of the pressure in Fig. 6.
Discretization effects are clearly visible and show a simi-
lar behavior as the pressure in a single-phase SU(3) sys-
tem at the transition point which is due to the perturba-
tive p function entering the definition [15]. At high tem-
peratures the ideal gas relation e=3p holds. The next
plot presents the profile of the entropy. The discretiza-
tion effects are partially compensated because pressure
and surface energy enter into the entropy with different
signs. For all thermodynamical observables it is found
that the gluonic and fermionic contributions are of the
same size.
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FIG. 4. Compilation of all available results
for the surface energy a/T, ' in pure QCD on
an 8X8XN, lattice with N, =2 and N, =4
[4—6, 10]. Error bars are inserted for our re-
sults and denote mean standard deviation.
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Now we look at the profile of the surface energy in Fig.
6. In the region of the phase transition the surface ener-

gy has a nonvanishing value. In comparison to the
gluonic part having a positive and a negative peak, only a
single positive peak is detected for the fermionic contri-
bution. Thus, the total surface energy is stabilized by the
fermionic contribution.

The physical expectation value of the surface energy is
the sum of its profile in the z direction. The left plot in
Fig. 7 shows the surface energy normalized to T, in the
presence of dynamical quarks as a function of the cou-
pling gradient hf3. One finds that the fermionic part is
smaller than the gluonic one. The extrapolated surface
energy for a coexisting two-phase system is hard to ex-
tract and a linear fit yields a/T, =aG /T, +aF /T,
= —2.98—0.88= —3.86+0.38. There might be several
reasons for this negative value. (i) The physical reason is
that the phase transition for nf =4 with mass m =0.05 is

only weakly first order. (ii) For technical reasons we have

to perform our simulations for N, =4 implying P, =5.01
far away from the continuum limit. As a consequence
the lattice constant is rather large and part of the interac-
tion falls through the mesh points lowering the interface
tension. (iii) From the algorithmical point of view the ap-
plication of the pseudofermionic method is known to
bring more disorder to the gauge field configurations [16].
Thus, effectively a higher quark mass is simulated weak-
ening the order of the phase transition. (iv) A methodo-
logical shortcoming of the differential method is the use
of the Karsch-Trinchero coefficients being computed at
weak coupling. But a recent analysis of the influence of
these coefficients for pure gauge theory with N, =2 has
shown that they lead to an increase of a by a factor of 3
[17]. In the right plot we compare our N, =4 computa-
tions with and without dynamical fermions. Altogether,
we find that the surface energy has a small numerical
value decreasing with increasing time elongation and is
lower than in the pure gluonic case, a/T, & 0. l.
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IV. SUMMARY

This study contains the first trial to extract the inter-
face tension in the presence of dynamical quarks. We de-
rived the corresponding expressions for Kogut-Susskind
fermions in the framework of the difFerential method and
made an exploratory computation of a. Our simulations
were performed on a lattice of moderate spatial volume
8 X 16. We started with the pure SU(3) case and time ex-
tensions N, =2 and N, =4, respectively, and presented a
compilation of existing data obtained both with the
differential and integral method. There is a remarkable
agreement between all computations although the extra-
polation to the coexisting two-phase system represents a
great difficulty, especially with increasing time elonga-
tion. Switching on dynamical fermions with four flavors
and N, =4 we found that the gluonic and fermionic con-
tributions to the interface tension are of comparable size
but again difficult to extrapolate to T~T„at least on
our moderate lattice size with limited statistics. Impor-
tant for astrophysics, we can predict a/T, =0. 1 as an

upper bound for the interface tension. Further, we stud-
ied the ferrnionic behavior of different therrnodynamical
observables together with the order parameters of
confinement and chiral symmetry. We made a crude esti-
rnate of the thickness of the domain wall, which is for
EP=0.3 about 5 lattice spacings corresponding roughly
to 1 fm. The wall thickness increases towards the coexist-

ing two-phase system which might give some first-
principles information for heavy-ion experiments.

For future investigations other than larger lattices and
higher statistics more sophisticated methods should be
considered. We propose in analogy to the method which
uses an external Polyakov loop field hI. for stabilizing the
interface, to employ the internal chiral condensate ming
of the fermionic action [6]. In this way, by
differentiating the partition function with respect to m,
the surface energy could be extracted in case of full QCD
from the chiral condensate relying on the integral
method. Another possibility might be to use the multi-
canonical algorithm and the tunneling probability be-
tween rnetastable states to calculate the tension of a
dynamically created interface [18]. A further extension
of this subject is to study the curvature term in the free
energy of spherical hadronic or quark bubbles in the pres-
ence of dynamical quarks [19].
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