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Second-order electron mass dispersion relation at finite temperature. II.

Mahnaz Qader, Samina S. Masood, and K. Ahmed
Physics Department, Quaid-i-Azam University, Islamabad, Pakistan
(Received 10 July 1992)

The calculations of electron self-energy up to two-loop order in the framework of a real-time formal-
ism at finite temperature are carried out in detail. Some aspects associated with the renormalization of
the electron mass at finite temperature and the resulting evaluation of its dispersion relation are
highlighted. This work generalizes one of the earlier works to all temperatures. A comparison of the re-

sults with some of the existing ones is also made.

PACS number(s): 12.20.Ds, 11.10.Gh

I. INTRODUCTION

The renormalization of QED at finite temperature up
to first order in a has been studied in detail in the litera-
ture [1-6]. Dicus, Down, and Kolb [7] have proposed a
perturbative expansion of the electron self-energy at high
temperature, i.e., T >>m,, in natural units i=c=k=1
in the usual notation:

n
T, E+p

35p)~T 3, c,a" E—p

n=1

, (1.

with n standing for the order of perturbation. The elec-
tron mass dispersion up to order @’ in a background heat
bath has been explicitly calculated earlier at low tempera-
ture, i.e., T <<m, [8]. In this limit the probability of
finding e “e ™ pairs in the medium is suppressed by a fac-
tor e ~™/T (B=1/T) due to the fermion distribution func-
tion. Therefore, as a first approximation, in Ref. [8] we
ignored the contribution of the fermions and included hot
photons only. However, if T>m, and the background
fermions possess relativistic energies (E > m), then their
distribution functions would contribute significantly.
This has been the basis of some earlier work in the real-
time formalism at the one-loop level [4] which is now be-
ing extended to two loops. In this work the choice of the
finite-temperature real-time formalism is made because
these methods are covariant and can separate the addi-
tive finite-temperature contributions. The Feynman rules
in vacuum theory hold at finite temperature [9], and the
vacuum propagators are simply replaced by the hot prop-
agators of the heat bath. Thus the fermion propagator is
written as [10]

i

SB(p):m—Z‘n'S(pz—mz)(p-Fm)np(p) (1.2a)
and the boson propagator as [10]
DI (k)= —ghv | — —2ms(kIny (k) |, (1.2b)

where the corresponding distribution functions are given
by

1

np(p):m (1.3a)
for the fermions and
np(k)=— 1 (1.3b)

eﬁ‘k'u\_l

for the bosons, with ©*=(1,0,0,0) as the four-velocity of
the heat bath. The fermion distribution function serves
as a cutoff to ultraviolet singularities so that no such
divergence appears even at high temperature. However,
an infrared singularity arises as a result of the photon dis-
tribution function, in an enhanced form, i.e.,
I,~ [(dk /k)ng(k), which becomes [ *dk /k® in the
limit kK —0.

The electron mass was reported to be renormalizable
up to first order in a for all temperatures in QED [4].
The electron mass dispersion relation at the one-loop lev-
el is given by
1— 8% 5 (mp)

T

m?,hyszm2 +4—amTa(mB)
T

+2a7T? [1-emp) | (1.4)
T

where m? is its mass at zero temperature,

a(mB)=In(1+e " "B) , (1.5a)

b(mpB)= 3 (—1)"Eil—nmp) , (1.5b)
n=1
S e—nmﬁ

cmB)= 3 (—1)"— (1.5¢)
n=1 n

The corresponding self-mass correction up to first order
in a at finite temperature is

dm'"  anT? 6
m o am | e
2 T 3a

+— —a(mpB)——b(mpP) . (1.6)
T m T

The calculation of the electron mass dispersion relation
at T ~m, is important from the point of view of cosmolo-
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gy. The first-order-in-a electron mass correction in Eq.
(1.6) has been shown to affect directly the B-decay rate
during primordial nucleosynthesis [11]. This leads to the
change in certain parameters in cosmology such as the
energy density of the early Universe, p;, the helium
abundance parameter Y, etc. It is interesting to note that
these parameters become slowly varying functions of
temperature [12] during nucleosynthesis; otherwise, they
remain constant. Similar types of implication are expect-
ed at order a’ because the thermal corrections to the
electron mass are expected to modify the above-
mentioned parameters of early cosmology in a similar
manner.

The two-loop Feynman graphs given in Fig. 1 are cal-
culated to check the renormalizability of QED in a
thermal background at higher orders of perturbation.
We present here a closed analytic form for 6m /m calcu-
lated perturbatively up to the O(a?) so that the second-
order contribution to the electron mass can be evaluated
from these expressions for required ranges of tempera-
ture. In the process of calculating the mass renormaliza-
tion of the electron for these temperatures, we examine
and classify all types of singularities which arise in the
two-loop finite-temperature perturbative calculations.
We further find that, in addition to the temperature-
dependent enhanced singularity of type I ,, there are
some overlapping singularities which appear as a result of
the interference of the ultraviolet singularities in vacuum
with either the I ,-type singularity or with the
divergence-free terms at finite temperature. Moreover,
there arise, as expected, the coincident momenta &(0)-
type singularities at the two-loop level, which can be re-
moved by using the identity [13]

2
UKD — s (k) —im[S(kH)] . (1.7)
k*+ie

In this paper we demonstrate that the finite-

temperature perturbative techniques so far available in
the literature are sufficient to renormalize the electron
self-energy at all temperatures in QED up to two-loop or-
der. On the basis of these results, we find that it is hard
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FIG. 1. One-particle-irreducible electron self-energy at
second order in a.

to predict a higher-order form of the electron self-energy
for the perturbative expansion valid for all orders, in the
case of one-particle-irreducible graphs.

After giving the details of the calculations for the two-
loop diagrams in Sec. II, we present an explicit analysis
for the cancellation of singularities and establish the elec-
tron mass renormalization in Sec. III. Section IV
comprises a discussion of the results and their interpreta-
tion in some interesting limits of temperature.

II. ELECTRON SELF-ENERGY AT O(a?)

As mentioned in Ref. [8], the two-loop Feynman dia-
grams given in Fig. 1 for the electron self-energy were
first calculated by Dicus, Down, and Kolb [7]. They
omitted the contribution of the ‘“vacuum polarization in-
sertion” diagram in Fig. 1(a) as it contributes to charge
renormalization and not to the electron mass renormal-
ization. Therefore we also give the results of a detailed
calculation, taking into account Figs. 1(b) and 1(c) only.

The Feynman graph up to second order in «a in Fig.
1(b) with the “overlapping loops” can be written as

The operator part of the numerator in Eq. (2.1), on using the usual properties of the y matrices, gives

N''=—a[2(p>—p-k—p-l+k-1)(f—k—1F)

—m(3p+k2+12—2p-k —2p-1—2pK — 216 +3HK)—m*3p —2k —21)+m>] .

(2.2)

Since the real part of the electron self-energy contributes to the electron mass, we pick out only the real terms in Eq.
(2.1). The finite-temperature part in this equation is, therefore,
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I&

4
SPop)=—— [d* [d*IN®

27)’
ng(k)8(k?)
( {Izi(p—k)z—mzl {(p—D?=m?}{(p—k—1)*—m?}
np(p—k)8{(p—k)*—m? np(p—k—018{(p—k—1)*—m?}

CPRN(p—k—1P—m2} {(p—1P—m?] 2% (p—kVP—m?]{(p—1)P—m?}
ng(k)8(k)ng(N8(1%)np(p —k)8{(p —k)*—m?}
{(p—k—=I1P—m2}{(p—1)*—m?}
+ ng(k)8(k*)np(p —k)8{(p—k)—m¥nplp —k —18{(p—k —1)>—m?}
{(p—1*—m?
ng(N8(1)ng(k)8(k*)np(p—k —18{(p—k—1)*—m?}
2{(p—k)2—m{(p—1)?—m?}
N ng(D8Inp(p—k)8{(p—k)—m*np(p—k—18{(p—k—1)*—m?}
k*{(p—1?—m?}
np(k)8(k*)np(p —k)8{(p—k)>—m?}np(p—1)8{(p —1)*—m?}
B 12{(p—k—1)*—m?)

77_2

+ iz —k8(p =k P =m?in(p ~D8{(p — 1 =m?)

. (2.3)

Xnp(p—k—18{(p—k—1)>—m?} '+k<—->l

In Eq. (2.3) the terms involving the products of two and four 8 functions are neglected because they are imaginary
and, therefore, do not contribute to the electron mass dispersion relation. Further, a few terms appearing here with a
product of three 8 functions vanish since their combined support lies outside the physical region, as noted in Refs.
[14,15] also. Similarly, the term with five § functions also vanishes. The term-by-term integrations of Eq. (2.3) are eval-
uated in Appendix A. Adding the results in (A1), (A3), (A5), and (A7), the Feynman graph in Fig. 1(b) gives

2

PP =3P o(p)+ % | L (31(2m =+ I+ T 1+ (B 6m L, = (p+4m ),
m € w
+8L(p+m)IBIC+BITIB+(BZT2+B3T+B4)IC+B5T2+B6T+B7 : 2.4)
o
where

2
11y, [ 2.5)
€ 7 m

is the usual ultraviolet divergence of the vacuum field theory in the modified minimal subtraction (MS) scheme of renor-
malization with the Euler-Mascheroni constant ¥y =0.5772. . .:

» dk
1A=s7rfo e, (2.6a)
- - e dk —rBp—

Ip=87 3 (~1) J S nstke PR (2.6b)

and
—e w1y [=dl —rpl

Ic—sﬂzl( 1) fo T np(De P (2.6¢)

The functions B,, ..., B, in Eq. (2.4) are given in (A9) ,..., (Al5). B,, B3, and B, are temperature independent,

while B, B,, Bs, and B¢ contain temperature dependence in the form of a series in powers of e “#™ or e ~FE,
Finally, the Feynman diagram in Fig. 1(c) which contains a “loop within a loop” can be expressed as



5636

MAHNAZ QADER, SAMINA S. MASOOD, AND K. AHMED 46
SE(p)=et d‘*k d‘l v op
g (p)=e f 2 f—“/#DB (k)Sglp —k)y Dgf(DSglp—k =1y, Selp—k)y, . (2.7
(2m) (2m)
Simplifying the numerator in this Feynman integral, as before in Eq. (2.1), we get
N'O=4{g* g+ —21-q(d—2m)—3m>d —m*+4m’] , 2.8)

where we have transformed p —k —q. The real part of the temperature-dependent contribution to the electron self-

energy in Fig. 1(c) is

4
Z(C)r (p)= e d4 d4l N(c)
T#0\P (27) f QI

np(q) 8go—E,) &(qo—E,)
2E;IM(p—q)*{(g—1*—m?*} | qotE, 2
np(qg—1)8{(qg—1)7?—m?
12(p_q)2(q2_m2)2
1 {ana(IZ) np(p—q)8[(p—q)?] l
+ +
(g*—m??*{(g—1*—m?} | (p—q)* 12

+47? [

—ng(p—q)8{(p—q ) ng(Dd(1%)

nplg—08{(g—17?—m?) [

ng(D8(12) . np(p—q)8[(p—q)?] ]
(p—q)? 12
ne(q) [8(go—E,) &(qo—E,)
2E2 | qotE, 2

N ng(p—q)8[(p—q)*]
2)2

(g*—m

where 6'(qo —E,) is the first-order derivative with respect
to go. The factors such as 8(go—E,) and 8'(go—E,) in
the numerator and (g*>— m?)? in the denominators are ob-
tained on using Eq. (1.7) for the electron propagator with
repeated momentum gq in Fig. 1(c).

The results of the integrations over the loop momenta /
and ¢ in expressions (B3), (B6), (B7), (B10), (B12), and
(B15) are added to obtain

=5 (p)==%Lo(p)

+a? %[C11A+C2T2+C3T+C4}

+CsI, +CeT*+C,T*+CyT+Cy |,

(2.10)

where C,,...,C, are given in Egs. (B16) ,..., (B24).
C,, C,, and C5 do not contain any temperature depen-
dence, while C5, C4, Cq, ..., Cqy depend upon the tem-
perature in the form of a series in powers of e #™ or
e

III. CANCELLATION OF SINGULARITIES

As mentioned in Sec. I, no extra ultraviolet singulari-
ties are introduced from the heat bath. We begin with
the classification of singularities arising in a two-loop cal-
culation and then give the relevant renormalized results.

ng(D8(1*)np(q—1)8[(g—1)*—m?] ’ ] ,

These singularities are as follows.

(i) The 8(0)-type coincident singularities due to the re-
peated electron or photon propagators terms as “patholo-
gies” in Ref. [14].

(ii) The temperature-dependent infrared divergences of
the type I, given in Egs. (2.6a)—(2.6¢c) since Iy and I,
have the same singular behavior in the infrared region as
I,.

(iii) The overlap of the I ,-type singularities with the
usual vacuum ultraviolet ones.

(iv) The interference of the vacuum ultraviolet singu-
larities with the temperature-dependent finite terms.

(v) The high-temperature mass singularities of the form
In[(1—v)/(14+v)], which persist at the second order in a
also.

SN

(a)

N

(c)

N

(b)

X%
A

FIG. 2. Mass counterterms at order a?.
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The singularities classified in (i) are removed using the
identity in Eq. (1.7). The divergences of form (ii) have
been shown in the literature to cancel out in physical pro-
cesses [16]. We have checked that the divergences of
forms (iii) and (iv) are canceled by adding the mass coun-
terterms in Fig. 2. In particular, the divergences appear-
ing in Figs. 1(b) are canceled by adding the mass counter-
terms from Figs. 2(b) and 2(c), i.e.,

3a?

4

Further, the divergences in Fig. 1(c) are canceled by the
mass counterterms in Fig. 2(a) in a similar way. The elec-
tron self-energy at order a? obtained by adding the mass

m2=m+a | T Ta(mB)— S mb(mp)+2aT?
T s

5637

N N

FIG. 3. One-particle-reducible self-energy of an electron at
order a2

counterterms to Egs. (2.4) and (2.10) is now free from any
type of infrared or ultraviolet divergence. The self-
energy relation, however, contains the terms with mass
singularities of type (v) at high temperature.

Following the procedure in Refs. [2,4], the physical
mass of the electron, after incorporating the temperature
radiative corrections up to the order a?, becomes

1——6—2c(m3)”
T

T3 | M, M, Tm
2
— 11— — ——F
+2a m | 2 F,+ = §(3)+ 6Ey 12
+7?2 f—g-sz3+./l't3F4+%a(mﬁ)-i-%c(mﬁ)—i———;gvﬂ+./VL4+%./VLS(F5+F6)+27(%M6F3+./VL7F7)
9 9E 9E 3
+mT Sa(mB)__—2F8_3M8F9+—F10+.M9F“+ 2F12+2‘M10F13—3(7F14+F15)M5
4p 4m 2mv
5 T
+Ta(mB)Mll+m12F16+Z(F17_F18)
T
—m2l./”l,13b(mB)—9./n,4F19+%[a('nﬂ)—./%lsb(mﬁ)]—%on—./%l(,Fﬂ
T T | T |’ T
+m2? (M, |— | +M, |— | +M; |— | +M, |— +M5]. 3.2)
m m

The functions F;’s except F, and F, again contain the series in e “#™ and/or e “PF such as B,’s and C,’s, whereas the
JM;’s are not temperature dependent. The F;’s, M;’s, and M,’s appearing in Eq. (3.2) are given in Appendix C. The
magnitude of the temperature-dependent radiative corrections to the electron mass calculated from Eq. (3.2) is

2
+0(a?) ,

(1)

dm dm

—=~—(6mV+8m?)+
m

1
m

(3.3)

where the superscripts (1) and (2) stand for one and two loops, respectively. 6m ‘! /m is already defined in Eq. (1.6),
whereas its iterated form (8m ‘!’ /m )? corresponds to the one-particle-reducible Feynman graph in Fig. 3 and is

4

3
+M,

2
I I I

M,

2
(1
Sm ] )
~a
m

Further,

+M4% +M;

(3.4)
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3
dm? LT M, M, m |
e P R F,+—7T2—§(3)+—6EUF2t
T | 1
+ |- f_guzF3+./I/L3F4+?[Sa(mBH-Sc(mB)]vL3LEUF2+./I/L4+%./I/L5(F5+F6)+27(%./%6F3+./%7F7)
+-L 8a(mB)— ~2 Fy— 3 yFy+ 2L F g+ toF, + —E_ 3
m 402 8 g9 4m 10 9L 11 2mv;_F12+M10F13—3(7F14+F15)M5

a

—m? {./1413b(m[3)—9./l/ll4F19+2—52—[a(mB)—Jl/L
w

Equations (3.3)-(3.5) give the electron mass renormal-
ization for all temperatures. The limiting values of the
mass renormalization for various temperature ranges
T <<m,, T~m,, and T >>m, can be evaluated from this
result. We carry this out in the next section, wherein we
compare our results with those in Ref. [7].

IV. RESULTS AND DISCUSSIONS

It has been discussed in Sec. III that in the hot back-
ground all types of singularities appearing up to the
O(a?) in the electron self-energy are canceled except the
high-temperature mass singularities. These mass singu-
larities persist even at the single-loop level at T >>m,
[2,4,5]. Equation (3.3) gives a general result valid for all
temperatures and relativistic electron energies E_; up to
the order (m /E, )3,

The low-temperature limit is obtained from Eq. (3.3) by
neglecting all factors containing the damping exponen-
tials e “P" and e “PE. Therefore, in this limit, the only
factors which survive are F; and F,. Since the term con-
taining T is a nonleading term at T <<m,, it can be
neglected, giving

2arT?
2 2
M ppys =m -+ 3
292
L2077 |33 1 [8m
3 2 v | E
5 1 4m 1+v
+ | ———=— In——-
2 Eo? | M-
1 1 1+v
+ {14+ —= |14+ —
) +U lnl_v F4

4.1)

Thus, in Fig. 1, the change in mass due to the tempera-
ture relative to that at zero temperature is

5
+—za(mB)./l/l,pL./l/l]sz+%(F17—F18)

]5b(mB)]_%F20_'/M’]ﬁF2] ] . (3.5)
&m _ anT?
m  3m?
272
272 33 1 [8m
3m* |2 v | E
5 1 4m 1+v
+ -
v 2  Ep? 1—v
hel e it e | w2
2 v 1—

In Ref. [8] we have given an analogous expression for
mghys, which was obtained by expanding the loop vari-
ables up to (m /E,; )2 only. Therefore relation (4.1) is an
improvement over the previous results.

The higher-order perturbative corrections in a become
significant at high temperatures since the powers of T in-
crease. The one-particle-irreducible graphs in Fig. 1 give
a leading-order contribution to (6m'?/m)~(T/m)>. In
this range of temperature, as m3—0, the infinite series in
F;’s have to be cut off at the lower end, as in the case of
one-loop analysis such that the series remains finite.
Therefore

(2) 3

om_ _ p2|L %[;(3)£ 20 [1+4 | +70
m T>>'"e m T m v
gty 4E
1—v m
10 E
+2 |t =2 TE gy 2
Ev m mv 1
m™m 4.3)
+ F,,
6Ev " ?
where
& (=1 —Beln+rE/m)
FyR,e)= 3 3 (2=~ e Peln+rE/m) (4.4)
r=Rn=3
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with e=mpB<<1 and R is a sufficiently large number
which serves as a cutoff on the lower side of the summa-
tion over r. Similarly, the series in F| can also be trun-
cated to maintain its finiteness.

On the other hand, the electron self-energy predicted
by Dicus, Down, and Kolb [7] gives the leading-order be-
havior at second order in a for T >>m, to be

4.5)

Thus we note that the mass singularity appearing in our
calculations of the Feynman graphs in Fig. 1 is less severe
as its logarithmic degree of divergence is one less. How-
ever, a straightforward calculation of the one-particle-
reducible diagram up to order & (Fig. 3) in the high-
temperature limit gives

2 2

anT?
2m?

T>m,

(4.6)

m

[Sm(”

From relation (4.6) the perturbative expansion in a for
the one-particle-reducible diagrams for the electron self-
energy can be conjectured to all orders to be

J

dm

— ~qa
m

TS e l+Zan=2s01)
3 w2 T T

2
+a?

2
2 {4 +36(1)b(1)+ T
T 9

6
1——c¢(1)
77_2

3

T M, M, m™m
2| | L o1 2 m
ta m w2 Hit 2 63)+ 6Ev %2
2
LT
m
LT
m

+;T57-/%ua(1)+m12716+‘761(717_5718) ]

—m2l./l/l13b(l)—9m14719+%[a(1)—./%15b(1)]—%2720—./%162721 H ,

where the #;’s are obtained from the F,’s in the limit mB— 1.
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The values of (6m ‘"' /m )? and (8m ‘! /m) are plotted for
some particular values of temperature in Fig. 4.

In the intermediate range of temperature T~m,,
which is particularly interesting from the point of view of
cosmology, mf3— 1. Therefore, substituting the relevant
expressions for 8m?’/m and 8m?/m in this limit, Eq.
(3.3) gives

1~izc<1)][4—“a(1)—2b(1>]—iz[a(1>]2]
T 3 T

20 2F, + My Fy+ #[Sa(l)+8c(l)]+%724-./1/(4-{-%./145(75-%576)+27(%M6573+M7277) ]

9 9E 9E
8(1( l )_ zv—2578~3./1’lgf79+ mglo_f"M,gg“ + m312+m10713_3(%714+7]5)./l/ts

(4.8)

APPENDIX A

We discuss here the integrations over the loop momen-
ta in Eq. (2.3) term by term. In the first term of Eq. (2.3),
the / integration is done by the usual method in quantum
field theory in vacuum, whereas the k integration is done
by the procedure of Ref. [2] to obtain
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43 2(p+am)I  —21

1
S lp+6mI

47
(A1)

where 1/€ is defined in Eq. (2.5) and I, in Eq. (2.6a).
Further,

I° 274377 14w
— = 1 , A2
E 3E%» 1—v (A22)
. 32
Ip_2rT ) 1+4v (A2b)
p2 3E2U3 1_

with
v=|pl/py -

The second term in Eq. (2.3) has an / integration simi-
lar to that in the first term, but the k integration is done
following the method in Ref. [4] to obtain

a? 1

ot |36 132m =B 305} +1(12m —SH)T 420, |,
m
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I3 aT 1+v
z =7 UEZ{ma(mB) Tc(mB)}lnl_v 12b(mpB) | ,
(A4b)
J,-
ZZP—% fET—zima(mB)—Tc(mﬁ)} 1n:J_”’ U]
2m
b(mp) (Ado)

The third term in Eq. (2.3) is integrated by transform-
ing p —k —Il—«k. Using the standard integral tables [17],
we find that after the integration over the azimuthal an-
gle ¢, or ¢, the integral vanishes.

The fourth, fifth, and eighth terms in Eq. (2.3) contain
the products of 8 functions;

8(kH8{(p—k)—m?},

because of which the integration over k vanishes, as also
mentioned in Sec. II. In the sixth term in Eq. (2.3), the ¢,
and /, integrations are done using the relevant & func-
tions and the 6, integration is carried out using Ref. [17].
Next, the k; and 6, integrations are again similar to their

(A3) above /-dependent counterparts, whereas the ¢, integra-
where tion simply gives a factor 27. Then the statistical distri-
bution functions are expanded binomially so that the in-
Jq4=—8mb(mpB (Ada)  tegrations over the variables |1| and |q| give
|
2 ©
“98— >, l( 1)7e " ThE 2E2f+(n JMES _(s,r)—mf (s,r)}
nr,s=
2 Igl
+ L f+ 5,r) —rlg(H-vz)f_(s,r) +(f+m) ZT;
+—~IB 5f+nr+—f +2T 5f+sr——f H , (AS)
with
1
= + , (A6)
S+mr) n+r- n-—r

and f (s,7) is similar to (A6). I and I are given in Egs. (2.6b) and (2.6¢).
The seventh term in Eq. (2.3) is integrated over the loop momenta in a similar way as the sixth one in Eq. (2.3) to get

(s,7)]f +(n,r)
3
f+(sr)]—~—f (s,r) | f_(n,r)
6F 3
}g+(rs)+ —m——17+1—5”’— folnr)
*3—Ef~(n,r)]g_(s,r)
m

“a—z i‘, (—1)s I’ [(y.,p'=3m)f . (s,r)—3Ef
4 s 1 E2v2 ‘yrp + 9> —
2| ] _'}’iPi
+T m Yo Ev? E22
3
=TS+ nr)+——f
v
+3 -l;f+(n,r)+£(v2—2)f_(n,r)J
v m
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2¢e "B s r
X ” sinh(smpB)+ Tg_(r,s)+ Tg+(r,s)l
m’ +1(ypi—3 2e ™2 osh(smB)+Sg_(r,s)
— 23 {mf_(n,r)+Ly.p m)f . (n,r)} cosh(smf3 Tg_(r,s
+Lg,(ns) (A7)
Tg+ > ’
where
g+(r,s)=Ei{ —(r+s)mB}LEi{ —(r—s)mpB} . (A8)

The ninth and last terms in Eq. (2.3) are also integrated in a similar way as the sixth and seventh terms. However, on

the integration over the three-momenta of the loops, the term vanishes. Adding Egs. (A1), (A3), (AS), and (A7), we ob-
tain Eq. (2.4), in which

1=8—3 S S (—1Ye "BEf, (n,r)0(n —r) (A9)
r=1n=1
= 1 < < r+sy°
B,= Ey. 21 21(—1) ;f_(s,r)f)(s—r) , (A10)
3=4i 33 (=1 2pof 4 (5s7)+F_(5,r)]00s —1) (A11)
=1
4=21—— > S (—l)’+S[Eg+(s,r)—myog_(s,r)+me"""Bsinh(smﬁ)]e(s -r), (A12)
r=1s=1
B=10T 3 1y e ™% 1
5= 3| | 2( ) §1s21 % 2f+(n r)f 4 s,r)—; 1+—— f_(n,r)f_(s,r)
+2(—1)° 2 2f+(s, WS+ (n,r)+f_(n,r)]

On—r)é(s—r), (A13)

1
mf_(n,r)f_(s,r)}

oo

E(—I)’E 3¢ BEf (s,r)—2(—1) 3 [%f+(n,r)g+(S,r)—
r=1

s=1 n=1

17— 3m° 3m?

E2 2 f+(nr)g (r’ )

6E2 2

f_(n,r)e ~"™Bsinh(smpB)

+E’2’;2 (B3m —y.p)f 4+ (n,r)+2mf _(n,r)}
Xe_”"ﬁcosh(smB)] O(n—r)o(s—r), (A14)
B,=2 é(—l)’“ BEWE o s (rs)4rg s ()]
—#2;{(3”: — PV 4 (P )+ 6mf _(n,r)} {sg4(r,s)—rg_(r,s)] le(n —r)6(s —r) . (A15)

APPENDIX B
The integrations in Eq. (2.9) are given here term by term. The first term in Eq. (2.9) is
f d*qd* I N“'ng(E,) 8(go—E,) N 8'(qo—E,)
Q2m)" 7 2E}Xp —qP{(g—1P—m?} | qotE, 2 '

(B1)
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The temperature-independent integration in term (B1) is done by dimensional regularization to get
et d*qnp(E,) | 8qo—E,) &(q,—E,)

q 9
64m° / E}p—q)

+
qgotE, 2

31;(8m3—7m24+4mq2+q24)—-

m
X 2

4
12m—13m?q +8mg*+2q%4 + "4 }
q

m2_q2

(B2
m? )

+

4
L 12m3—6m g —4mq*+3g% — "4
g g

2.2
g —m jln

In expression (B2) the integration with 8(¢g,— E,) is similar to the temperature-dependent one in the second term of Eq.
(2.3), giving
1—v , ViP'

Ty
Yo Ty T pl

inl—v
v 1+v

3

2.4
m-e 1 3 10
€

—_— 2__
1287* |pl

b(mp) . (B3)

The g, integration with 8'(g, —E,) in (B2) is done by parts. The integration over the azimuthal angle gives 277, whereas
that over 6, leads to factors such as

m?—p,E, +|pllql
m?*—p.E,—|pllq|

(B4)

In

and

2 1 +— 1 : (BS)
m*—poE,+Ipllql ~ m*—pyE,—Ipllq|

The factors in (B4) and (BS5) are expanded in powers of (m* /qu) up to second order and integrated over |q| to obtain

4 pl 2
—e 1 20m YiP m 1—v
—{ |/—+3y,—3 - In Ta(mf3)
647t et pl 7o Ipl? Po Sl M1+
—Naom+ 3" 10120 i+ = 42 P mp)
Ipl 14+v 070 Ipl 14w Ip|
2 2 i
sk Po‘HP| vip' | 2po m m?
+ 3 (—=1)e "B 120p,—3yy m + —(2p3+3Ip|H)+— |polpl — —=
El Po 70{ 2lp] o2 | m pot3lp ol Polpl— =
5 Y 1—v
— 2 120plyy—m>T I
Ipl l PiTo Ipl 1+
1—v , viP' 1, 1—v )
_ 1-v 4 —2T)+2T )
yolnH_v—f— Il vlnH—v] ma(mpB)(m ) c(mp
, oo "t e“ln-Fr)mB
+ —qtrE
" n,rzzl( ) n+r
2 i
1—v mpy.  1—v (VP
- —2m?y,l + 12(m?2=2|p|>)— b(mp)
4m|p|—2m Yoln (m Ipl®) o] " ’ ] B
vip' m?
+ |4mp,lpl —7olpl(5p§+Ip1H)+ I;I [ 7~po|pl )p|—2po<p%+3|p|2)”
o nevnt
X —1
n2=1( ) .

(B6)

In Eq. (2.9) the second term containing 8[(g —/)>—m?] vanishes in the same way as the third one in Eq. (2.3). The
third term in Eq. (2.9) after a simple integration gives
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e? d*q d*I N©ng(1)8(1?) 202T?
= —m). (B7)
(2,”)7.[(p_,q)Z(qZ_mZ)Z{(q_I)Z_mZ} 37sz2(‘v m

The fourth term in Eq. (2.9) is

ot [ d*qd* I Nng(p —q)8[(p —q)*] (B8)
(277_)7 l2(q2_m2)2{(q_l)2_m2} ’

in which the [ integration is done by dimensional regularization and p —gq is replaced by g to get

4 d*q ng(q)d(q?) 3—6m2p—
esf ‘I'zlaq q 1 | 12m 26m(15 4)+ﬁ—4+4m
(2m) q*—2p-q 2e q°—2p-q
3__ 204 404
+ |20 Um AP oy gy tram+ A
q*—2p-q (g°—2p-q)g°“—2p-q+m"~)
2_ 4. 2 3 _ 2302 —
429 m__ ls’” 3mP—4) \3p—g)—4m
qg°—2p-qtm 2p-q—q q°—2p-q

m(p—4) H . (B9)

(g*—2p-q)g*—2p-g+m?)

In (B9) the ¢, integration gives a factor 27 and the g, integration is done using 8(g?). After a somewhat lengthy cal-
culation, in which we expand the logarithm in (B9) up to O(m 3/Eq3), we obtain

2 27? 2 T? v:p'
(H(28m —Sp) ,— T} + H(42m — p)T  + 23T+ 2T —}f—ﬁTp'
vip'

Ipl?

a | 1
7r2 4e

1. 1+v

2__U_1n 2 7, 1+v

4—=+—In
v v 1—v

+

2 2

) EL 4(12m—7p)+ 2p ln1+v+ 8
2 —
n=1h m m* 1—v \PI

5,
v

+

In—-2 +—4é-
1—v m?

8. 1—v , ViP'
—1In —5
Ipl  1+v  p

[1+y+In2+In(nmpB)] ]

+27° 3 %

n=101

2p3+Ipl?
Ipl

2 i

8(12m —7p) 1+v , 12v0, 140 80 VP
1 + 1 -+

m? P S T 1m0 m® m?|p|

8(12m — 24y, 28yp

1+v
1—v

i
> (p§+Ipl*—polpl)

[3—y+In2—In(nmpB)] ] ] .

m?|pl m3|pl
(B10)
The fifth term in Eq. (2.9) is
et d'q ng(N8(1%) | 8(qgo—E,) &(qo—E,)
—— [ =444 N —1)8{(g—1?—m? i+ B Bi11
(21r)5f2qu R A 90+ E, 2 (B1D

In the term (B11), the integration over the azimuthal angle ¢, is done using 8[(g —/ )2—m?], whereas that over ¢,
gives 27. The integrations over 6; and 6, are performed using Ref. [17]. The [, integration is done with the help of
8(1%). The g, variable is integrated using 8(q, —E,) in the first part of (B11), whereas, in its second part, the integration
is done by parts. Then the statistical distribution functions are expanded in powers of SE and integrated to get

s

4p, p 2 yp! ;
_2‘}’0| |2 - 2 (po—m)+rB(2m —poyo—7v:p")
m m Ip|

vip'

2 YaoPo
Yo— 2 (po—m) -
Ip

© o 9(” r)
2 T 1 r+s
ar‘m > (—1) > -———n " + 5

rs=1 n=1

Ei{ —(r+s)mp}

“+

e —mB(r+s)
X —m———+(r+s)BEi[—(r+s)mB] . (B12)

The sixth term in Eq. (2.9) is given by
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8(go—E,) &(gy—E,)
[ =504t N Omptg = D81 g = 17— m?mylp — 81(p — Plnplq) | —2oCa) 240 Fy

2E21? F 90 +E, 2 (B13)

(27)>

The term in (B13) is integrated such that the variable ¢ —/ is replaced by / and the ¢, integration is done using Ref. [17].
Then the integrations over /,, ¢;, and [1] are straightforward. The integration over the loop momentum gq is done such
that the qbq integration gives 2, and 6, integration is performed using the 6 function in 6,. The integration over g, is
done as in (B8) and (B11), whereas that over |q| is carried out after binomially expanding the distribution functions to
get

27T3T2 © _
—1 r+1 nBE _
3lp] W}‘;l( ) Tle 6(r—n)
pri e—mﬁ(r—n) 'yip" —mp(r—n)
- 4 2— —(y — i —(p —
pP Br—m) TP ( m " TmBELrnmB]

—B[ i(—l)SHEi{—(r—n—s)mB}

s=1

+ ZEl (r—n—t)mpj J ]

t=1

Vipi o +le_mB(f‘"‘S’ o e—mB(r*n—l)
— yo— -1y + Bl4
The seventh term in Eq. (2.9), i.e.,
8(go—E,) &(qy—E,)
4 (c) _ 2 2 q9 + q9 , B15
5f2E2 IN“ng(p—q)8(p—q)*Ing(18(1*)ny(q) i E, > (BIS)

is also integrated in a similar way as the term (B13). However, it is found that the part containing 8(g,—E,) is exactly
canceled by the contribution from the part with §'(g,— E,) such that (B14) vanishes. The last term in Eq. (2.9) vanishes
in a similar way as the last term in Eq. (2.3). Hence adding (B3), (B6), (B7), (B10), (B12), and (B14), we get the self-

energy in Eq. (2.10) with

c, = 3211r2(28m—5p), (B16)
e I 17
3_4——7; %—+3yo—3}|/:’)zi Po+2'Tp2| ln}tz a(mB)]’ 19
cr%vz[ 31'1')"2 n%_@’oyo— [lPHBT [—1 e 2 H;ini bimp)
—él(—l)"e—"'"ﬂ 20p,—3yo \m + (p%;]rpllr"Z) l+ T;T; (%(2p%+3lp!2>+m Po_% H
P b(mm], (®19)
Cs=—t542m—p), (B20)
CGZ%;;;IT 4(12r:1n4—715)p01nii5—4mL§+ ::/(;lniiz T:(; Zp%r:Z?pPl }iz

i

14y:p
ETNE (p5+IpI*—polp) {2 —y +In2—In(nmpB) ] ]

12y | 4(12m—7
+ 2°+( ¥ 2) (2 +p2)+
m m*|p|
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g ViP' e mBIr—m
-1 r+1 nBE_ o(r — ,
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Ip|? v v 1—v
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122 B’
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(B22)
5m 1+v , VP’ 1. 1+
Cy= a(mp) |yl + 2——=In——
T e L T PN R e
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(B23)
5m? 1—y v 1. 1—v © o o—(n+rimB
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© © © r+s . i
+ Z 2 2 ( ) mr lyo ‘ypz( m))El{—(r+S)mﬁ}+—(2m _I’)e—mﬁ(r+s)
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m2y . pi
i p .
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2|pl m
-
APPENDIX C F4=1n2~'y—i 2 ln(rmB) (C4)
We list the temperature dependent variables F;’s in Eq.
(3.2) as r+1
0 1 z<—1'—'ﬂE§; (C5)
Fi= 3 S5[3—v+n2—In(rmpP)], ((3))] r=1
r=17 ) © BEr+l 1r+11
o r+ F.= (—1)e™" 24 - (C6)
= 2 2 (_.l)n+re—B(rE+nm) , (C2) 6 rgl € n§3 n s§33
r=1n=3
— __1\r, —rBE — )e —rBE (_I)S
Fy=3 (—1)e R (C3) F7—2( 2 (C7)
r=1 r=1
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© r+1 r+1
Fe=3 | 3 (—DEi(—smB)— 3 (—1)Ei(—smB) | ,
r=1{s=1 s=3
(C8)
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Fo=3 | 3 (—1)Ei(—smp)
r=1|s=1
r+1 r+11
- 3 (—1Ei(—smpB)| ¥ —, (C9)
s=3 n=3"
«© r+1
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r=1 s=1 n=3
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The constants /M ;’s appearing in Eq. (3.2) are given as

=g |10m_E  TE 142
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Ev m mv { )

a=2E 1 o 141 |47 1n1+”—£), (C23)
m v i m
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Moreover, the coefficients of the powers of (T'/m) in Eq.
(3.4) are

M= lcmpP, (C38)
v
M,= —%c(mB)a(mB) , (C39)
_ 4 2 T
M= {amB) P +3b (B (mB)—ToctmB) |,
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(C40)
_ 12 4
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—_ 9 2 17‘2
My=[b(mB)—2b(mB)+ T . (C42)
- 9
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