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We show that very general considerations based on the properties of the partition function of QCD al-

low one to extract information about the eigenvalues of the Dirac operator in vacuum gauge fields. In
particular, we demonstrate that the familiar suppression of field configurations with a nontrivial topolo-

gy occurring for small quark masses is a finite size e6'ect which disappears if the four-dimensional

volume V is large enough. The formation of a quark condensate is connected with the occurrence of
small eigenvalues of order A,„~1/V.
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I. INTRODUCTION

The properties of the QCD vacuum are still poorly un-
derstood. From numerical cotnputations on a lattice [1]
and also from the observed hadron spectrum, analyzed
in terms of QCD sum rules [2], we only know its most
crude characteristics, such as the gluon condensate
(O~G„',G„',~0) and the quark condensate (O~qq~o). The
latter is of particular interest as it signals spontaneous
breaking of the chiral SUL(N&)XSUtt(N&) symmetry
which the QCD Lagrangian enjoys in the massless quark
limit.

Possible mechanisms for spontaneous chiral-symmetry
breaking and the formation of nonperturbative conden-
sates have repeatedly been discussed in the literature (for
a comprehensive review of the subject, see, e.g, [3]),but a
full understanding of the problem has not been
achieved —a derivation of spontaneous symmetry break-
down from first principles yet remains to be found. Of
particular importance is the observation that the ferrnion
condensate is related to the mean density of the ferrnion
eigenvalues. At infinite volume, the relation is the follow-
ing. Denote by p(A, }d)(, the mean number of eigenvalues
contained in the interval dA, , per unit volume. The quark
condensate is determined by the level density at A, =O [4]:

(o~qq~o) = —~p(0) .

Let us recall how this beautiful relation is derived. Treat-
ing the gauge field G„'(x) as an external field, the fermion
Green's function is given by

u„(x)u„(y}
& (x,y)=(q(x)q(y))

m —iA,„
(1.2)

where u„(x) and A,„are eigenfunctions and eigenvalues of
the Euclidean Dirac operator:

Except for zero modes, the eigenfunctions occur in pairs
u„,ysu„with opposite eigenvalues. Setting x =y and in-

tegrating over x, the representation (1.2) therefore implies

—f dx (q(x)q(x))G = — g ~, (1.4)
V v V, » m2+X2 '

where the zero-mode contributions have been dropped
(we will see later under what conditions this is justified}.
The quark condensate is the average of the left-hand side
over all gluon-field configurations, and the vacuum expec-
tation value (O~qq ~0) is the infinite-volume limit thereof.
In this limit the level spectrum becomes dense, the mean
number of eigenvalues contained in a given interval being
proportional to the volume. Averaging the relation (1.4)
over all gluon-field configurations and taking the limit
V~~, we get

(O~qq~0) = Zrn f di- p(A, )

m +I,
(1.5)

where p(A, ) is the mean level density introduced above.
Actually, the formula (1.5) does not make sense as it

stands: Perturbation theory shows that the integral is
quadratically divergent at the upper end. The problem is
related to the fact that the energy density of the vacuum
contains ultraviolet-divergent terms of the form Ao,
m Ao, and m lnAO, where Ao is the cutoff. The renor-
malization of the coupling constant and quark mass does
not suffice to ensure that the partition function remains
finite if the cutoff is removed. One, in addition, needs to
introduce a cosmological constant of the form
co+c,m +c2m and tune the coefficients c;. The result
for (0~qq ~0) is unique except for finite contributions pro-
portional to m and to m, respectively. In Eq. (1.5) these
contributions show up when writing the high-frequency
part of the dispersion integral in convergent (twice sub-
tracted) form:

Bu„(x)=A,„u„(x) . (1.3)
(Oi- iO)= —2 f"

om+A,

On leave of absence from ITEP, Moscow, Russia.
—2m +y, m +y2m . (1.6)

~ dk p(A)
p X4 m'+X'
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Vm/(0/qq /0) /
&& I, (1.7)

the factor (m +A,„) ' only slowly varies with n, so that
it is legitimate to replace the sum in Eq. (1.4) by the cor-
responding integral. Hence the representation (1.5) also
holds at finite volume, provided the mass obeys the con-
dition (1.7). If the volume is large, this condition only ex-
cludes academically small quark masses. We conclude
that the spontaneous formation of a quark condensate in
the chiral limit at infinite volume can also be seen if the
volume is finite. It is related to the fact that the Dirac
operator admits a discrete spectrum of eigenvalues which
are inversely proportional to the volume, A,„—1/V. The
purpose of the present paper is to study the distribution
of these eigenvalues in some detail. In particular, we will

investigate the role played by the winding number which
characterizes the topology of the gauge field. Nontrivial
topologies necessarily give rise to fermionic zero modes
which tend to suppress the fermion determinant if the
quark masses are small. One of the goals of the present
investigation is to determine the relative weight of topo-
logically nontrivial gauge-field configurations, i.e., to cal-
culate the distribution of the winding number.

The paper is organized as follows. In Secs. II and III
we discuss the properties of the QCD partition function
for finite volume and in the presence of a nonzero vacu-
um angle 0. We exploit the well-known fact that the full
partition function Z(0) can be represented as a Fourier
series over partition functions Zv which correspond to
gauge-field configurations of fixed winding number v.
Furthermore, we make use of a general property which

In the limit m ~0, the entire contribution from the inter-
val p & A, & ~ disappears and only the infrared part con-
tained in the first term of Eq. (1.6) can generate a nonzero
result.

The contribution from small values of A. depends on
the behavior of the spectral density there: If p(A. ) ~ A, ,
the right-hand side (RHS) of Eq. (1.5) is proportional to
m . Hence a finite result arises if and only if p(k) tends
to a nonzero limit for A, ~O. Performing the integration
over A, for this case, we indeed arrive at Eq. (1.1).

In the above consideration, the infinite-volume limit
plays an essential role. In fact, at finite volume, the be-
havior of the quark condensate in the chiral limit for
Nf ~ 2 is quite different, because symmetries do not break
down spontaneously if V is finite. The spectrum is then
discrete, and the sum occurring in Eq. (1.4) therefore
does not develop an infrared singularity. If the limitI~0 is taken at fixed volume, the condensate
disappears —chiral symmetry is restored. In the above
analysis, we first took the limit V~~, followed by
m ~0, and arrived at a nonzero condensate. Clearly, the
two limits are not interchangeable.

Actually, the above analysis does go through also at
finite volume, provided only that the quark mass is not
too small. To see this we first observe that the mean
spacing between the levels is inversely proportional to the
volume, b, A, = I/Vp(A, ). In particular, at the lower end of
the spectrum, the relation (1.1) implies hA. = rr/
(V~(O~qq~0) ~). If the quark mass is large compared to
the level spacing,

holds for any theory with a mass gap in the phyiscal spec-
trum, such as QCD, with less than two quark fiavors: If
the size of the box is large compared to the Compton
wavelength of the lightest particle, the logarithm of the
partition function is an extensive quantity, up to ex-
ponentially small finite-size effects.

In Secs. IV —VII we apply these considerations to the
partition function of QCD with Xf = l. In particular, we

show that if the quark mass obeys the condition (1.7),
the contributions to the fermion condensate from gauge
field configurations with different winding numbers
v=0, +1,+2, . . . , are all equally important. Amusing
peculiarities occurring if the theory is restricted to topo-
logically trivial configurations are pointed out in Sec. V.

The implications of this analysis for the spectrum of
the Dirac operator are discussed in Sec. VI. We show
that the occurrence of small eigenvalues is a necessary
corollary of the properties established for Z . In Sec. VII
we analyze the different contributions to the quark con-
densate and demonstrate that, for 8=0, the basic relation
(1.1) holds if and only if the parameter Vm~ (O~qq ~0) ~

is

large and positive. The case of two or more flavors is dis-
cussed in Secs. VIII and IX. The structure of the parti-
tion function is more complicated here, because the
theory now contains Goldstone bosons. We exploit the
fact that if all four sides of the box are large, only Gold-
stones of small momenta occur. Their properties are
fixed by symmetry considerations and their contribution
to the partition function can be analyzed by means of an
effective Lagrangian. The analysis performed for the case

Nf = 1 then goes through without any essential
modifications. In Sec. X we discuss the modifications
occurring if the fermions are taken in the adjoint rather
than in the fundamental representation of color. In this
case gauge-field configurations with fractional winding
number play an important role, but otherwise the main
results of our analysis remain unaffected. Finally, in Sec.
XI we investigate the behavior of the winding-number
distribution and eigenvalue spectrum if the number of
colors, N„ is taken as large. Section XII contains a brief
summary and some conclusions.

II. PARTITION FUNCTION ON A TORUS

In Euclidean space the Lagrangian is of the form'

1
CL)

2
6PvG Pv32m.

(2.2)

With a suitable choice of the quark-field basis, the mass
term can be brought to the standard form where the ma-

trix A, is diagonal with real positive entries I„,md, . . . .

'We normalize the Euclidean y matrices by ty„,y, , ]
= —26„,,

and use a representation where 8 is Hermitian.

I- = G' G'. ~'Hru iq8q+q„—Atql —+ql.AL q~, (2.1)
4g2 PV PV

where the Dirac operator 4=y„(B„+iG„)includes the
gluon field Cx„(x ) and ru(x ) is the corresponding
winding-number density:
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Consider now the partition function associated with
the Lagrangian specified in Eq. (2.1). For this purpose we
need to introduce a three-dimensional box and evaluate
the thermal trace Z =Tr[exp( H—/T)], where H is the
Hamiltonian on the box. As is well known, the partition
function can be represented as a path integral in Euclide-
an space, the time axis being closed to a circle. In order
for this path integral to represent the thermal trace, the
gluon field must be periodic up to a gauge transforma-
tion, while the quark fields are subject to antiperiodic
boundary conditions. It is convenient to choose the same
boundary conditions also in the space directions such
that the fields then "live" on a four-dimensional torus of
size L& xL2xL3xL4. We denote the corresponding
volume by V=L&L2L3L4. Setting a„=n„L„, where

n„. . . , n4 are integers, the boundary conditions then
take the form

z y eiveZ (2.7)

The individual terms stem from field configurations of
winding number v:

tions which connect them rather than in the periodicity
condition. Note also that we are considering fermions in
the fundamental representation of the color group. The
composition rule (2.5) is a condition on the fermion rep-
resentation of the transition function rather than on the
function itself. If the representation of the center of the
group is trivial, as it is the case, e.g., for fermions in the
adjoint representation, the winding number need not be
an integer; cf. Sec. X].

Since the gauge-field configurations occurring in the
path integral are characterized by an integer, the parti-
tion function involves a sum

G„(x +a)=Q, G„(x}Q, iQ—,B„Q, , (2.3)

with Q, =Q, (x)&SU(N, ). The corresponding an-

tiperiodicity condition for the quark fields reads

q (x +a) =( 1)l IQ (x)q (x) (2.4)

with
~

~a=n, + +n4 This. condition requires the
transition function to obey the composition rule

Q, +q(x)=Q~(x+a)Q, (x) . (2 5)

In geometrical terms we are describing the torus by
means of Euclidean space, identifying points if they differ

by an element of the lattice [a ]. To describe gauge fields
on this geometry, we need to cover Euclidean space with
patches, specifying the field on each one of these and pro-
viding transition functions which relate the values of the
field in the overlap of any two patches. Now, any gauge-
field configuration on Euclidean space can be described in
terms of a single patch (see Appendix A). For the field at
equivalent points to be the same, the values of G„(x) and

G„(x +a) must then be related by a gauge transforma-
tion Q, (x), according to Eq. (2.3). Gauge fields on a
torus can therefore be described in terms of a field G„(x)
defined on a11 of Euclidean space, supplemented by a
transition function Q, (x). In this representation the to-
pology of the gauge field exclusively resides in the transi-
tion function: If G„and G„' obey the periodicity condi-
tion (2.3) with the same Q, (x), then the deformation
gG„+(1—g}G„' continuously deforms one into the other
without changing the transition function. The winding
number of the gauge field,

v= f dx co(x), (2.6)
V

is the prototype of a topological invariant. It can explic-
itly be expressed in terms of the transition function (see
Appendix A). The consistency condition (2.5) implies
that v is an integer. In particular, if Q, (x)=1, i.e., if
G„(x) is periodic, the winding number vanishes. [When
analyzing instanton configurations, it may be more con-
venient to work in a singular gauge. In this case one is
implicitly dealing with more than one patch and the
winding number may then show up in the transition func-

(2.8)

where SG is the classical action of the gluon field. Denote
the eigenvalues of 8 by A,„. If the winding number is pos-
itive (negative), there are ~v~ left-handed (right-handed)
zero modes. The nonzero eigenvalues occur in pairs
(A,„,—A,„). The determinant is therefore of the form
(v)0}
det( i8 +JK—) = (det&JN)" P' det&(A, „+AtJK ), (2.9)

Z*=g c;Z(8;) (2.10)

where detf JM stands for the determinant of the Nf XNf
matrix A, and the product occurring on the RHS only ex-
tends over the positive eigenvalues. [If v is negative, the
factor (det&A, )" is to be replaced by (det/Af)']. ,

The above representation incorporates a very impor-
tant property of the partition function which originates
in the anomalous Ward identity obeyed by the singlet
axial-vector current: Z depends on the quark-mass ma-
trix and vacuum angle only through the product
A exp(i8/N&) —a change in the phase of the quark-mass
matrix is equivalent to a change in 8.

The following analysis concerns the properties of the
partition function Z=Z(8) defined in Eqs. (2.7) and
(2.8). In particular, the ground state of our system is the
so-called 8 vacuum [5]. It is legitimate to consider alter-
native states. One may, e.g. , identify the partition func-
tion with the integral f 0"d8 Z (8) or consider states such

as Z(8}+Z(8+~}. The integral over 8 exclusively re-
ceives contributions from field configurations with
v=O —we will analyze this sector in detail in Sec. V. The
superposition Z(8)+Z(8+m), on the other hand, re-
stricts the path integral to configurations of even winding
number. If the quark masses are small, the contributions
of the various winding-number sectors to the quark con-
densate are quite different such that the result strongly
depends on the state under consideration. The question
of whether the correct "physical" partition function is
given by Z (8) or by a superposition of the form
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is, however, an academic one. Since the quarks occuring
in nature are massive, different values of 0 correspond to
different vacuum energies. In the infinite-volume limit,
the sum (2.10) is anyway dominated by the term with the
smallest vacuum energy and is therefore indistinguishable
from the partition function Z (8) with the corresponding
value of 0. In particular, for real positive quark masses,
the states fo"d8Z(8},Z(0}+Z(ir) and Z(0}yield iden-

tical results at infinite volume (see also the related discus-
sion in Sec. X). At finite volume and small quark masses
where the distinction is important, the behavior of the
partition function depends in an essential way on the
properties of the three-dimensional box used. Since the
torus is an academic invention, the finite-volume aspects
of the theory cannot be confronted with experiment.
They are however of interest, because they shed light on
the mathematical structure of the theory. Also, they are
relevant for lattice studies which are usually based on a
torus. In that framework one may determine the behav-
ior of various observables in the continuum limit for a
torus of finite volume. The regularization procedure then
unambiguously specifies whether the different winding-
number sectors occur with the weight exp(iv8), as is the
case with Z(8), or whether one is dealing with a superpo-
sition of the type (2.10).

III. EFFECTIVE THEORY

In the following we exploit the fact that, for large
volumes and small quark masses, the properties of the
partition function can be analyzed by means of effective-
field theory, which describes the low-energy structure of
QCD [6—9].

Before embarking on this analysis, a remark concern-
ing the surface effects generated by the walls of the box is
in order. If we were only considering bulk properties at
infinite volume, then these effects would be entirely ir-
relevant as they are suppressed by a power of the box
size. %e are, however, analyzing the properties of the
partition function at finite volume, and we therefore need
to make sure that finite-size effects are under control.
Indeed, for the particular boundary conditions specified
in the previous section, this is the case. As shown in Ref.
[10), the corresponding effective Lagrangian does not
contain surface terms and the effective coupling constants
occurring therein are independent of the size of the box.
For these boundary conditions, the properties of the par-
tition function at large volumes and small quark masses
can therefore be worked out by means of the standard
effective chiral Lagrangian. Presumably, our conclusions
hold for a more general class of boundary conditions.
Note, however, that boundary conditions which intro-
duce a "wa11", i.e., violate translation invariance, lead to
surface effects which in the presence of long-range forces
may modify the structure of the partition function at
large volume.

The extension of the torus in the Euclidean time direc-
tion determines the temperature, L4 = 1/T, while the
quantities L &,L2, L3 specify the size of the three-
dimensional box. We assume that all four sides of the
torus are large compared to 1/A«D. The partition func-

tion is then dominated by the contributions from the
lightest particles of the theory. Their properties strongly
depend on the number of flavors and the magnitude of
the quark masses. For XI 2, the spontaneous break-
down of chiral symmetry gives rise to XI—1 Goldstone
bosons; if the quark masses are small, they represent the
lightest particles and hence dominate the behavior of Z at
large volume and low temperature. For N&=1, on the
other hand, the mass gap is expected to persist in the
chiral limit. Presumably, the lightest particle is a pseu-
doscalar qq bound state also in this case, but its mass Mp
is not small in comparison to the scale of the theory. Ac-
cordingly, the pressure becomes exponentially small at
low temperature, P ~exp( —Mo/T), and the finite-size
effects generated by the three-dimensional box are also
small, of order exp( —MOL). Denoting the energy densi-

ty of the vacuum by ED= so(me '
) and dropping exponen-

tially small contributions, the partition function becomes

Z =expI —V@0(me' )I (Kg= 1) . (3.1)

Actually, this representation holds under more general
conditions. It is not necessary that the temperature is
small compared to the mass gap. If this condition is not
met, the partition function, of course, receives contribu-
tions from the various excitations of the ground state
which depend on the temperature. The formula (3.1),
however, still applies, provided that the three-
dimensional box is large [11]; the only change brought
about by the temperature is that the vacuum-energy den-
sity eo(me' ) is to be replaced by the density of the free
energy, f (T, me' ). This has interesting implications for
the manner in which temperature affects the distribution
of the winding number, but we will not discuss this issue
here. In the following we treat the four sides of the torus
on equal footing, simply referring to a four-dimensional
box of size L.

An analogue of the representation (3.1) also holds if
there are two or more flavors. In that case, however, the
mass gap is not of the order of the scale of the theory, but
is given by the mass of the lighest Goldstone boson and
disappears in the chiral limit. We will discuss the
modifications required by the occurrence of Goldstone
bosons in Secs. VIII and IX. First, we stick to XI=1 and
consider the implications of Eq. (3.1) for the distribution
of the winding number.

eo(me' )=zoo —X Re(me' )+O(m ) .

The first term only affects the overall normalization of
the partition function and can be dropped. Disregarding

IV. DISTRIBUTION
OF THE WINDING NUMBER FOR NI = 1

The vacuum energy can be expanded in powers of m,
treating the quark-mass term as a perturbation. For
XI= 1, the spectrum of the theory does not contain mass-
less particles in the chiral limit. The perturbation series
in powers of m does therefore not give rise to infrared
divergences, such that the expansion of ep in powers of m

is an ordinary Taylor series:
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Z=expIXVRe(me' )] I 1+0(m V)] . (4.2)

The low-energy constant X is related to the value of the
quark condensate in the chiral limit:

(qLqz )i 0= —— lnZ= ——Xe
a

V 8m*
(4.3)

The expansion of the scalar and pseudoscalar condensates
in powers of m therefore starts with

(qq ) = —X cos8+O(m),

(qiysq) = —Xsin8+O(m) .
(4.4)

According to Eq. (2.7), the contribution of the sector
with winding number v to the partition function is given
by the corresponding coefficient of the Fourier series with
respect to 8. Using the explicit representation (4.2), this
coefficient is readily worked out, with the result

V

Z„= I.( VX~m~), (4.5)
m

where I„(x)=I,(x) is Bessel function of imaginary ar-
gument:

the contributions of O(m ), the partition function be-
comes

Z. =I ( VXm)exp( —VXm) . (4.g)

In the remainder of this section, we discuss the content of
this result, setting 8=0 and first taking m real, positive.

The crucial quantity which characterizes the distribu-
tion of the winding number is the mean square

coefficient grows with the volume: While configurations
of winding number v & 0 are suppressed by the power m
of the quark mass, they are enhanced by the power V of
the volume. If the product VXimi is a small number, the
mass factor wins and nontrivial topologies become rare,
but for VX im

~

&& 1 the volume factor wins such that the
suppression is removed.

The angle 0 and winding number v are canonically
conjugate quantities. The partition function corresponds
to a sharp value of 8; accordingly, the winding number is
uncertain. The Fourier decomposition represents the
partition function as a coherent sum of terms with a
sharp value of v. In general, the terms occurring in this
sum are not real. Note, however, that for x & 0 the func-
tion I„(x) is positive. If the quark mass is real and posi-
tive, and if the vacuum angle vanishes (more generally, if
me' is positive), the Fourier series therefore admits a
probabilistic interpretation: The probability to encounter
a field configuration with winding number v is given by

'
l vl

1 xI„(x)= iv! 2

X

4(/v/+1)
2Z-(v') =g v'

Z (4.9)

I„(x)=(2@x) 'i e" '1—
12
4 + ~ ~ ~

2x

x»1 . (4.6a}

(v') =VXm . (4.10)

The Fourier decomposition (2.7) shows that (v ) is the
second derivative of the partition function with respect to
8, at 8=0. With the explicit formula (4.2), this gives

x»1 . (4.6b)

In particular, in the chiral limit, Z disappears with the
power m if v is positive,

V

(4.7)
v!

and with the power (m') if v is negative. This behav-
ior is in accordance with the properties of the Dirac
determinant and originates in the fact that on a gluonic
background of winding number v the Dirac operator ad-
mits ivy zero modes. It may appear like a miracle that
the general structure of the partition function at large
volume and low temperature, which we are exploiting
here, implies the occurrence of zero modes, although it
does not explicitly involve the quark and gluon degrees of
freedom. The harmony is prestabilized: The representa-
tion (4.2) incorporates the anomalous Ward identity
obeyed by the axial-vector current. This identity requires
both the Fourier coefficient Z and the Dirac deter-
minant associated with a configuration of winding nurn-
ber v to vanish in the chiral limit, with the same power
of the quark mass. The result (4.7) is, however, more
specific, as it fixes the coefficient of m" in terms of the
volume of the box and the vacuum expectation value at
8=0, (Oiqq~O) = —X. It shows, in particular, that the

(v&0). This representation shows that, in the region
v « ( v ), the distribution is Gaussian,

Zv 1 2 2
e i ( ) Vrm »1,

(2~( v') )'" (4.12)

The mean-square winding number per unit volume,
(v ) /V=Xm, is referred to as the topological suscepti-
bility. It is independent of the size of the box and disap-
pears if the quark mass tends to zero I12].

In reality, the quark masses are different from zero and
the volume of the Universe is pretty large, VXm »1.
Let us first determine the shape of the winding-number
distribution for this case. Since the mean-square winding
number is then large, the probability distribution Z, /Z
becomes broad, extending to winding numbers of order

~
vi —( VXm)' . Accordingly, low winding numbers

0, +1,+2, . . . occur with equal probability. The manner
in which the distribution falls off at large ivy is readily
worked out using the uniform asymptotic expansion of
Bessel functions [13]:

r

1 e'" 1I„(vz)— 1+0
v 2@v (1+z )' V

(4.11)
g=(1+z )' +ln 1+(1+z'}' '



5612 H. LEUTWYLER AND A. SMILGA 46

while winding numbers comparable to or larger than
(v ) are very improbable. As a check, one may verify
that the distribution (4.12) indeed sums up to 1 and yields
the proper mean-square deviation.

The above result for the behavior of the distribution in
the limit V))1/Xm is intuitively reasonable. Dividing
space into a large number of cells and assuming that the
field fluctuations within two different cells are indepen-
dent from one another, one expects that the square of the
total winding number is proportional to the number of
cells, i.e., to the volume. Moreover, the central limit
theorem of probability theory predicts that, irrespective
of the distributions in the various cells, the fluctuations in
the total winding number are Gaussian.

In the opposite limit (v ) = VXm «1, in particular
for massless quarks at finite volume, the winding-number
distribution is concentrated at v=O: Zp-—1,Z+,
= VXm/2, . . . . The mean value of v stems from
configurations with v=+1, and the same two sectors also
dominate the quark condensate. Clearly, for VXm «1,
the winding number plays a crucial role.

V. TOPOLOGICALLY TRIVIAL CONFIGURATIONS

Suppose that the sum over all gluon-field configura-
tions is restricted to those with v=O. The partition func-
tion is then given by Zo =ID( VXm ), and the quark con-
densate becomes

Io( VXm )

I,(VXm)
(5.1)

—y) = (q( )q( )q(y)q(y) ).=, . (5.2)

The space integral of this quantity represents the second
derivative of the partition function with respect to the

Since Io(x) is even in x, this expression tends to zero if
m ~O, in contrast with the condensate of the full theory.
In the region VXm « 1, the restriction to the sector v=O
therefore changes the properties of the theory in an
essential way.

These findings are paradoxical. The winding number is
a global concept, and one should expect that, since the
theory has a mass gap Mp, the value of the condensate at
a given point should only be sensitive to the behavior of
the gluon fields within a ball of size 1/Mo around this
point. It should not be affected by the presence of a few
instantons behind the moon and should therefore be the
same whether or not one restricts the winding number of
the Universe to zero. The asymptotic representation of
the Bessel function shows that the quark condensate does
have this property if the volume is large, but the asymp-
totic behavior only sets in for V))1/Xm —it is not the
mass gap which sets the scale here. The resolution of the
puzzle is the following. Long-range correlations are ab-
sent in the full theory, but they do occur if the integra-
tion over the gluon field is restricted to a fixed winding
number. In fact, the long-range correlations are generat-
ed precisely by the constraint I vdx ~=v To see this, .
consider the two-point function of the operator qq in the
sector with winding number zero:

quark mass:

f Zp
dx dy Oo(x —y)=

v Zo (Qpyg )
(5.3)

Inserting the explicit expression for Zp and taking the
limit m ~0, this relation implies that the volume integral
of the correlation function is proportional to the volume:

f dx o,(x)=-,'X'V . (5.4)

~The simplest example of such a theory is the textbook model

of a complex scalar field:

4 =Bpg Bpg ~(g+ ~ ) (5.5)

with 0 (x)=y(x }.

Hence oo(x) does not fall off within a distance of order
1/Mp —if it did, the space integral would become
volume independent for V))MO . The result (5.4) im-

plies that, for distances large compared to 1/Mo, the
correlator 0.0(x) tends to —,'X . Note that the nonzero
asymptotic value is not due to a disconnected part: Since
we are restricting the gluon-field configurations to mind-
ing number zero, the expectation value of qq vanishes if
the quarks are massless [see Eq. (5.1)]. This should be
confronted with the situation in the full theory, where the
condensate does not disappear in the chiral limit, because
the sectors v=+1 generate nonzero contributions, mhile
the correlator picks up terms both from v=O and +2.
In the full theory, the correlator does obey the cluster-
decomposition property, tending to the square of the con-
densate if x ~ ~. (This is exactly what happens in the
two-dimensional Schwinger model —for a thorough dis-
cussion of the fermion correlators in this model at finite
volume, see Ref. [14].)

We conclude that if the integral over the gluon field is
restricted to configurations with trivial topology, v=0,
one obtains a different theory, involving long-range corre-
lations. The corresponding partition function Zp
=ID( VXm) is reminiscent of models which undergo
spontaneous symmetry breakdown. Two crucial features
are in common. First, models with spontaneous symme-
try breaking also involve long-range correlations due to
the presence of massless particles, Goldstone bosons.
Second, the quark condensate (5.1) behaves in the same
way as the order parameter in such models. The sign of
(qq ) o changes when the quark mass changes sign (the
same occurs with the spontaneous magnetization of a fer-
romagnet under a sign change of the external magnetic
field). In the chiral limit at finite volume, ( qq ), 0 disap-
pears (which is reminiscent of the absence of spontaneous
symmetry breaking at finite volume). Indeed, there are
local-field theories for which the partition function at
large volume is given precisely by the Bessel function
Io( VXm ). This behavior results under the following cir-
cumstances. Consider a field theory with U(1) symmetry
and assume that it contains an operator O(x) which
transforms according to the representation 0 (x }
~e' O(x) of U(l). Suppose that the ground state spon-
taneously breaks U(1) symmetry with a nonzero value of
the order parameter X=~(0~0(x)~0)~. Denote the
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Z = f 18Z(8),2' 0
(5.7)

shows that the projection onto field configurations with
v=0 is given by the integral of the full partition function
over the vacuum angle. Hence the long-range correla-
tions originate in the integral over 0. Indeed, the fact
that the vacuum angle in some respects behaves like the
order parameter of a spontaneously broken symmetry
was noted in the literature [15]. The operator which gen-
erates a shift in the vacuum angle is referred to as Q,„
and differs from the axial U(I) charge of the quarks by a
Chem-Simons term which stems from the anomaly. For
massless quarks, Q,„ is conserved. In this language the
0 vacuum may be interpreted as a state which spontane-
ously breaks the symmetry generated by Q,„and one
may then wonder why this symmetry breakdown does
not give rise to a Goldstone boson. The reason is the fol-
lowing. The Goldstone degrees of freedom are related to

U(1)-invariant Lagrangian by Xo and introduce a

symmetry-breaking term proportional to 0 (x):

X=SO+—,'[m'O(x)+mO (x)J .

The spontaneous breakdown of the symmetry gives rise
to Goldstone bosons which dominate the partition func-
tion at large volume. For smaB m and large V, the parti-
tion function can explicitly be worked out by means of
the corresponding effective Lagrangian which involves a
single Goldstone field. One indeed finds that the leading
term is given by the Bessel function Io( VXm ). Does the
restriction of the gluon field to configurations with trivial

topology turn QCD into such a theory? If so, we would

be dealing with two different realizations of QCD with

Nf =1: (i) The gluon field fluctuates with arbitrary topol-

ogy, and U(1) symmetry is ruined by the axial anomaly
which ensures that the rt is massive; (ii) only trivial topo-
logies occur such that the anomaly is prevented from
having physical effects, U(1) symmetry being broken only
spontaneously, and the spectrum contains a Goldstone
boson, i.e., a massless g'.

The picture may be suggestive, but it is not correct.
The long-range correlations which manifest themselves in
Zo do not originate in Goldstone bosons. Otherwise, the
partition function would necessarily also contain contri-
butions from particles moving at small, but nonzero mo-
menta of order p —1/L, where L is the size of the box.
The perturbation series associated with the effective La-
grangian amounts to an expansion in powers of 1/L .
The leading term in this expansion exclusively involves
Goldstone bosons with p =0, but the occurrence of
modes with nonzero momenta reveals itself a first non-
leading order, through a one-loop graph which generates
a power correction of order 1/L . The point here is that
the large volume expansion of Zo does not contain such
power corrections. The long-range correlations seen in

Zo are those of a theory which contains a single degree of
freedom with p =0 rather than the full spectru~ of a
massless particle.

In fact, the origin of the zero mode is easily identified.
The inversion of the Fourier decomposition,

symmetry operations for which the parameters of the Lie
group are allowed to slowly vary in space. The corre-
sponding generator is given by an integral over the
charge density weighted with a space-dependent factor.
In other words, the Goldstone theorem requires the oc-
currence of a conserved current, not only of a conserved
charge. The Chem-Simons "charge" can be written as an
integral over a local current, but as is well known, this
current is not gauge invariant; i.e., it generates unphysi-
cal states. One may allow the parameter 8 occurring in
the Lagrangian (2.1} to depend on space, but the 8 term
then fails to be a total derivative —there is no way to
make sense out of Q,„ in terms of an integral over a lo-
cal charge density. There is, therefore, no reason for the
theory to contain massless particles with the quantum
numbers of axial U(1): The anomaly does take care of the
U(1) problem.

The situation is rather similar to the one in general re-
lativity, where energy-momentum conservation cannot be
formulated in terms of a sensible local conservation law.
Although the total energy and momentum of the system
are conserved if the gravitational field vanishes at spatial
infinity, they cannot be localized —what is conserved [16)
is not a tensor.

Finally, we emphasize that the long-range correlations
mentioned above only occur if the parameter VXm is
small. If the quark mass is given some small nonzero
value, the correlations disappear as the volume tends to
infinity. Indeed, the above formulas show that for the
density of free energy, f = —V lnZ, it is irrelevant
whether one sums over all gluon-field configurations with
8=0 or restricts oneself to the topologically trivial ones,
provided VXm )& l. Up to corrections of order 1/V, the
free-energy density is given by —Xm, in either case. Un-
less the quark mass is strictly zero, the winding number
becomes irrelevant if the volume is large enough.

Z —m& dG e 6 & $2+m2
n

(6.1)

where the product only extends over the positive eigen-
values of the Dirac operator and the integral is taken
over gluon-field configurations with a given winding
number v. The formula shows that, except for the factor
m, the dependence of Z on the quark mass arises from
an average of the factor ff'„(I+m /X„} over all gluon-

VI. SPECTRUM
OF THE DIRAC OPERATOR FOR Nf = 1

The long-range correlations discussed in the preceding
section are closely related to the fact that the Dirac
operator admits small eigenvalues. In the present sec-
tion, we explore this relation in detail, using the explicit
results for the partition function to obtain information
about the eigenvalue distribution. Throughout the fol-
lowing we consider a given winding-number sector, i.e.,
look at the quantity Z, for some fixed value of v which
we, for convenience, assume to be positive or zero. Since
the phase of the quark mass then only enters in a trivial
way, we take m real and positive.

The quantity Z is the functional integral
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field configurations with winding number v. It is con-
venient to denote this average by ( ( ) ):

f [dG]e g„'A,„f
(&g)&,—=

f [dG]e Q„'A,„
(6.2)

In this notation, Eq. (6.1) amounts to the exact relation

m "Z,(m)

lim o [m 'Z„(m)]
(6.3)

Inserting the explicit representation (4.5) for Z„, which
applies if the box is large compared to the scale of the
theory, we obtain

compensation, the spectrum is diluted in the vicinity of
X=O, the zeros of the Bessel function being shifted to-
ward larger values if v is increased.

In reality, the eigenvalues of the Dirac operator, of
course, depend on the gluon field under consideration.
The explicit formula (6.8) merely indicates that the spec-
trum fluctuates around these values. On a quantitative
level, the content of Eq. (6.4) can be expressed in terms of
inverse moments of the eigenvalue spectrum. Expanding
both sides of this equation in a Taylor series in powers of
m and comparing coeScients, we obtain a string of sum
rules involving inverse powers of k, . Expressed in terms
of the corresponding dimensionless eigenvalues l„
=—X„VX, we get

(6.4} l2 4 v+1 (6.10a)

with x =—VXm.
The qualitative content of this result is best seen by in-

voking the infinite-product representation of the Bessel
function in terms of its zeros. Denoting the positive
zeros of the function J,(x) by g„„

J,(g„„)=0, n =1,2, . . . ,

the function I,(x) can be written as
v

1 x " xI,(x)=—— g 1+
v! 2

2

(6.5)

(6.6)

The relation (6.4) then takes the form

VXm

n=1
(6.7)

This shows that the result of the path integral over the
gluon field is the same as if there was a single field
configuration with eigenvalues distributed according to

+ n, v

-VX (6.8)

As anticipated in Sec. I, the eigenvalues are inversely pro-
portional to the volume. Moreover, the asymptotic for-
mula

g„,= rr( n + —,
' v —

—,
'

) (6.9}

3For similar considerations in the context of noncompact QED
on a lattice, see Gockeler et al. , in Ref. [17].

shows that for eigenvalues which are large compared to
1/VX, the spectrum is equidistant with hA, =n/VX. The
mean level density per unit volume is therefore indepen-
dent of the winding number and indeed approaches the
value

p(o) =&/~ =
I & o

I qq I
o & I

/tr

in the infinite-volume limit. The distribution of the
lowest few eigenvalues, however, is sensitive to the wind-

ing number. In particular, there are v zero modes. As a A,
an = ', VIxI'sx,4' (6.11)

where X, is the number of colors. Accordingly, the sum

g'„1/k„contains a quadratic divergence ~ AoV. As dis-

cussed in Sec. I, the same divergence also shows up in the

I

~~
n

I ~
n

~~

~

~~
n

I ~
n v

1 ~, 1 1
, (6.10b)

l „ l„, 16 v+1 v+2

etc. , where the sums only extend over positive eigenval-
ues. The explicit formula (6.8), according to which the
dimensionless mean eigenvalues are given by the zeros of
the Bessel function, I„=+(„„,holds in the sense of these
inverse moments. In particular, the mean value of
g„'I/1„ is given by g„l/$„=1/4(v+ 1).

The results (6.10) are nontrivial and can, in principle,
be checked in lattice experiments. First lattice measure-
ments of the spectrum of the Dirac operator for some
field-theory models have already appeared [17]. The re-
cent progress made in calculations with dynamical fer-
mions [18] should allow one to obtain similar eigenvalue
distributions also for QCD and to perform an experimen-
tal check of the sum rules (6.10). The same applies to the
topological susceptibility (4.10). For lattice measure-
ments of ( v ) in pure Yang-Mills theory, see [19].

A remark concerning ultraviolet divergences is in or-
der here. The above discussion ignores the fact that the
product ii'„(1+m '/1, „) requires regularization, and the
same applies to sums such as g„'I/A, „. How can we
claim that, in the infinite-volume limit, the results (6.10)
are exact if the LHS involves divergent sums, while the
RHS is finite? The point is that the divergences only
affect the corrections of order 1/V. To verify this state-
ment, we first note that our analysis only concerns those
eigenvalues of the Dirac operator which are small com-
pared to the scale of the theory. Our neglect of the
higher-order terms in Eq. (4.2) is justified only if the
quark mass is small, m &(AQcD This restriction
prevents us from analyzing the spectrum in the region

AQCD responsible for the occurrence of divergences.
For a given field configuration, the level density at

is given by phase space. The number of levels
contained in the interval (A., t(.+ b,A. ) tends to
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vacuum energy and is removed by adjusting the cosmo-
logical constant. The contributions from small eigenval-

ues, on the other hand, grow with the square of the
volume. If the volume is large, these contributions there-
fore dominate the sum, large eigenvalues only generating
corrections of relative order 1/V. Thus, in order to com-
pare our predictions (6.10) with experiment, one should
either make sure that the condition Va X )) 1 is satisfied
(a is the lattice spacing) or restrict the sum to small ei-

genvalues, A,„AQcD

VII. QUARK CONDENSATE
AND SIGN OF THE QUARK MASS

Let us now discuss the mechanism responsible for the
formation of a quark condensate in more detail. For
0=0 and a real, positive quark mass, the decomposition
of the partition function into contributions from the vari-
ous topological sectors becomes

Z=IO(VXm)+2 g I,(VXm) .
v&0

(7.1)

The derivative of I„(VXm) with respect to m contains
two terms:

I„'(x)= I„(x)+I—„+,(x) . (7.2)

=e "IIo(x)+I,(x)J . (7.3)

At small values of x:—VXm, the contribution of the zero
modes dominates, f(x)=1—

—,'x+O(x ). In this case
the leading term arises from v=+1, in agreement with
the standard instanton picture. In the limit x &) 1, how-
ever, the zero-mode fraction is negligible, f (x)=&2/nx. .
The condensate is determined mainly by the nonzero
modes, and the contributions from all winding numbers
in the range

~
v

~
8 &x are equally important.

4At small temperatures and large volumes, the quasiclassical
approximation underlying the instanton picture of QCD is not

justified —the integrals acquire their main contributions from
instantons of large size where the quasiclassical parameter
8m /g (p) fails to be large (at high temperatures, the picture

may be adequate, particularly for Nf =1, where the value for
the quark condensate does not depend on the order in which the
limits m~0 and V~ oo are performed [20]). Our own treat-
ment is in no way based on the quasiclassical approximation.
The relevant gluon-field configurations may be quite different
from instantons. What counts here is that configurations of
winding number v=+1 carry one quark zero mode. In the
small-x limit, the quark condensate exclusively stems from this
particular mode.

The infinite-product representation (6.6) shows that the
first term stems from the zero-mode factor x", while the
term I,+, (x) comes from the derivative of the remainder
and is related to the nonzero modes. Thus the relative
fraction of the zero-mode contribution to the quark con-
densate is given by

qq zero modes z V v(;-q& „vI (
x = e

(qq) „c x

An important remark concerning the sign of the quark
mass is in order here. The above simple physical picture
only holds if the Fourier decomposition of the partition
function admits a probability interpretation, i.e., if me
is real and positive. Otherwise, it is not meaningful to
speak of a probability distribution of gluon-field
configurations. In fact, arguments based on this concept
can even be misleading. As an illustration, consider the
large volume relation (1.5) which expresses the conden-
sate in terms of the mean level density. Let us fix the vac-
uum angle at 8=0, and let us see what happens if the
quark mass is allowed to take negative values. Equation
(1.5) indicates that the sign of the condensate is opposite
to the sign of m. If this relation holds, the condensate
must therefore flip sign as m passes through zero. This
behavior, however, is in contradiction with the general
properties of the partition function discussed in Sec. IV.
According to that analysis, the value of the condensate in
the chiral limit is given by (qq ) = —X cos8, irrespective
of whether the limit is taken from positive or negative
values of m. The contradiction originates in the notion of
a mean level density p(A, ), which implicitly requires an
average over the various gluon-field configurations,
weighted with the appropriate probability. If the mass is
negative, the decomposition Z=g+„becomes an alter-
nating series, odd winding numbers generating negative
contributions. In this case the sum over all field
configurations thus contains negative terms and proba-
bilistic notions such as the mean level density lose their
meaning. In particular, the large volume relation (1.5)
only holds if me' is positive. The same remark also ap-
plies to the fractions of the quark condensate due to zero
and nonzero modes. If the mass is negative and large
compared to 1/VX, Eq. (7.3) shows that the zero-mode
"fraction" is not suppressed at all, but instead becomes
exponentially large. It is canceled out almost completely
by an exponentially large negative "fraction" due to
nonzero modes —by definition, the two contributions add
up to 1.

At first sight this suggests that, in QCD with one quark
Qavor, a change in the sign of the quark mass drastically
changes the physical content of the theory. The
phenomenon originates in the anomaly of the axial-vector
current. The corresponding Ward identity implies that
the partition function depends on m and 8 only through
the combination me' . Hence a change in the sign of the
quark mass is equivalent to going from 8=0 to ~ and
therefore amounts to a change of sign of the contribu-
tions associated with an odd winding number. If only to-
pologically trivial configurations were relevant, the parti-
tion function would not discriminate between +m and
the sign of the quark condensate would indeed be oppo-
site to the sign of m [see Eq. (4.13)]. The full theory ex-
hibits a different behavior because nontrivial topologies
cannot be ignored.

Note, however, that these conclusions only hold for the
specific state defined in Eqs. (2.7) and (2.8). As men-
tioned in Sec. II, one may envisage alternative states.
Consider, e.g., the two inequivalent theories character-
ized by (H, m) and (8, —m), respectively. Each of these
theories acts in its own space of states. Take the direct
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sum of the two spaces. The corresponding partition func-
tion is given by

Z„,(8,m)=Z(8, m)+Z(8, —m) . (7.4)

The point is that, if the volume is sent to infinity, only
one of the two terms survives —the one with the lower
vacuum energy. In particular, for E9=0, the large volume
limit of Z„, coincides with Z(0, m) if m & 0 and with
Z(0, —m) if m (0. The construction thus allows the sys-
tem to choose between two different ground states, one
for which (qq)= —X and one where (qq)=+X. The
system picks the first state if m is positive and the second
one for m (0. In view of the identity Z(8, —m)=Z( 8+ n. , m ), the quantity Z„, is periodic in 8 with
period m. Its Fourier decomposition therefore only con-
tains even winding numbers,

current contains an anomaly. In the chiral limit, the
group SU„(Nf )XSUr (Nf)XUV(1) remains a true sym-
metry of the Lagrangian. The formation of a quark con-
densate breaks this group down to Uz(Nf ). As a conse-
quence, the spectrum of the theory now involves Nf —1

massless Goldstone bosons. Away from the chiral limit,
these particles do carry mass, but if the quarks are light,
the mass is small. In a basis where the quark-mass ma-
trix is diagonal with positive eigenvalues m„, md, . . . ,
the mass of the Goldstone mode with the quantum num-
bers of du, e.g. , is proportional to (m„+md)'~. For
0=0, the mass is given by

M + =(m„+md) +0(m2),X

Z 2 y Z ivs

v=2k
(7.5)

where X is the quark condensate in the chiral limit at
infinite volume,

a further illustration of the statement that the winding
number is an important quantum number only at finite
volume. The example demonstrates that the question of
what happens if the sign of the quark mass is Hipped can
unambiguously be answered only at finite volume where

Z„, clearly differs from either one of the two irreducible
components of which it is composed.

Incidentally, the issue also arises in QED. The corre-
sponding partition function on a torus involves a sum
over topologically inequivalent configurations of the elec-
tromagnetic field and sectors with an odd winding num-
ber again generate negative contributions if the electron
mass is negative. At finite volume the two theories with
+m, are therefore inequivalent.

VIII. SEVERAL FLAVORS

Let us now consider real QCD, which involves several
light-quark flavors. There is a very substantial difference
between this theory and the single-6avor case discussed
above. For Nf =1, the formation of a quark condensate
does not violate any symmetry. The U(1) axial symmetry
is broken explicitly by the quantum anomaly. The mass
of the pseudoscalar meson persists in the chiral limit.
The spectrum involves a gap, and the partition function
obeys the large volume representation (3.1).

If Nf ~ 2, only the divergence of the singlet axial-vector

(0~ uu ~0) = (Oldd lo &
= (8.2)

and F=93 MeV is the pion-decay constant. If the box is
taken large compared to the Compton wavelength of the
lightest Goldstone boson, M„L ))1, then the finite-size

effects are exponentially small, of order exp( ML ). —In
this case the partition function is again given by Eq. (3.1).
The results established in the preceding sections for

Nf =1, however, rely to a considerable extent on the be-

havior of the partition function in the region VXm 1.
There, the product MQ —VXm/F L is a small num-

ber, because we are interested in boxes which are large
compared to the scale of the theory, FL ))1. In the re-

gion VXm ~1, the finite-size effects are therefore not
suppressed, the logarithm of the partition function is not
extensive, and the representation (3.1) does not apply.
We need to account explicitly for the Goldstone bosons
which are responsible for the fact that the mass gap
disappears in the chiral limit. This was done in Refs.
[7, 10] where it was shown that, for large volumes and
small quark masses, the QCD partition function coin-
cides with the partition function of the standard effective
low-energy theory. In that framework, the Goldstone bo-
sons are described by a matrix field U(x) ESU(Nf ), and

the partition function is given by a path integral over this
field:

Z = J [dU]exp —J d ~x &,ff( U, d U, d» (8.3)

At leading order in an expansion in powers of derivatives
and powers of the quark-mass matrix JR, the effective La-
grangian is of the form

F2
tr(B„U B„U)—XRe[e ftr(~Ut))+. . .

(&.4)

As far as the static or quasistatic properties are con-
cerned, the effective theory is a full substitute for QCD.
In particular, for large volumes and small quark masses,
the properties of the partition function are determined by
the two effective coupling constants F and X, which
characterize the leading term in the derivative expansion
of the effective Lagrangian —higher-derivative terms
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only generate corrections involving powers of 1/L or
powers of Af, .Note that the effective coupling constants
are independent of the box size. In the representation
(8.3), the integral extends over all pion fields which are
periodic in the four directions of Euclidean space —the
size of the box only enters through this boundary condi-
tion.

For I9=0 and a diagonal, positive mass matrix, the
minimum of the action occurs at U(x) = 1. If the prod-
uct VXJNis , large, the minimum is narrow and the path
integral can be evaluated by expanding the field

N —1f
Z =exp —Veo+ —,

' V g go(M;, L, , . . . , L4) (8.8)

(M L L )
— 1 f dt —tM g —a /4t

go 1 4
16

The quantity —
—,'gp is the free-energy density of a Bose

gas of free particles on a torus, and the sum extends over
the XI—1 Goldstone flavors. The shape of the box only
enters through the kinematical function gp..

e i tti x ) /E (8.5) (8.9)

in powers of the traceless Hermitian matrix m.(x }. In the
action the terms quadratic in ~(x) describe a set of NI 1—
free fields, while the higher-order terms represent interac-
tion vertices. The path integral then boils down to a
Gaussian integral over a polynomial of the field m(x),
which can be worked out in the standard fashion. The
only modification brought about by the box is that the
standard meson propagators are replaced by the corre-
sponding Green's functions on the torus, e.g.,

e lPz

G„(x)=—~
77 P ~ M2 + 2

(8.6)

Z=expf —VL,JU, I(detD) '
l l+O(p )J . (8.7)

The classical action (tree graph) is of O(p ), and the
determinant (one loop} is of order 1, while graphs with
two or more loops only generate corrections of O(p }.
The one-loop divergences contained in detD require regu-
larization. Since the divergences are the same as at
infinite volume, they can be absorbed in the cosmological
constant contained in X,ff.

For a general mass matrix and a nonzero vacuum an-

gle, the classical solution does not sit at U =1. The value
of the effective Lagrangian at the minimum determines

i 8/NI
the vacuum-energy density eo=ep(JMe ), and the cur-
vature at the minimum fixes the Goldstone masses

i 8/N
MM;(Af. e ). In terms of these quantities, the

chiral representation for the partition function becomes

where the components of the vector p„are integer multi-
ples of 2m/L„and the meson masses are the same as at
infinite volume.

The standard chiral perturbation series is ordered ac-
cording to powers of momenta, the meson masses
M +,M o, . . . and the inverse box sides 1/L„counting
as quantities of O(p). The leading contribution to the
partition function stems from the classical action. The
fluctuations of the meson field only show up at first non-
leading order, through a one-loop graph given by the
determinant of the differential operator D= —8 +M,
which characterizes the kinetic term in the effective La-
grangian (M is the meson-mass matrix):

where the components of the vector a„run over integer
multiples of the box sides L„. If the box is large com-
pared to the meson Compton wavelength, ML ))1, the
function gp becomes exponentially small and the parti-
tion function therefore takes the form Z =exp( —Veo),
where E'p 1s independent of the box. This verifies that, for
nonzero quark masses, the Goldstone excitations
freeze —the thermal trace Z =Tr I exp( —PH) ) reduces to
the contribution from the ground state. In the frame-
work of the effective theory, the vacuum-energy density
ep receives contributions both from the classical effective
Lagrangian and loop graphs. Normalizing the cosmolog-
ical constant such that the vacuum energy vanishes in the
chiral limit and setting 8=0, the expansion of E'p in
powers of A starts with f0= —X trJtt(+O(JK ). Hence, if
the box becomes large, ML ))1, the quark condensate
approaches the infinite-volume result (8.2), up to
symmetry-breaking effects of order AL.

If the product VXJR is not large, the path integral is
not squeezed to the vicinity of U(x) = l. In particular, if
JR vanishes, the different directions in group space be-
come equally likely —the symmetry is restored. In the
standard chiral perturbation series, the phenomenon
manifests itself through the fact that the loop expansion
develops infrared singularities if the pion mass tends to
zero. Indeed, the formula (8.6) shows that the contribu-
tion to the propagator from the mode with p =0 is given
by 1/M V and therefore blows up for M ~0. Accord-
ingly, graphs where mesons with p =0 propagate around
a loop diverge in the chiral limit. The disease is of tech-
nical nature and is easily cured. It originates in the as-
sumption that the path integral (8.3) can be evaluated by
expanding the integrand around the Gaussian term which
stems from the quadratic part of the effective Lagrangian.
Since the mode with p =0 does not carry kinetic energy if
the pion mass is turned off, the fluctuations in this mode
are not Gaussian. The problem only concerns the zero
mode; the amplitudes of the inodes with pWO do show up
in the quadratic part of the action even if the pion mass
vanishes. There is a standard technique which allows one
to deal with problems of this type: One treats the zero-
mode amplitudes as collective variables, setting U(x)
= Uo Ui (x), where Uo is the space-independent field asso-
ciated with the zero-mode fluctuations, while U, (x) de-
scribes the modes with p&0. The latter do not acquire
large amplitudes and can therefore be analyzed perturba-
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The constant Pp is one of the shape coefficients associated
with the kinematics of free particles on a torus [9] (for a
torus of equal sides, pp= 1,70, . . . ). The factor K in front
arises from the Haar measure. Parametrizing the ele-
ments UE SU(Nf ) by coordinates a', the group metric is
defined by

g;k ( a )d a'd a"=
—,
' tr( d U d U ) . (8.12)

The Haar measure is proportional to the square root of
g =detg;k..

Nf —1

dp(U)= —&g Q da'.
K i=1

(8.13)

The factor K is the proportionality constant occurring in
this relation. If the volume jsU(N ~dp( U) is normalizedf
to 1, K is given by [22]

Nf+2 (Nf —()/22' ~
K=

n, '= k'
QNf . (8.14}

In the context of the present paper, the representation
(8.10) plays a role analogous to Eq. (3.1), generalizing this

tively. Ignoring the fluctuations in the nonzero modes al-
together, the path integral reduces to an ordinary integral
over the collective variable Up [7,9,21]:

Z= A f,d(u(Up)exp[VXReje ftr(Af, Up)]] .

(8.10)

The integral extends over the group SU(Nf ), and dp( Up)
is the corresponding Haar measure. The nonzero-mode
fluctuations and higher-order terms in the derivative ex-
pansion of the effective Lagrangian generate corrections
to this result. As is the case with the representation (8.8),
the formula (8.10) becomes exact in the limit V~ a&.

The difference between Eqs. (8.8) and (8.10) originates in
the fact that we are dealing with a double series, involv-
ing powers of AL and of 1/L . In the standard chiral ex-
pansion (8.8), JNand , 1/L are treated as quantities of the
same order, such that the product JKL ~(ML) counts
as a term of order L; the series is of the form

lnZ=L f,+fp+L f, +
where the coefficients f„are functions of Jkf,L The.
transformation of the path integral which leads to Eq.
(8.10) reorders this series: JR is now treated as a term of
order L, such that the variable VX' counts as a quan-
tity of order 1. The reordered series is of the form
lnZ= fp+L f(+ . , where the coefficients f„are
functions of At, L . Equation (8.10) specifies the leading
term fp.

As shown in Ref. [7], the two representations (8.8) and
(8.10} have a common domain of validity: values of JK
and L for which VXJR is large, while ML is small. The
comparison of the two representations allows one to pin
down the normalization constant occurring in Eq. (8.10):

2 1/2 ~o (Nj, —1)l2

A=K (8.11)
2m'

formula to the case of two or more flavors. To our
knowledge the group integral cannot be expressed in
terms of known functions if Nf 3. In the case of two
flavors, however, the integration can be done and leads to
a Bessel function of imaginary argument,

2Z = I, ( VXmp) (Nf =2), (8.15)
VX

where mo refers to the maximum in the integrand:

mp=maxRe{e' ~ tr(%Up)] [Up&SU(2)]
= jtr&tAt+e'edetPt+e ' detAt ]' (8.16)

(uLuR ) = —
—,'X V(m„+e '

md ) . (8.18}

The term ~m„on the RMS stems from the nonzero
mode contribution in the sector with v=0, while the term
~ md is due to zero modes in the sector with v= —1. If
m„-md, they are of the same order. On the other hand,
for VXmo &&1, the condensate becomes volume indepen-
dent. The magnitude of (uLu„) tends to —,'X, while the

phase is given by the phase of m„+e ' md, irrespective
of the volume [23,15]. Note the qualitative difference to
the case Nf =1, where the phase of the condensate is in-

dependent of the phase of the quark mass. For Nf =2,
we are dealing with a spontaneously broken symmetry
and the quark condensate is of the same physical nature
as the spontaneous magnetization of a ferromagnet, the
mass term in the Lagrangian playing a role analogous to
an external magnetic field. The minimum of the free en-
ergy is achieved if the magnetization is parallel to the
external magnetic field. If the latter changes sign, so does
the former. The phase of det(qRqL), however, is in-

dependent of argdetJK: The product (uLuR )(dLdR )e'
is positive —this is what remains of the mass indepen-
dence of the condensate when going from Nf = 1 to 2.

If the two quark masses are real and if 0=0, the
effective Lagrangian in Eq. (8.4) only involves the sum

m„+md. The isospin breaking generated by m„—md
does not manifest itself at the leading order of the chiral
expansion. The isospin symmetry remains unbroken in
the leading order also in the more general case where the
masses are complex and 0 does not vanish. Setting
U(x)=UpU, (x), where Up is the minimum of the
effective action, the mass term reduces to XmoRetrU, .
The effective Lagrangian is therefore invariant under iso-
spin rotations, U, ~VU, V . In particular, the masses of
the three Goldstone bosons coincide:

In a basis where Af is diagonal, the quark condensate be-
comes

m„+e '
m& I2(VXmp)

uLuR = X
~m„+e '

md ~

I((VXmp)
'

(8.17)
(uRuL ) (uLuR )

and similarly for (dLdR ), (dRdL). The result shows
that, in the chiral limit at fixed volume, the condensate
disappears as it should —symmetries do not break down
spontaneously if the volume is finite. In the symrnetry-
restoration region, VXmo &&1, the condensate is propor-
tional to the quark mass and volume:
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Xmo
M = = im +e 'm*i.

F2 F2
(8.19)

In a basis where m„and md are positive, this reduces to
Eq. (8.1) if 8 vanishes, while for 8=m. the pion mass is
proportional to ~m„—mz~' . In particular, for m„=md,
O=w (or m„= —md, 8=0), the effective Lagrangian in

Eq. (8.4) describes three massless pions. In this case it is
not legitimate to neglect the higher-order terms in the
effective Lagrangian. The expansion of M in powers of
Jkt then only starts at order JNIn, . the context of the
present paper, these peculiarities are not of importance,
because they only arise for particular values of the vacu-
um angle and do therefore not show up in the Fourier
coefficients Z .

Although the group integral in Eq. (8.10) cannot be
done explicitly for Nf ~3, approximate representations
valid if VEAL is either large or small compared to 1 are
readily obtained. For VOL�&&1, the partition function
grows exponentially with the volume, Z-exp(VXmo).
The quantity mo is given by the maximum of the ex-
ponent in Eq. (8.10). Denoting the group element at
which this maximum occurs by U, the condensate be-
comes

( q Jl q~ ) = —,' X U'—~e (8.20)

In the opposite extreme VXJM, «1, the exponential in
Eq. (8.10) can be expanded in powers of the volume. Us-
ing the orthogonality relation for the fundamental repre-
sentation of SU(Nf ), this gives

Z=l+ V X tr(P, JK)+ (N &3) . (8.21)2 Z

4Nf
f-

In this expansion the vacuum angle only shows up at or-
Nfder V f, through a term proportional to ReIe' deb/RI.

The representation (8.21) shows that, in the symmetry-
restoration region, the quark condensate is proportional
to the mass matrix:

~J+VX
L R 4Nf

f-
It is due exclusively to nonzero modes in the sector with
v=0.

(8.22)

5See, however, the next section where, for quarks of equal
mass, the Fourier coefficient Z„ is given in closed form.

IX. SPECTRUM OF THE DIRAC OPERATOR
FOR Nf +2

We now turn to the consequences of the representation
(8.10) for the distribution of the winding number and fer-
mionic eigenvalues. The contribution to the partition
function generated by field configurations of winding
number v is given by the Fourier coefficient Z . In the
representation (8.10), the vacuum angle 0 and collective
meson-field variable Uo only enter through the combina-
tion U = Uoexp( i 8/Nf ). The Fo—urier transform with
respect to 8 therefore merely extends the group integral
from SU(Nf ) to U(Nf ):

Z„=A J dp(U)(detU)"expI VXRetr(JRU )I . (9.1)

Here and in the following, the volume of the group

Jtx~ ~dp(U) is normalized to 1. For Nf=1, this in-
f

tegration can explicitly be done, yielding the modified
Bessel function encountered in the first part of the
present paper. For Nf ~ 2, the function Z, depends on a
matrix variable

X= VXA. (9.2)

rather than on a single argument, but the qualitative
properties are very similar to those of the Bessel function.
In fact, the essence of the following discussion is the
statement that the properties of Z and the fermionic
spectrum are nearly independent of the number of
flavors. This is in marked contrast with the result of the
preceding section where we found that the behavior of
the full partition function and quark condensate strongly
depends on the number of flavors, because, for Nf & 2,
the theory acquires a symmetry which undergoes spon-
taneous breakdown. Remarkably, the restriction to field
configurations of a given winding number removes the
qualitative difference between the cases Nf = 1 and

Nf ~2.
Let us now establish the main properties of the group

integral in Eq. (9.1). Exploiting the invariance of the
Haar measure, one readily shows that Z, obeys the iden-

tity

Z„( V, JRV2) =(detV, V2)"Z„(JM,), (9.3)

valid for arbitrary V&, V2 G U(Nf ). Using a transforma-
tion of this type, the mass matrix can be brought to diag-
onal form with positive eigenvalues. It therefore suffices
to analyze the properties of the integral in this case.

Let us first consider the region VXJkf»1, w, here the
integrand in Eq. (9.1) is sharply peaked around the max-
imum occurring at U =1. Unless v is taken as large, Z,
therefore becomes independent of v. As the ~inding
number grows, the factor (detU)" starts playing a role, re-
ducing the value of the integral. In the region we are
considering here, VXAf, »1, the winding-number distri-
bution is Gaussian:

1 1 vZ„=Z(8=0), exp ——
2

. (9.4)2 )1/2 2 v2

Since the mean-square winding number ( v ) is large, the
sum over v coincides with the corresponding integral.
We have normalized the Gaussian distribution according-
ly, such that the factor in front of this distribution coin-
cides with g+„ i.e., with the partition function at zero
vacuum angle.

The above derivation of Eq. (9.4) relies on the represen-
tation (9.1) for Z . As discussed in the last section, this
representation only holds if the box is small compared to
the Compton wavelength of the Goldstone bosons. For
M;I. 1, the behavior of the partition function is de-
scribed by Eq. (8.8) rather than (8.10). To calculate the
corresponding Fourier coe%cients Z, we observe that
the vacuum-energy density occurring in formula (8.8) has



5620 H. LEUTW'YLER AND A. SMILGA

its niinimum at 0=0 (recall that we are taking Af,real
and positive). The meson masses M, contained in the
function gp also depend on 0, but this term only

represents a correction to the leading term ep. In the re-

gion VXJR »1, the minimum in the vacuum energy gen-
erates a sharp peak in the function Z =Z(8), described

by a Gaussian in 0. The corresponding Fourier trans-
form is therefore also a Gaussian: The winding-number
distribution is given by Eq. (9.4), irrespective of the size
of M, I.. Moreover, we can read off the mean-square

winding number by calculating the ratio Z "(8)/Z(8) at
0=0. Up to higher-order corrections, this gives

(9.5)

gtr(r, A )tr(r, 8 ) = —,
' tr( AB ), (9.12)

one readily checks that the integral (9.1) obeys the
second-order differential equation

ya, a.z, =-,'x,z,
a

(9.13)

This relation generalizes the famihar differential equation
obeyed by the Bessel functions which corresponds to the
case Xf = l. Inserting the expansion (9.9), one obtains

It is convenient to treat the variable X' and their com-
plex conjugates as independent and to denote the corre-
sponding partial derivatives by 8, and B„respectively.
Using the identity

We have discussed the 0 dependence of the vacuum ener-

gy in detail in Sec. VIII, for the case of two flavors, where
1

4(xf+lvl) ' (9.14)

@0= X(m—„+md +2m„md cos8 )
'

Evaluating the derivative, we obtain

(v') = vz
m„+md

(9 6)

(9.7)

as well as a relation involving a particular linear com-
bination of the coefficients b and c:

(Xf2+ lvl&, +1)b.+(»f+ lvl)c, = Xf

In fact, the behavior of the topological susceptibility
(v )/V at infinite volume was analyzed in Ref. [23),
where it is also shown that the result (9.7) can be general-
ized to an arbitrary number of flavors. The topological
susceptibility is determined by the sum of the inverse
quark masses:

(9.15)

g tr( t, ti, t, td )B,Bi,8,BdZ„=—,', XfZ, ,
abed

(9.16)

To separately determine b and c„one may use the
fourth-order differential equation

( )vx. + + +1 1 1

Pl ~ Pld m~
(9.8)

which also follows from the representation (9.1) upon re-
peated use of Eq (9.12).. Inserting the expansion (9.9) and
using the identity

Let us now turn to the opposite limit VXJR « 1, where
symmetry restoration occurs. In this region the in-
tegrand in the group integral (9.2) does not vary rapidly
and can be expanded in powers of JR and JK . The identi-
ty (9.3) implies that for v~0 the expansion starts with a
term proportional to (detA1)':,

gt, At, =-,'trA,

which holds for any Nf XNf matrix A, this gives

(2&f+ lvl )b„+(&j'+lvl&f+1)c, = 1

(9.17)

Z„=A,(detX)"I 1+a,trX X+b,(trXtX)i

+c„trX XXtX+0 (X6)] . (9.9)

where t, , . . . , t~, are the generators of U(Nf ) and con-
f

stitute a complete set of Hermitian Nf XNf matrices,
normalized by

Evidently, the factor (detX)' represents the contribution
from the vlf fermionic zero modes [for v &0, this factor
is to be replaced by (detX ) ].

We proceed with an evaluation of the coefficients
a„,b, c the overall —normalization constant JV will be
determined later on. Decompose the matrix X as

Wf
X= g X'r. , (9.10)

(9.18)

Solving the linear system of equations (9.15) and (9.18),
we finally obtain

1
b, =

32(k —1)
1

32k(k —1)

(9.19)

with k—:lvl+Xf. As a check, one may verify that for

Xf =1 the representation (9.9) agrees with the first few

terms of the Taylor series for the Bessel function.
The implications of these results for the spectrum of

the Dirac operator are the following. The exponential
growth of Z at large values of VELAR implies that, in the
range 1/VX « lA. „l «A&CD, the number of levels con-
tained in the interval AA, is the same as for Nf = 1:

(9.11)
An= —VEAL, .

1 (9.20)
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Note that to compare theories with a different number of
light flavors, we need to relate the corresponding mass
scales. In the present context, it is convenient to choose
the scale such that the vacuum expectation value of one
of the quark flavors, & 0~ uu ~0) = —X, is the same. In the
range of eigenvalues specified above, the level density
then becomes independent not only of the winding nurn-

ber, but also of the number of flavors.
For Nf =1, we found that at the lower end of the spec-

trum, A,„=O(1/VX), the eigenvalue distribution does de-

pend on the winding number. It also depends on the
number of flavors. To see this one compares the expan-
sion (9.9) with the path-integral representation (2.8) and
(2.9). The comparison leads to a generalization of the
sum rules established in Sec. VI. Expressed in terms of
the dimensionless eigenvalues l„=VXA,„, the sum rules
take the form

ment s fluctuates around the mean value s=1/4k. The
relative dispersion is independent of the volume, but de-
creases if the number of flavors or the winding number
are increased.

Up to now, we have analyzed the partition function Z
for a general mass matrix A, . This allowed us to distin-
guish between the two fourth-order terms in the expan-
sion (9.9} and to calculate separately the coefficients b„
and c, which determine the two independent moments in

Eq. (9.21b) and (9.21c). It is amusing, however, to note
that, if the quark masses are set equal, the group integral
Z, can be worked out explicitly for any number of
flavors. We briefly sketch the calculation, dropping the
overall normalization factor A to simplify the notation.

Consider first the case of two flavors. If the matrix X is
proportional to the unit matrix, X =x1, the integral in
Eq. (9.1) is readily evaluated, with the result

(9.21a) Z„=I„(x) I„+,(x)—I„,(x) . (9.23)

(9.21b)

This expression represents a determinant. It suggests
that, for an arbitrary number of flavors of equal mass, the
partition function is given by

l„v 16k k —1
(9.21c)

I„(x)

I„ i(x)

I +, (x) I„+~,(x)f
I„(x)

—2S
(9.22}

where s = «s ))„. The result shows that the inverse mo-

with k= ~v~+Nf. The mean value && ))„isdefined in
Eq. (6.2},except that the fermionic factor occurring there

N
is now given by ( g'„A,„)

The first relation shows that, in the presence of several
flavors, the factor ~v~+1 occurring in Eq. (6.10a) is re-
placed by ~v~+Nf. The sum g'„1/I„decreases in inverse
proportion to the sum of the winding number and num-
ber of flavors, indicating that the eigenvalue spectrum is
pushed up if either one of these two quantum numbers is
increased. Note that this statement refers to the dirnen-
sionless quantities I„, which differ from the eigenvalues
A,„by the factor VX. Both the Pauli principle and the
fact that the fermions tend to shield the attraction gen-
erated by the gluons indicate that the condensate X de-
creases if additional flavors are introduced at fixed cou-
pling. This effect amplifies the shift toward larger eigen-
values caused by an increase in Nf. Qualitatively, the
sensitivity to Nf is to be expected: The path integral for
Z contains a factor from the action of the gluon field
and one from the determinant of the Dirac operator, the
zero modes being factored out. The determinant grows if
the spectrum is pushed toward larger eigenvalues. If the
number of flavors is increased, the weight of the fermion-
ic factor becomes more important such that gluon-field
configurations with larger eigenvalues are favored.

For Nf = 1, only the difference between the two inverse
moments in Eqs. (9.21b) and (9.21c) obeys a sum rule [see
Eq. (6.10b)). If there are several flavors, we thus obtain
an additional piece of information which concerns the
dispersion of the quantity s—:g'„1/1„:

Z.=

I x+&(x)—V

(9.24)

P g (
k e ~l)

k(1
(9.26)

If P is multiplied out, we obtain a set of terms for which
the integral factorizes into Nf independent one-
dimensional integrals, each of which representing a
Bessel function. To check that the combinatorics of these
terms indeed gives rise to the determinant (9.24), we note
that P is a linear combination of factors of the form
exp(i[n&P& + +nz Pz ) }. Since the result must bef f
odd under the interchange of any two angles P;,Pk, only
those terms survive for which the integers (n &, . . . , nz )f
are mutually different. Hence the set of integers must

We are indebted to H. B.Nielsen for this hint.

where x is related to the quark mass by x = VXm. To
verify that this formula is correct, we first note that, for
equal quark masses, the integrand in Eq. (9.1) is invariant
under U~VUV with VEU(Nf) The ma.trix U can
therefore be diagonalized. The eigenvalues are of the

form e ', . . . , e "f. Using Weyl's formula [24], the
group integral can be reduced to an integral over the an-
gles 0 & y, , . . . , y„&2~:

f dP;Z„= P exp x cos k+iv k
k=1

(9.25)

where P is the function
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represent a permutation of the numbers
(0, 1,2, . . . , Nf —1); i.e., P consists of Nf! terms which
only differ by a permutation of P&, , Pz and by a sign iff
the permutation is odd. Now the integrand in Eq. (9.25)
involves the factor PP*. In view of the permutation sym-
metry of the remainder, we can replace the quantity P*
by a single term, say, (n, , . . . , nz ) =(0, 1, . . . , Nf —1),f
dropping the factor 1/Nf! in front of the integral. One
then easily checks that the Nf! permutations occurring in
P precisely give rise to the determinant (9.24).

At small x the partition function (9.24) is proportional
to x f as is dictated by the general representation (9.9)
refiecting the presence of ~v~Nf fermionic zero modes.
The proportionality coefficient can also be worked out
(see Appendix B):

I~INf N —1

(k+ v )!,
[1+O(x')] (x « I) .

(9.27)

XZ—
2

Reinserting the overall normalization factor A given in
Eq. (8.11), this finally allows us to pin down the constant
JV„occurring in the small X expansion (9.9):

2
—N (lvl+N /2 —1/2) (,N —1)/2

A', =QNf g„, (k+~ ~).

P (N —1)/2
X (P2 Pl /2e 0) f

X. ADJOINT FERMIONS

1(j(x +a ) = (
—1 )

' D[Q, ( x)]g( x) . (10.1)

Accordingly, the consistency condition (2.5) for the tran-
sition function now becomes

D[Q, +b(x)]=D [Qb(x +a)]D[Q,(x)] . (10.2)

The preceding analysis concerns the QCD sector of the
standard model, where the fermions transform according
to the fundamental representation of the gauge group. It
is instructive to see what happens if the fermions of the
theory instead sit in the adjoint representation. Super-
symmetric Yang-Mills (SYM) theory is an example of this
category, containing one massless Majorana fermion in
the adjoint representation of the gauge group.

The cardinal difference to the case discussed in the
preceding sections is that, if the theory exclusively in-
volves particles in the adjoint representation, the winding
number defined in Eqs. (2.2) and (2.6) need not be an in-
teger. To see why this is so, we recall that the quantiza-
tion of the winding number in QCD is a consequence of
the requirement that the gauge field must be able to sup-
port quarks. For fermions in the adjoint representation
D(g) of SU(N, ), the periodicity condition (2.4) is re-
placed by

[The adjoint representation of the center is trivial,
D(Z)=1.] It remains true that the winding numbers of
the gauge field can be expressed in terms of the transition
function, but if the composition rule (10.3) involves non-
trivial Z factors, v is in general a fractional number.

The admissible winding numbers can be determined as
follows. Since in the adjoint representation the covariant
derivative

)bc fibcg—+iGa( Ta)bc fibcg—+fabcGa
C& P P P P (10.4)

is real, the eigenvalue equation gu„=k„u„ is invariant
under charge conjugation: If u„(x) is an eigenfunction,
then C 'u„*(x) is also an eigenfunction and the eigenval-
ue A, „ is the same (C is the charge-conjugation matrix
defined by y„*=—y„=Cy„C '). In view of C*C = —1,
the two solutions are linearly independent. Hence the
eigenfunctions occur in pairs:

IA, „:u„(x),C 'u„*(x)] . (10.5)

In particular, the number of zero modes is even. Denote
the number of left- and right-handed zero modes by nL
and nR, respectively. Since charge conjugation preserves
chirality, both nL and nR are even integers. Now, ac-
cording to the index theorem, the difference nL

—
nR is

given by the integral (16~ ) 'f d x tr(G„,G„"„),where
the matrix G„ is the adjoint representation of the field
strength. This integral must therefore be an even integer.
The trace over the generators of the adjoint representa-
tion differs from the analogous trace for the fundamental
representation by the factor 2N, . The above integral thus
coincides with 2vN„where v is the winding number
defined in Eqs. (2.2) and (2.6). Hence a necessary condi-
tion for a gauge-field configuration to support adjoint fer-
mions is that the winding number be of the form

VV—
N,

(10.6)

where v—= —,'(nL n„) is a—n integer. To show that this
condition on the winding number is also sufFicient, one
may, e.g., consider Abelian configurations of constant
field strength, referred to as torons [26]. In that case the
transition functions can be worked out explicitly and one
readily verifies that the condition (10.3) is indeed obeyed
if and only if the winding number is of the fractional
form (10.6). Note that self-dual or anti-self-dual
configurations of this type only generate a subset of the
admissible winding numbers.

Let us now see what becomes of our analysis of the
partition function. Since the adjoint representation is
real, it is convenient to describe the fermions in terms of
Majorana fields. The Lagrangian of our model then reads

G„' G„' i Oco i g X—'BA,'—1

2 P~ P~

The point is that this represents a weaker condition. It
holds if and only if Q, (x) obeys [25]

+y I m, k g g gg +H. c. I
ik

(10.7)

fl, +b(x) =Z (a, b)Qb(x +a)Q, (x), (10.3)

where Z(a, b) is an element of the center of SU(N, ).

where D„and co are defined in Eqs. (10.4) and (2.2), re-
spectively. We denote the number of Majorana flavors by
Nf.
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Before proceeding further, we should discuss a known
problem which appears when one tries to define the func-
tional integral in a theory involving Majorana (or Weyl)
fermions in Euclidean space. The matter is related to the
fact that the Euclidean rotation group SO(4) consists of
two independent SU(2) factors —their generators are not
Hermitian conjugates of one another as in the case of the
Lorentz group. This means that a left Weyl spinor and
its complex conjugate transform with the same represen-
tation of SO(4). As a result, it is impossible to construct
an SO(4)-invariant Lagrangian involving only left Weyl
fields —necessarily, fields with the opposite chirality ap-
pear and the number of degrees of freedom is effectively
doubled [27]. By the same token, Majorana fermions
which are normally composed of a Weyl spinor and its
complex conjugate do not live in Euclidean space: In
view of C*C = —1, the Majorana condition

A, '(x ) =CA, '(x )" (10.8)

(10.9)

Again, the product runs over all positive eigenvalues, but
now each pair of charge-conjugate eigenfunctions only
counts once. The degeneracy (10.5), which allowed us to
take the square root, is special for the adjoint representa-
tion. If the fermions belong to the fundamental represen-
tation, then, generally, T' is not related to T' and the
symmetry is absent. The exception is SU(2), where r,'
and r, are related by the unitary transformation r2.. For
any eigenfunction u„of the corresponding Dirac equa-
tion, the function r2C u„ is also an eigenfunction with
the same eigenvalue. Even in this case, the solutions u„
and r2C 'u„* need not be linearly independent —the
equation u„=r2C 'u„' can have solutions.

We are now able to define the partition function of the
theory, Z(8), as a sum over the admissible winding num-
bers v=O, +1/N„+2/N„. . . . Each sector comes with
the fermionic factor specified in Eq. (10.9), multiplied by
e' . The prescription implies, in particular, that the
mass matrix Af and vacuum angle 0 only enter in the

immediately leads to a contradiction.
Although Majorana fields as such cannot be defined in

Euclidean space, it is possible to analyze the theory
characterized by the Lagrangian (10.7) by means of ana-
lytic continuation from Minkowski space [28]. The point
is that, in Minkowski space, where it is well defined, the
path integral over the Majorana fields can be done. It is
given by the square root of the corresponding Dirac
determinant. The determinant as such does have an
unambiguous continuation to Euclidean space. Taking
square roots of determinants in general meets with
difficulties [29], but for Majorana fermions, there is no
problem. As noted above, the eigenfunctions of 8 occur
in pairs related by charge conjugation. Furthermore,
multiplication with y5 generates a pair of eigenfunctions
belonging to the eigenvalue —

A,„. The square root can
therefore explicitly be taken, and the formula analogous
to Eq. (2.9) becomes

[det( i@+JR—)] =(detf JR) g"detf(A„+JN JK, ) .

Z*(8)= g Z(8+2nn)
n=1

(10.10)

and is periodic with period 2m. As long as the fermions
are massive, the states Z(0) and Z (0) are indistinguish-
able in the infinite-volume limit. Note, however, that for
strictly massless fermions (SYM theory), the vacuum en-

ergy becomes independent of 0. In this case the restric-
tion to integer winding. numbers does modify the state of
the system, even at infinite volume. For Nf =1, e.g. ,
Z(8) is the partition function of a system with a single
ground state, while Z*(8) corresponds to N, degenerate
vacua [30]. In our opinion, the choice (10.10) is less natu-
ral than ours. More importantly, models involving mass-
less fermions admit a variety of inequivalent partition
functions. Nothing forbids, e.g., considering the sum

g„',Z(8+nm ), which is periodic in 8 with period n and
implies the occurrence of 2N, degenerate vacua.

We now return to the analysis of the partition function
for massive fermions where this problem does not arise.
The simplest case, analogous to QCD with one quark
flavor, occurs for Nf =1 (for vanishing mass, this is the
supersymmetric Yang-Mills theory). The vector current
then vanishes identically while the axial-vector current is
anomalous. The corresponding Ward identity confirms
the conclusion drawn from the number of fermionic zero
modes occurring in the Euclidean path integral: The par-
tition function depends on the Majorana mass m and vac-
uum angle 8 only through the product m exp(i8/N, ).
For Nf =1, the mass spectrum of the theory contains a
gap, such that, at large volume, the partition function
grows exponentially:

i 0/N
Z =exp{ —VEO(me ')], (10.11)

i 8/N
where eo(me ') is the energy density of the ground
state. If the mass m is small, co is approximately linear in
m and the properties of the partition function are there-
fore again determined by the Taylor coefficient o, which
represents the vacuum expectation value

(10.12)

Obviously, the situation is the same as in QCD with one
quark flavor, and the analysis of Secs. IV —VII goes
through without essential modifications. If the fermion
mass is small and if the scales of the two theories are
chosen such that the vacuum expectation values are the
same, (O~XA. ~O) =(O~qq~o), the partition functions be-
come identical, except that one needs to compare the vac-

combination JR exp(i 8/Nf N, ). Since fractional winding
numbers occur, Z(8) is periodic in 8 with period 2vrN,

(not 2m. as in the case of QCD).
We emphasize that the extended periodicity interval is

inherent to our specific framework, where the Euclidean
path integral is extended over all gauge-field configura-
tions on a torus. As discussed in Sec. II, one may consid-
er alternative states, described by different partition func-
tions. One may, e.g., restrict the path integral to gauge
fields of integer winding number. The corresponding par-
tition function is given by

N
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uum angle of the Majorana theory with the angle 0/N, in
QCD and compare configurations of winding number v in
the Majorana case with those of winding number vX, in
QCD:

Z adj oint Z fundamental I i Vv vN vN ' (10.13)

In particular, at small values of Vo.m, the condensate
originates in field configurations with winding number
v=+1/X„which play a role analogous to the instanton-
like configurations in QCD. Indeed, this was observed
long ago [31] in the context of SYM theory. In an in-
teresting recent paper. Zhitnitsky used more elaborate
arguments to calculate the gluino condensate (10.12) ex-
plicitly [32]. His result is o =cAsYM, where AsyM is the
analogue of AQcD and c is a known numerical coeScient.

In the opposite limit Vom &&1, the value of the con-
densate is the same. It does then not arise from zero
modes (as is the case in the limit of small Vam ) but from
small nonzero eigenvalues, and the winding number be-
comes an irrelevant quantum number.

If the theory contains several Majorana fiavors

, the Lagrangian acquires additional chiral
symmetries. The currents

Vik gi gk g ik pic y5gk
)

'
)

(10.14)

are conserved, except for the anomalous singlet current
X, A„". The kinematic identities V„'"= —V ', 3„' = A„"'

imply that we dealing with ,' Nf ( Nf ——1) and

Nf ( Nf + 1 ) —1 independent conserved vector and axial-

vector currents, respectively. Accordingly, the symmetry
group involves N f —1 parameters, and one readily
checks that the commutation rules of the generators are
those of SU(Nf ). This is to be compared to the symme-

try group SU(Nf )zSU(Nf )LU(1)i, characteristic of
Nf flavors in the fundamental representation.

The left-handed spinor )(,I =
—,'(1 —y )A,

' and the spinor
A, z transform according to the fundamental representa-
tion D& of SU(Nf). The mass term m;I, Axe, L therefore
belongs to the direct product DfDf, more precisely, to
the symmetric part thereof (the operators X 9." and
X 'y l are symmetric under i ~k)

It is not evident that chiral symmetry undergoes spon-
taneous breakdown also if the fermions are in the adjoint
representation. In the following we assume that it does,
with a nonzero order-parameter matrix (O~X'A, "~0),
which breaks the SU(Nf) symmetry of the Lagrangian
down to the subgroup O(Nf ) generated by the vector
currents. Accordingly, the theory must contain

Note that, historically, the gluino condensate in SYM theory
was first found in [33] by considering the instanton contribution
to the correlator 0~ T[)A.(x), ~. . . , )i,A.(0) J ~0) [with N, factors of
XA,(x; )].
sThe first coefficient in the perturbative expansion of the p

function is given by Po= —'N, (11—2Nf ). The theory is therefore

asymptotically free, provided there are less than six Majorana

flavors.

—,'Nf(Nf + 1)—1 Goldstone bosons which live in the quo-
tient SU(Nf )/O(Nf ). Generally, the matrix (0~)(, 'A."~0)
depends on W and 8 (cf. the discussion in Sec. VIII).
Taking A, diagonal with real positive entries and setting
0=0, the condensate at infinite volume takes the form

Z= exp 2Vo. Re me' U3
dO
4m'

(10.17)

where d0 is the area element on the two-sphere. The an-
gular integral can be done and leads to

sinh(2 Vo I cos8)
2Vo. m cos0

(10.18)

where we have taken I to be real to simplify the nota-
tion. The corresponding Fourier coefficients are

oo 2n+2lvl

„=,n!(n +2~&~ )!(2n +2~ v~+1)
(10.19)

with %=X,v and x = Vcr m. The properties of the parti-
tion function (10.19) are rather similar to the correspond-
ing expression (9.23) for the fundamental fermions. At
x &&1, Z„~x2I I and the contribution of large winding
numbers is suppressed. At x &)1, the asymptotics for
Z (8) is exponential,

Z(8) ~ exp(2 Vom cos8), (10.20)

the Fourier integral for Z„ is squeezed to small
8-1/&x, and the contribution of all winding numbers
up to v-&x is equally important.

9The model we are considering here belongs to the general
class of O{X)-symmetric theories which undergo spontaneous
breakdown to 0(N —1) [9]. We are dealing with the special
case N =3.

(10.15)

up to corrections of order A, .
Let us now consider the case Xf =2, which amounts to

a full Dirac spinor 1(i in the adjoint representation of the
gauge group. For simplicity, we restrict ourselves to a
Dirac mass term of the form m 1(it itz+H. c. In the nota-
tion introduced above, this term corresponds to a mass
matrix of the form m, k

=m 5,k and breaks the SU(2) sym-

metry of the massless Lagrangian in the same manner as
the condensate, with O(2) as residual symmetry. The
quotient SU(2)/O(2) is a two-dimensional sphere. The
Goldstone bosons can therefore be described by a vector
U(x)=(Ui, U2, U3) of unit length, U =1. The leading
term in the effective Lagrangian is given by

X,I=
—,
' f B„UB„U—2o Re(me' ) U3, (10.16)

where we have identified the O(2) subgroup generated by
the vector current with the rotations around the third
axis. The angle 0 stands for 0/2N, . The representation
of the partition function analogous to Eq (8.10. ) now be-
comes
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Note that, in full analogy with QCD, the expression
(10.18) only holds in the region ML (( 1, where
M = (20 m cose/f )' is the Goldstone-boson mass. For
ML ~1, chiral perturbation theory yields a representa-
tion analogous to Eq. (8.8). The corresponding large-x
asymptotics is again dominated by the vacuum energy
and coincides with Eq. (10.20)—the Goldstone modes
only affect the preexponential factor.

The implications for the spectrum of the Dirac opera-
tor are also rather similar to what we had in the funda-
mental case. At x ))1, the condensate (10.15) is related
to the mean density of the Dirac eigenvalues, p(A, ), per
unit volume:

(O~X'A, "~0)= ——p(0)5'" .
2

(10.21)

Note the difference with the formula of Banks and Cash-
er [Eq. (1.1)]. The factor of 2 arises because the density
p(A, ) simply counts the eigenvalues of the Dirac operator,
while for Majorana fermions only pairs of charge-
conjugate eigenfunctions are relevant —the proper fer-
mionic weight in the path integral is not the determinant
but its square root.

Comparing the results (10.13) and (10.19) with
((det' ( i@+JR—)) ) for fermions of equal, positive
mass m and performing the expansion in powers of
x = V~m ((1,we obtain the sum rules

(10.22a)

v+3 (10.22b)

where the sums only run over pairs of charge-conjugate
levels (10.5) with positive eigenvalues.

Let us compare these results with what we found in the
case of QCD. Relation (10.13) implies that, in the pres-
ence of one Majorana flavor, the small eigenvalues of the
Dirac operator are distributed in the same manner as in
QCD with one quark flavor, except for two important
differences. (i) We need to compare the eigenvalue distri-
bution for gauge-field configurations of winding number v
in QCD to the distribution in the sector N, v of the Ma-
jorana theory. This means that the Majorana levels are
more sensitive to the properties of the gluon field: In-
creasing the winding number from v=O to 1, the sum

shrinks by a factor 2 in QCD (Nf = 1), but by the
factor N, +1 in the Majorana case (Nf =1). (ii) Tuning
the scales of the two theories in such a way that the con-
densates are the same, o. =X, the eigenvalue distributions
coincide at the lower end, but each level occurring in
QCD corresponds to a pair of degenerate eigenvalues of
the Dirac operator in the adjoint representation.

We add a comment concerning the significance of the
scale convention o =X used in the above comparison of
the two theories. The effective low-energy theory does
not say anything about the magnitude of the low-energy
constants X,F,o,f, . . . . In the large-N, limit, the quark
condensate X grows in proportion to N, if the mass of
one of the bound states, say, the p meson, is kept fixed
[34]. In the case of adjoint fermions, on the other hand,

the condensate 0. is proportional to N, . This implies
that, if the scales of the two theories are tuned in such a
manner that the value of M is the same, the condensates
are of a different order of magnitude. At the lower end of
the QCD spectrum, the spacing of the Dirac eigenvalues
is of order 1/VX ~ 1/N, . In the Majorana case, the lev-
els are more densely packed, with a spacing of order
1/Vo. ~ 1/N, . The same difference in the level densities
also shows up at large eigenvalues: For fermions in the
fundamental representation, the number of levels con-
tained in the interval b, A, is given by N, VA, b, i, i4n. , while
for adjoint fermions the factor N, is to be replaced by
N, —1. The tuning of scales required by o =X therefore
amounts to a comparison of the two theories at physical-
ly rather different scales, the bound states of the Majora-
na theory then occurring at masses which are large com-
pared to those of the corresponding QCD states. Note
also that, at leading order in an expansion in powers of
1/N„ the quark condensate 2 is predicted to become in-
dependent of the number of flavors, while for fermions in
the adjoint representation this is not the case. Quite gen-
erally, theories containing adjoint fermions are more sen-
sitive to the number of flavors than QCD. The sum rules
only control the distribution of the dimensionless "eigen-
values" l„. Comparison of the sum rules (10.22) and
(9.21) shows that, in these variables, the flavor depen-
dence of the two theories is rather similar. The factors
VX and Vo. , which set the scale for the corresponding
distributions of the proper eigenvalues A,„, however, are
quite different and also exhibit a different dependence on
the number of flavors —it does not make much sense
comparing the numerical coefficients which occur in the
various sum rules.

XI. LARGE N,

As pointed out in Ref. [35], the axial-vector anomaly is
suppressed in the large-N, limit. In this limit the theory
therefore becomes symmetric under the full chiral group
U(Nf)L XU(Nf)„. There are good reasons to assume
that this symmetry is spontaneously broken to the sub-
group U(Nf)~ generated by the vector currents [36].
Hence an additional Goldstone boson must occur if N, is
sent to infinity. The corresponding extension of the
effective Lagrangian which describes the low-energy
structure of the theory is discussed in detail in the litera-
ture [23,37,38]. Let us see what becomes of our analysis
in this limit.

If the number of colors is large, the leading contribu-
tions to the partition function arise from graphs which
exclusively involve gluons. In lnZ, these graphs generate
a contribution of order N„while graphs containing
quarks only start showing up at order N, . The sum of
the purely gluonic contributions represents the partition
function of gluodynamics (Nf =0).

Actually, this statement is not quite correct. In gluo-
dynamics, the sum over all gluon-field configurations in-
cludes fractional winding numbers and the corresponding
partition function is periodic in 0 with period 2~N„not
2~. In the presence of quarks, the path integral, howev-
er, only extends over the subset of field configurations
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ZG(8) =e (11.2)

with integer winding number. Denoting the full partition
function of gluodynamics by ZG=ZG(8), we are thus
concerned with the superposition

N —1
C

Z~(8) = g ZG(8+2vrk ),
c k=0

which eliminates fractional winding numbers, but retains
integer ones with the proper weight. The difference be-
tween ZG and 2G clarifies a point which in the standard
treatment of the large-N, limit remains obscure. The
point is the following. Gluodynamics is expected to have
a mass gap Mo, given by the mass of the lightest glueball.
Accordingly, if the box is large enough, MOL »1, the ex-
citations freeze and ZG reduces to the contribution from
the ground state:

masses if they are all equal while, in the unequal mass
case, the vacuum energy is a a smooth function of 0
[15,23,43] [see also Eqs. (8.15) and (8.16)].

Invariance under parity implies that f (x) is an even
function of x. In the vicinity of the minimum, f (x) is
therefore of the form f (0) + —,'x f"(0)+O(x ). The
coefficent of the quadratic term, r =f"(0), represents the
topological susceptibility of gluodynamics at 6 =0:

r= Jdx(co(x)co(0))G . (11.4)

The corresponding mean-square winding number is pro-
portional to the volume:

(11.5)

If the box is large, Vr))1, the superposition (11.1) is
dominated by the term with k =0, the remainder only
generating exponentially small corrections:

The large-N, counting rules imply that the dependence of
the vacuum-energy density eG(8) on 8 and the number
of colors is of the form

—ve~(e)
G (11.6)

eG(8) =N, f 0

C

(1 1.3)

Moreover, since we take N, to be large, the vacuurn-

energy density is approximately quadratic in E9:

eG(8)=N, f(0)+ ,'r8 +O(8—/N, ) . (11.7)

This property is perfectly consistent with periodicity on
the interval 2mN„but is difficult to understand, if, ab ini-
tio, the field configurations of gluodynamics are restricted
to a integer winding number.

Note that the large-N, limit can be replaced by the
heavy quark limit at finite N, —in either case, the parti-
tion function is given by the quantity PG(8), i.e., by the
projection of the gluonic partition function onto integer
winding numbers.

The path-integral representation shows that ZG(8) is a
Fourier series with positive coeScients. On the interval

a&x & n, th—e functi. on f (x) therefore has an absolute
minimum at x =0. For any given value of 0 in the inter-
val —~ & 8 & vr, the superposition (11.1) contains N,
terms, which populate the periodicity interval of the
function f (x) rather densely when N, becomes large. In
particular, irrespective of the value of 6, the superposi-
tion always contains terms for which x =(8+2m.k)/N, is
close to the minimum. If the box is large compared to
the scale of the theory, the quantity 2G(8) is dominated
by these terms.

For example, at N, =2, PG(8) involves two terms. At
~8~ & m. , only the term with k =0 is relevant if the volume
is large while, at m&~8~ &2n, .the relevant . term corre-
sponds to k =1. The points 0=+m are special as both
terms are there equally important; a change of regime
occurs there. One can say that the system undergoes a
phase transition at 9=+~. The vacuum energy defined
as —V '1nkG(8) has a cusp singularity at these points.

The effects due to finite quark mass change the situa-
tion. In the case of a single quark Qavor, these effects re-
move the singularity. Ths can be seen from the represen-
tation (4.2) valid for small quark mass. For several
flavors, the singularity may not disappear in some cases.
For example, for N&=2, the cusp persists at finite quark

In our context, where all sides of the torus are assumed to
be large compared to the scale of the theory, the leading
term of order N, is irrelevant and can be absorbed in the
overall normalization constant, together with the factor
1/N, in front of the exponential n Eq. (11.6). [At tem-
peratures T= 1/L4 of order AQCD this term does contain
interesting physics —in the large-N, limit, it yields the
leading contribution to the pressure. ] We conclude that,
although the purely gluonic graphs dominate the parti-
tion function of QCD in the large-N, limit, they only gen-
erate a weak dependence on 8, determined by the topo-
logical susceptibility i which is of order (N, ) . It is clear
that PG does not provide an adequate representation of
the QCD partition function to this accuracy —quark
loops start contributing to lnZ already at order N, .

The contributions to the partition function generated
by the quark degrees of freedom can be analyzed in the
same manner as at finite N„using an effective Lagrang-
ian. For a derivation of the form of this Lagrangian, we
refer the reader to the literature [23,37]. The main
modification is that the spectrum of the theory now con-
tains N& rather than N&

—1 light mesons. In the real
world, the extra particle corresponds to the g', with
M ~ =957 MeV. In the following we will use this termi-rl'

nology independently of the number of flavors, referring
to the meson which acquires Goldstone character only in
the limit N, ~~ as the q'. The Zweig rule which
emerges from the large-N, analysis implies that, in the
chiral limit, the "pion-decay constant" of the g' is the
same as for the ordinary Goldstone bosons, up to correc-
tions of order 1/N, . It is therefore convenient to treat
the N& particles on equal footing, in terms of a matrix
field U(x) which lives on the group U(N&). The g' is
then described by the phase of the determinant:
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det U(x) =e (11.8)

tr(a„U'a„U)

In this notation the effective Lagrangian which charac-
terizes the low-energy structure of the theory in the
large-N, limit is of the form [23,37]

meson Compton wavelengths. The fluctuations in U(x)
then freeze, and the partition function reduces to the con-
tribution from the ground state:

Z (8)——ve(8) (11.11)

The vacuum-energy density is given by the minimum of
the effective action:

—XRetr(A/. U )+—(P —8)
2

(11.9) @=Min —XRetr(JKU )+—(P —8) [UE U(NI)]
U 2

M2 22m
7T F2

2= 2
Mv =

q [NIr+Xm J .F2

(11.10)

In the chiral limit, the spectrum thus contains the stan-
dard set of Goldstone bosons plus a particle whose mass
is determined by the topological susceptibility. If N, is
sent to infinity, the g' also becomes massless, because the
ratio ~/F is of order 1/N, . Note that the first term in
the curly brackets of Eq. (11.10) is small compared to the
second as far as powers of N, are concerned, while, com-
paring powers of the quark mass, the situation is re-
versed. In the bookkeeping introduced above, however,
the two terms count as quantities of the same order: M„
is a small quantity of order n =1, irrespective of the rela-
tive magnitude of ~ and Xm.

We now turn to the properties of the partition func-
tion. Suppose first that the box is large compared to the

It involves three low-energy parameters: the pion-decay
constant F=O(N, ' ), the parameter X=O(N, ) which
determines the quark condensate in the chiral limit at
infinite volume, and the topological susceptibility of gluo-
dynamics discussed above, ~ of order 1.

The formula (11.9) represents an exact result in the fol-
lowing sense. Expand the full effective Lagrangian in
powers of derivatives of the meson field and powers of the
quark-mass matrix. Furthermore, expand the effective
coupling constants which occur in this series in powers of
I /N, . The procedure generates a string of contributions

of the type (8) '(JR) '(N, ) ', where n„n2, and n3 are
non-negative integers. Order the expansion by first col-
lecting all contributions with a given value of n = —,'n&

+n2+n3 —1, and only then sum over n. In this book-
keeping the first term in Eq. (11.9) corresponds to n

&
=2,

n2=0, n3=0, i.e., to n =0; the second and third terms
are also of order n =0. The formula (11.9) is exact in the
sense that it correctly describes all contributions to the
effective Lagrangian at leading order, n =0. In particu-
lar, at leading order, the g' field enters the effective La-
grangian in the same manner as the ordinary Goldstone
bosons, except for the mass term generated by the topo-
logical susceptibility of gluodynamics. For a discussion
of the higher-order contributions to the effective La-
grangian, we refer the reader to [38].

For quarks of equal mass m, the Lagrangian (11.9) de-
scribes a set of Nf —1 degenerate "pions" and an g' with
a different mass. Setting 8=0 and taking m real, we ob-
tain

(11.12)

If we again consider quarks of equal, positive mass m, the
minimum occurs when U is a multiple of the unit matrix,
U=exp( iP/—NI ), irrespective of the value of the vacu-
um angle. The formula (11.12) then reduces to

Nf ~0
+O(8 ) .

Nf ~+Em
(11.14)

In the chiral limit, where the susceptibility term dom-
inates, the g' field sits at /=8. On the other hand, in the
region Xm »Nf~ where the g' becomes degenerate with
the Goldstone bosons, P vanishes and the ground state is
described by U=I. For the vacuum-energy density at
small 8, Eq. (11.14) leads to

e= NIXI+ —8— +O(8 ) .
2 Nfw+Xm

(11.15)

The term quadratic in 8 determines the topological sus-
ceptibility at t9=0:

=f dx(co(x)co(0)) =
Nf s+Xm

(11.16)

This shows what happens with the distribution of the
winding number if N, is sent to infinity. For N, =3 and a
small quark mass, we are in the region Xm «Nf~ such
that the mean-square winding number is given by
(v ) = VXm IN&, in agreement with what we found in
Secs. IV and IX. Keeping the quark mass fixed and send-
ing N, to infinity, ~ tends to a finite limit while Xm grows
without bounds. We therefore wind up in the region
Xm »~N, where the mean-square winding number is
given by v ) = Vr, as if we were dealing with the purely
gluonic theory.

The above discussion concerns the behavior of the
theory for boxes which are large compared to the Comp-
ton wavelengths of the lightest excitations, where the
fluctuations in the winding number are Gaussian. Let us
now turn to the region of small masses, where the finite-
size effects generated by the box do become important.
As discussed in detail in Sec. VIII for a finite number of

@=Min —XmN cos +—(P—8)~ . (11.13)
T

f Nf
For 0=0, both terms in this expression are minimized by
/ =0. If 8 is small, the minimum occurs at a small value
of P and we may therefore approximate the cosine by the
first two terms of its Taylor series. In this approximation
the minimum occurs at
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colors, the fiuctuations in the meson field U(x) then show
up. For M L «1, M„L «1, the nonzero modes con-
tribute a term which represents the free energy of a mass-
less Bose gas. Since this contribution does not depend on
AL or 0, it only affects the overall normalization constant.
The fluctuations in the zero modes, on the other hand,
are described by a collective integral over the group
U(N~):

Z(6)=BI dp(U)exp' VXRetr(AU )

(p —&)' ' (11.17)

[compare Eq. (8.10)]. The normalization constant 8 con-
tains an extra factor from the g' degree of freedom:

F2 Vl/2 0p 1/2

B= (11.18)

where A is given in Eq. (8.11).
In the representation (11.17), the vacuum angle ex-

clusively occurs in the susceptibility term. The Fourier
integration with respect to 0 is therefore Gaussian and
can be done explicitly, with the result

Z =C I dp(U)(detU)"e '"' ' . (11.19)
U(N )f

Remarkably, the additional light meson which arises in
the large-N, limit merely affects the overall factor C,:

C = 1
e

—P/2 vsv'2nVr. (11.20)

In other words, at a given winding number, the depen-
dence of the partition function on the quark-mass matrix
is determined by the same group integral as for finite N,
[compare Eq. (9.1)]. Accordingly, the spectrum of the
Dirac operator at small eigenvalues also remains the
same. In particular, the sum rules (9.21) thus also hold in
the large-N, limit. Note, however, that the scale of the
eigenvalue distribution is set by the quark condensate
which grows with N, . Expressed in terms of the mass
scale of the bound states, say, in terms of M, the spacing
of the eigenvalues shrinks if the number of colors is in-
creased. At N, = ac, the spectrum of the Dirac operator
is continuous even if the volume is finite.

The occurrence of an extra light meson does show up
in the distribution of the winding number. According to
Eq. (11.20), the probability to encounter field config-
urations with large winding numbers acquires an addi-
tional suppression if N, becomes large, through a Gauss-
ian factor of width ( v ) G

= V~. As discussed in detail in
Sec. IX, the group integral also tends to zero for large
values of v, but this only happens if v reaches values of
order VXAt [recall that, for N& =1, the group integral is
given by the Bessel function I ( VXm)]. For small quark
masses and a small value of N„we are in the region
VXJk « V~, such that the group integral falls off before
the Gaussian factor connected with the topological sus-

ceptibility starts deviating from 1. As N, grows, the

width of the Gaussian remains the same, but the group
integral falls off more slowly with v because VEAL is pro-
portional to N, . In the large-N, limit, the susceptibility
term wins, cutting the winding-number distribution off at
values of order v —V~. The quark degrees of freedom
strongly affect the properties of the partition function in
the symmetry-restoration region VXA, ~ 1, but outside
this region, the probability for finding field configurations
of large winding number is the same as in gluodynamics.

If the fermions are in the adjoint representation of the
gauge group, the fermion loops are of the same order in
N, as the gluon loops. In particular, the graphs responsi-
ble for the U(1) anomaly are then not suppressed in the
large-N, limit. For adjoint fermions the chiral-symmetry
group is therefore not enlarged if N, is sent to infinity
and there is no reason for the analogue of g' to become
massless. The analysis given in Sec. X does therefore not
require any modifications in the large-N, limit.

XII. SUMMARY AND CONCLUSION

X= —lim lim ( uu ) .
m~O V~~

(12.1)

At finite volume the properties of the partition function
are controlled by the parameter x = VXm. If x is large,
the box does not significantly affect the properties of the
system, but if x is small, the finite-size effects generated

The analysis described in the present paper leads to a
rather detailed picture for the distribution of the winding
number in QCD as well as for the spectrum of the Dirac
operator at small eigenvalues. The main results are the
following [39]. To simplify the discussion, we restrict
ourselves to quarks of equal, positive mass m. [The
significance of the phase of m is discussed in Sec. VII and
the properties of the partition function for a quark-mass
matrix of general form are analyzed in Sec. VIII.]

(i) We use the standard representation of the partition
function in terms of an Euclidean path integral over
gluon and quark fields on a torus. The periodicity condi-
tion for the gauge field implies that the winding number
is an integer multiple of 1/N, . In QCD, however, only
gauge-field configurations of integer winding number
occur, because quarks transform according to the funda-
mental representation of the gauge group —the corre-
sponding antiperiodicity condition cannot be met for
gauge fields of fractional winding number. The partition
function of QCD thus involves an integral over all
gluon-field configurations of given integer winding num-
ber v, followed by a sum over v weighted with the factor
e'" . [Although this definition of the partition function is
natural and convenient, it is not mandatory. There are
several alternative partition functions, i.e., alternative
states, which, for quarks of nonzero mass, all lead to the
same physics at infinite volume, but differ at finite
volume. The issue is discussed in detail in Secs. II and
X.]

(ii) Both the distribution of winding number and the
spectrum of the Dirac operator at small eigenvalues are
related to the quark condensate at infinite volume (mass-
less quarks, 0=0):
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by the box strongly distort the behavior. In particular, if
the chiral limit is taken at finite volume, one winds up at
x =0; the properties of the partition function in that limit
are drastically different from the physical situation which
corresponds to quarks of nonzero mass at infinite volume,
Q =OO.

(iii) In the presence of a single quark flavor, the mass
spectrum contains a gap and the correlation functions
rapidly decrease with distance, while for Nf 2 Gold-
stone modes occur, generating long-range correlations if
the quark masses are small. The qualitative difference
originates in the fact that, for Nf =1, the quark conden-
sate does not break the symmetry of the Lagrangian,
while, for two or more flavors, X represents the order pa-
rameter of a spontaneously broken symmetry. Note that,
for Nf 2, the order of limits in Eq. (12.1) is essential: In
the chiral limit at finite volume, the expectation value
( uu ) vanishes, because spontaneous symmetry break-
down can only occur if the volume is infinite. For Nf = 1,
on the other hand, an interchange of these limits lead to
the same result.

Remarkably, despite the pronounced flavor depen-
dence seen in the physical spectrum, the distributions of
the winding number and small Dirac eigenvalues are
essentially independent of the number of flavors. In this
respect the occurrence of a condensate manifests itself in
almost the same manner, irrespective of whether or not
this condensate belongs to an asymmetric ground state.

(iv) The results for the winding-number distribution are
the following. If the parameter VXm is large, the distri-
bution is Gaussian with mean square (v) = VXm/Nf
[for unequal masses, the ratio rn IN& is replaced by the
reduced mass; see Eq. (9.8)]. In the opposite limit,
VXm « 1, nonzero winding numbers are strongly
suppressed and the partition function is dominated by to-
pologically trivial gauge-field configurations. The proba-
bility for encountering a configuration with winding
number v is given by ( VXm) JV, /JV0 [an explicit ex-
pression for the normalization factor JV, is given in Eq.
(9.28)]. As is well known, the suppression originates in
the occurrence of fermionic zero modes. On gauge-field
configurations of winding number v, the Dirac operator
admits ~v~ zero modes; for Nf quark flavors of mass m,
the Dirac determinant is therefore proportional to
m . The above result shows, however, that this
suppression factor is accompanied by an enhancement
factor proportional to the power V of the volume.
Nontrivial topologies are suppressed only if the product
VXm is a small number. In other words, the suppression
is a finite-size effect of the same nature as the symmetry-
restoration phenomena associated with the absence of
spontaneous symmetry breakdown at finite volume. In
the physical situation, where the parameter VXm is large,
nontrivial topologies are not suppressed —as mentioned
above, the mean-square winding number is then large, of
order VXm, and field configurations of very different
winding numbers become equally probable. The fact that
most of these configurations are accompanied by a large
number of fermionic zero modes does not matter because
the number of zero modes per unit volume tends to zero if'

V tends to infinity.
(v} Quite generally, global notions such as winding

number are irrelevant if VXm is large. One may restrict
the path integral to topologically trivial field config-
urations, v=0; if VXm ))1, the result coincides with the
full partition function at 0=0, except for an irrelevant
normalization factor. What is essential for the anomaly
to generate a mass gap in the singlet channel is that, lo-
cally, the winding-number density fluctuates in accor-
dance with the path-integral representation. For a de-
tailed discussion of the U(1) problem, we refer the reader
to Secs. V and XI, where we analyze the winding-number
distribution in the large-N, limit.

(vi) The relation of Banks and Casher [4] shows that, at
infinite volume, the magnitude of the condensate is deter-
mined by the density of small eigenvalues of the Dirac
operator, A, «AQCQ The number of levels contained in
the interval hA, per unit volume is equal to XhiLA. . At
finite volume, the spectrum is discrete. For gluon-field
configurations of winding number v, there are ~v~ zero
modes. The nonzero eigenvalues A,„,on the other hand,
depend on the particular gluon field under consideration.
For a single, massless flavor, we find that the nonzero ei-
genvalues fluctuate around the values A, „=kg„/VX,
where g&, $2, . . . are the zeros of the Bessel function
J,(g). In particular, the lowest few eigenvalues are of or-
der 1/VX. Their distribution is sensitive to the winding
number, the levels being pushed up if ~v~ grows. We es-
tablish a set of sum rules which relate inverse moments of
the eigenvalue distribution to the quark condensate and
which become exact in the infinite-volume limit. Consid-
er, e.g. , the sum over all positive eigenvalues of I/A, „.
We show that, if the volume is large, this sum is dominat-
ed by the contributions from small eigenvalues,
k «AQcQ and is determined by the value of the conden-
sate, the number of flavors, and the winding number:
X'„I/A, „=—'(VX) (Nf+ ~v~ } '. Outside the region of
very small eigenvalues, the result of Banks and Casher
also holds at finite volume: In the range
1/VX « A,„«A&co, the number of levels per unit
volume is independent of the size of the box.

(vii) The extension of our analysis to fermions which
transform according to the adjoint rather than the funda-
mental representation of the gauge group (supersym-
metric Yang-Mills theory, for example} requires a few
modifications which are discussed in Sec. X. Since the
adjoint representation is real, the spectrum of the Dirac
operator consists of pairs of degenerate levels related by
charge conjugation. The extra symmetry gives rise to ad-
ditional conserved currents. For Nf massless Dirac
flavors in the adjoint representation, e.g., the Lagrangian
is symmetric under the group SU(2Nf ). In contrast with
QCD, the occurrence of a fermionic condensate now gen-
erates Goldstone bosons even if there is only a single
Dirac flavor. Also, adj oint fermions can "live" on
gluon-field configurations with a fractional winding num-
ber. If the path integral is extended over all gauge fields
on a torus, it is periodic in 0 only on an extended periodi-
city interval, 8~8+2nN, (for details, see Sec. X). In-
cidentally, fractional winding numbers also play a role in
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pure Yang-Mills theory. As discussed in detail in Sect.
XI, the large-N, counting rules of gluodynamics are con-
sistent with periodicity only if the path integral extends
over all gauge-field configurations, including fractional
winding numbers.

The entire analysis of the present paper is based on the
assumption that a fermion condensate is formed, break-
ing chiral symmetry if Nf ) 1. The most interesting ques-
tion in this context is why such a condensate arises or,
equivalently, why the fermionic level spectrum is much
more dense at small eigenvalues (k„~ 1/V) than it is the
case for free particles (A,„~1/L). During the last ten
years, this question has received considerable attention in
the literature [40,41,3], which offers several qualitatively
different attempts at identifying the relevant collective
variables in the Euclidean path integral. In particular, a
model which pictures the ground state as a liquid of in-
stantons and anti-instantons has been developed in some
detail [41]. In this model the localized zero modes, which
occur for isolated (anti-)instantons, repel, fornung a band
of small eigenvalues of order 1/V, as required. For the
model to work, it is essential that the fermion deter-
minant induce short-range correlations which shield the
topological charges of the building blocks —since the to-
pological susceptibility is small, of order Xm, the winding
number must average out within a distance of order
1/M„. . It is also important that the model resemble a
Auid rather than a crystal in the sense that long-range
correlations should not occur. The Schwinger model pro-
vides a soluble example for which the correlation proper-
ties of the vacuum fields are qualitatively very similar
[42].
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APPENDIX A: WINDING NUMBER ON A TORUS

In this appendix we derive an explicit formula which
expresses the winding number of a gauge-field
configuration in terms of the transition function Q, (x).
Since it is essential here that we are representing the field

by means of a single patch, let us first check that, on a
torus, any gauge field can be described in this manner.

The argument goes by induction in the number of di-
mensions. On a four-dimensional regions with the topol-
ogy of a cube, the ordinary differential equation
(B4+iCx4)U(x)=0 always admits solutions. Hence we
can pick a gauge where G4 vanishes, such that the transi-
tion functions become independent of x . The problem
therefore boils down to the question of whether or not
several patches may be needed on three-dimensional
cubes, which in turn reduces to the corresponding prob-
lem in two dimensions. One more step leads to a one-
dimensional gauge field which can always be gauged
away. Hence pathwork is not needed on manifolds with

The integrand is a total derivative,

1 Jd tr ~ GdG+ —G
2l

8m' 3
(A2)

which contains four terms d =d, + +d4. Consider
the first one, where the integration over x ' yields

v)—
e, tr. Gd6+ —6 —GdG ——G . (A3)

2l 3 2l

8~ x' ——o 3 3

Here G=G(x+a, ) is the shifted field, the vector a,
pointing in the direction of the first axis, with ~a, ~

=L, .
To keep track of signs, it is convenient to retain the
Grassmann basis vectors e„.. . , e4 attached to the vari-
ous differential forms. The integrand in Eq. (A3) is a
three-form; the term e, in front of the integral is the
Grassmann element, which remains from the integration
over d&.

Now G(x +a„) and G(x) are related by the transition
function Q„(x),

G(x+a„)=Q„(x)[G(x)+co„(x)]Q„'(x), (A4)

where co„ is the one-form

cop —l Q d 0 (A5)

Inserting this in Eq. (A3), the terms which are quadratic
or cubic in 6 cancel and we obtain

v)—
e)

tr dG ~&
—iGco, ——

co&
. .2 l 3

8~' 3
(A6)

Using the property de„=iso„, the terms linear in the
gauge field can be written as a total derivative:

e, 1v)— d tr( Geo, ) ——co,8~' 1 3 1 (A7)

The derivative involves three terms d =d2+d3+d4. The
first one, e.g. , gives

e)e2
v, 2=, , tr[ 6(x +a2 )co,(x +a~ )

8~2 x ' =x' ——o

—G (x)co,(x) ] . (Ag)

Using the periodicity condition once more, the integrand
takes the form

the topology of the cube, in any number of dimensions.
So we describe the gauge field by means of a single

function G„(x) defined on the cube O~x" ~L„. The
values on opposite sides of the cube are related by the
periodicity condition (2.3). Denote the transition func-
tion which connects the side x"=0 with x"=L„by
Q„(x) [in the notation of Sec. II, Q, =Q, with

ai =(Li,0, 0,0)]. The winding number can be expressed
in terms of the one-form G (x) =dx "G„(x)as

dG +~G . A1
1 4, —, 1
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tr[G I Qz ~](x +a2)QQ ~] j +~2Q2 ~](x +a/)Qz]

(A9)

one verifies that the corresponding one-forms obey

Q2 ~1(x + 2)Q2 ~1 Ql ~2(x a 1 )Ql ~2 (Al 1)

Q2(x +a& )Q&(x) =Q&(x +a&)Q2(x), (A 10)

where we have suppressed those arguments which do not
involve a shift. A similar two-dimensional integral over
the plane x'=x =0 also arises from v2. Using the con-
sistency condition

where quantities without argument are to be evaluated at
x. The relation (All) implies that the term linear in G
occurring in Eq. (A9) cancels against the corresponding
contribution in v21. What remains are two- and three-
dimensional integrals exclusively involving the transition
function:

2+e„f trI(Q„'dQ&) ]+ ge„e„f trtdQ„Q„'Q„'(x+a„)dQ„(x a„)I .
24m' " x~=0 & 8~2 " " x~=x"=0

P P, V

(A12}

%'e add a remark concerning field configurations for
which the consistency condition (A10) involves nontrivial
Z factors such that v may take fractional values. The
above calculation goes through, unharmed, because the
identity (Al 1) also holds in the presence of such
factors —the formula (A12) remains valid. In fact, the
gauge field transforms according to the adjoint represen-
tation of the gauge group. The periodicity condition (2.3)
thus only involves the adjoint representation D(Q, ) of
the transition function, where the center of the group is
mapped into l. Accordingly, formula (A12) also holds if
Q„ is replaced by the matrix D (Q„), except that the re-
sult is to be divided by 2N, to account for the difference
in the Casimir invariants of the adjoint and fundamental
representations.

with

N —1
(N )R„=g (v —k+1) .

k=1
(B3)

When going from Eq. (9.24) to Eq. (Bl), we assumed at
first that all indices of Bessel functions are positive, i.e.,
v~ Nf —1. But the result (Bl) is true for any v. Let the
index of a Bessel function become negative, the terms in
the determinant involving that Bessel functions just do
not contribute to the leading small-x behavior. The same
is true for the determinant (B2) where the corresponding
entry (B3) turns to zero in this case. The formula (Bl)
holds also for Nf = 1 if we set

APPENDIX B:
BEHAVIOR OF Z„AT SMALL MASS (B4)

x
V

where

Let us describe here how the result (9.27) is derived.
Note first of all that the determinant (9.24) is an even
function of v so that we can assume v) 0 without loss of
generality. Substituting the leading term in the expan-
sion (4.6a) for the Bessel function, we get

'
vNf f

—1

(v+k)! D, I, (Bl)
Jc =0 R„,—R„=(xf 1)R„(Nf—3),(N ) (N ) (N —1)

(B5)

(B6)

Let us now calculate the determinant (B2). To this end
we subtract from each row the next one and use the prop-
erty

(Nf )
R v+N —1f
R v+N —2f

(N —1)
R f

v+N —1f
(N —1)

R v+N —2
f

f
Solving this recurrent relation with the initial condition
(B4), we obtain

(Nf )

V (B2} N —1f
D. f =g k!.

k=1
(B7)

(Nf )

V Substituting it in Eq. (Bl), we arrive at the result (9.27).
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