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Vacuum fields in the Schwinger model
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We suggest a simple model of a "vortex-antivortex liquid" for the characteristic Euclidean gauge-field

configuration giving the main contribution to the path integral in the two-dimensional Schwinger model.
The spectrum of the Dirac operator in this model has a nonzero volume density of eigenvalues p(A, ) at
A, =O which gives rise to a nonzero fermion condensate (Pg)o. The model reproduces also the correct
qualitative behavior for the field-strength correlator (E(x)E(y) ) and for the Wilson loop. The implica-

tions for QCD are discussed.

PACS number(s): 11.15.Tk, 12.38.Aw

I. INTRODUCTION

It is a well-known experimental fact that the chiral
symmetry SUL(NI)SUtt(Nf ) of the standard QCD La-
grangian with Nf flavors of massless quarks is broken
spontaneously and the fermion condensate (l(I/I) is
formed. We are still unable, however, to derive this cru-
cial phenomenological feature of the theory rigorously
from first principles.

At present, the most interesting but not yet quite clear
question is what the characteristic vacuum field
configurations in the path integral are which are respon-
sible for the formation of the quark condensate. This
question has been discussed intermittently in the litera-
ture during the last 10 years. The streamline of activities
takes its origin from the work of Banks and Casher [1],in
which the fermion condensate has been related to the
mean volume density of the fermion eigenvalues in the
Euclidean gauge fields:

(O~qq ~0) = —rr(p(A, =O) )

(the averaging over the Euclidean gauge-field
configurations with the weight determined by the corre-
sponding path integral is assumed).

The nonzero level density p(0) means that the low ei-
genvalues of the Dirac operator A,„exhibit the behavior

(2)
v/(qq ),f

where V is the volume of the four-dimensional box intro-
duced to provide the infrared regularization of the theory
and to make the spectrum discrete. '

The behavior (2) is, however, highly unusual. (E.g., the
eigenvalues for the free Dirac operator behave quite
differently: A.„"'~n/L, where L = V' is the length of

*On leave of absence from ITEP, Moscow, Russia.
lThere is also a question of the possible zero-mode contribu-

tions, but it can be shown that, in the region m
~ ( qq )0~ V && 1 (m

is a small quark mass), they are not relevant. This and other re-

lated questions are discussed in detail in our recent work [2].

the box. ) Thus, it is highly desirable to understand physi-
cally what characteristic gauge-field configurations are
responsible for this behavior. Different models have been
discussed in the literature [3—7]. The discussion has
necessarily been done on the qualitative level —it is very
difficult to analyze quantitatively the spectrum of the
Dirac operator in a complicated four-dimensional gauge-
field background.

That is why we have chosen to address this question in
the very simple two-dimensional Schwinger model, which
bears many essential physical features of QCD and where
the quantitative analysis is possible.

II. SCHWINGER MODEL:
PATH-INTEGRAL APPROACH

The Schwinger model is the two-dimensional QED
with one massless fermion [8]. The action is

S=f d x( ,'F„igD—P—),— (3)

is formed [9—13] (y is the Euler constant). Note that the
formation of the fermion condensate does not imply here
spontaneous symmetry breaking —the U(1) chiral sym-

metry is already broken by the anomaly. The theory is,
in fact, analogous to QCD with only one quark fiavor
where the formation of a quark condensate is also not as-
sociated with spontaneous chiral-symmetry breaking.

Anyway, the nonzero condensate (5) must imply the
nonzero level density p(0), and correspondingly, the pres-
ence of the low-energy fermion modes (2) in the Dirac

with D=y„(t)„—igA„). The charge g has the dimension

of mass. Many features of this model are similar to
QCD. Like in QCD, the axial-vector current
j„=Py„y P is anomalous:

a '= c. ~I.1

p 2~ P'

the notion of topological charge may be introduced (so
that there are instantons, etc. ), and the fermion conden-
sate
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~„(x}=—.„„a„y(x)+a~(x}, (6)

where y(x) is the irrelevant gauge degree of freedom. We
assume also that the topological charge of gauge-field
configurations,

v= fE(x)d x= f b(}I((x)d x,2' 277
(7)

operator spectrum. I et us derive it in the manner that
will be useful for us in the following analysis.

To this end, let us assume that the Euclidean space
time is compactified. (Whether the compact manifold
where the theory is now defined is a sphere [11]or a torus
[12] is not important for us. The important point is only
the assumption that the characteristic size of the mani-
fold I. is large gI. ))1. For definiteness and simplicity,
we assume that the theory lives on a two-dimensional
symmetrical torus with the volume V=L .} The gauge
field A„(x) can be presented as

The first term in the exponential is just the classical ac-
tion ~ Jd x F„and the second term comes from the
fermion determinant (p=g/&m is the photon mass in-
duced thereby). Again, the splendid feature of the
Schwinger model is that the fermion determinant can be
calculated exactly and the resultant path integral is pure-
ly Gaussian. As a result, the average of Eq. (12}over the
field configurations P(x) with the weight (13) can also be
explicitly found:

(
1 dxd=f y, exp{4g'[Q(0) —Q(x —y)]j,

2m. (x —y)
(14)

where Q(x —y) is the Green's function of the operator
(b —p 5)/2 on the corresponding manifold.

The behavior of the integral (14) depends crucially on
the large distance asymptotics of the Green's function
Q(x —y). The presence of the term ~p, PEP in the
effective action makes it logarithmic:

is zero.
Consider now the Euclidean correlator

Q(x —y) ~ —
2

ln(x —y) +const .1

4m@
(15)

( yy(x)yy(y) )y= Tr {G—y(x, y)G/(y, x) j

in a particular external gauge field P(x) [the physical
correlators do not depend, of course, on the gauge pa-
rameter y(x)]. The great simplification in the Schwinger
model compared to four-dimensional theories is that the
explicit expression for the Green's function G&(x,y) may
be written [11,12]

G&(x,y)=exp{ —gy P(x) jS(x y)exp—{
—gy P(y) j, (9)

where S(x —y) is the free fermion Green's function [the
gauge parameters y(x) being set to zero]. Thus we have

(yy( )qy(y)) = o h{2g[y( ) —y(y)]j .
2n (x —y)

(10)

On the other hand, we can write the spectral decomposi-
tion for the Green's function:

g„(x)ft(y)
G&(x,y) =g

n
l n

where all (W(,„are nonzero [this is assured by our assump-
tion that the field configuration (6) has the zero topologi-
cal charge (7)]. Substituting Eq. (11) into Eq. (8), compar-
ing it with Eq. (10}, and integrating both sides over
d xd y, we obtain the following sum rule for the eigen-
values A,„ in a particular external field P(x):

= f exp{2g[(I}(x)—(I}(y)]j
2n (x —y)

(12)

IV[4]=exp ,' fd'x [0~'0—
—i '4~4]—(13)

[we substituted cosh{ j ~exp{ j as odd powers of
P(x) —P(y) give zero after integration]. Let us average
Eq. (12) over the field configurations (}I((x). The proper
weight in the path integral is

Thus, the factor ~(x —y) in the integrand in Eq. (14)
is, in fact, compensated by the growing factor coming
from the exponential. Taking the proper account of all
constants, we get

(x
(

)
(vx('

(16)

where —X is the fermion condensate (5). Actually, the
sum rule (16) belongs to the series of sum rules for inverse
powers of I,„ that may be derived in a very general way
without resorting to the explicit expressions for the
Green's functions and fermion determinant and employ-
ing only Ward identities. A general sum rule has the
form

(
(Vy)"
2'"(&~)'

nlrb ~nk n1' ' '
nk

(17)

We refer the reader to our paper [2], where essentially the
same sum rules have been derived in QCD. [The sum in

Eq. (17) extends only on positive eigenvalues A,„.]
The sum rules (16) and (17) imply obviously that the

scale of the lowest eigenvalues is 0(- I/XV. A more care-
ful analysis [2] shows that the characteristic eigenvalues
are just proportional to the zeros of the Bessel function
Jo(x) and, at n ))1, the relation (2) holds.

It is instructive to look at two-dimensional QED with
%&%1. Consider first the case N&=0 (the so-called
quenched Schwinger model). In this case, the factor

Jp Pi((,Pd x is absent in the eff'ective action and the
Green's function —Q(x —y) entering Eq. (14) is that of
the operator b, , which grows ~(x —y) ln[L /(x —y) ]
at large distances. This means that the integral in Eq.
(14) grows exponentially with the volume and the charac-
teristic eigenvalues X„contributing to the sum are ex-
ponentially small. And that implies that the volume den-
sity p(A. =0) and the fermion condensate ( 1i(p )o are
infinite in the quenched approximation. We return to the
discussion of this issue in the next section.
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Consider now the case X&) 1. The path integral has
exactly the same form as in the Schwinger model but the
photon mass p depends now on the number of fiavors:

g XI
p (NI)=

The large distance asymptotics of the Green's function
is of the same form (15) as in the Schwinger model, but
the coefficient at the logarithm is now scaled down by the
factor 1/NI. As a result, the integral (14) diverges now

(N +1)TN
not as V but rather as V . The scale of the
lowest eigenvalues is not 1/Vbut rather

(19a)

is known explicitly [11,12]:
2

C(x) = (E(x)E(0)) =5(x)—" &o((((lx I ),2~

where ~x
~

is assumed to be much smaller than the charac-
teristic size L of the manifold so that boundary effects are
not important. The correlator (22) exhibits the finite
correlation length (related physically to the screening
phenomena) and falls down rapidly at ~x~ ))p '. The
Auctuations of the field are Gaussian so that all higher
correlators are factorized into the products of two-point
correlators (22).

Consider now the Wilson loop

8'(C)=exp ig A dx =exp ig E(x)d x .
c D

(N~ —1)/(N~+ 1) 2/(N~+ 1)
(19b)

The volume level density p(A, =O) and the fermion con-
densate are now zero. It is not difficult to see that 2

=exp — f C(x —y)d x d y .
2 DxD

(23)

at A, «g.
The result that (1(p)a =0 for N/ ~ 2 is very natural. A

nonzero fermion condensate would break spontaneously
the chiral symmetry SUL (N/)SU„(NI) of the model.
But spontaneous symmetry breaking is just not possible
in two dimensions [14].

However, the scale of the lowest eigenvalues and the
spectral density are not the same as one can expect for
the free fermions [A,,h„~ 1/L and p(A, )ccrc]. They are
modified by the nonperturbative effects in the case of
several fermions too, though less drastically than in the
Schwinger model.

The vacuum average becomes nonzero if we allow for
the small nonzero ferrnion mass —the chiral symmetry is
then broken explicitly in the Lagrangian and nothing
prevents the formation of the condensate. The latter goes
to zero in the limit m~0 but the dependence is more
weak than in the perturbation theory [13]:

(
—

g (XI —1(i((v~+11 2i(iVI+ 1))~m I ~g (20)

III. WILSON LOOP IN SCHWINGER MODEL

E(x)=c„B„A (x)=bP(x) (21)

In the following, we shall concentrate not on the gen-
eral result (16) but rather on the formula (12), which is
specific for the Schwinger model and makes it possible to
explore the question of the characteristic field
configurations. A viable model for the field
configurations will be suggested in the next section. But
before that, we need to specify further requirements (oth-
er than that the fermion condensate is formed) which
characteristic fields must satisfy. In particular, charac-
teristic fields should provide for the correct qualitative
behavior of the field-strength correlators and the Wilson
loop.

In the Schwinger model, the correlator of the field
strengths

{the factorization property of the correlators has been
used). Suppose now that the contour C embracing the re-
gion D is large compared to the scale p

' of the theory
but small compared to the whole manifold. The correla-
tor C(x) gives zero after integrating over the whole
volume:

I d x C(x)=0 .
M

(24)

This means that if x sites well within the region D, the in-
tegral over d y on the right-hand side (RHS) of Eq. (23)
gives zero. If, however, the point x is close to the border
C of the region D, the integral does not vanish. It de-
pends only on the distance from the point x to the bound-
ary and the contribution is essential as soon as this dis-
tance is of order of the correlation length p '. As a re-
sult, we get the perimeter law

W(C) =exp[ gP/4p, ], — (25)

where P is the length of the contour C. The results (22)
and (25) hold for any number of flavors NI )0.

The property (24) and the perimeter law (25) reflect the
screening of an externa1 source by massless fermions.
The perimeter law for Wilson loops is also to be expected
in QCD (in contrast with the pure Yang-Mills theory
where external sources are not screened and confinement
leads to the area law).

It is instructive to look also at the Wilson loop in the
quenched Schwinger model where the effects due to fer-
mion vacuum polarization are switched ofF'. In that case,
the correlator C(x) is just 5(x) (the fields at different
points are totally uncorrelated), and we obtain the area
law for the Wilson loop [15].

2Note the difference with the result 8'(C)=1 quoted in Ref.
[12] where the boundary effects in the integral in Eq. (23) were

disregarded. However, the result obtained there for the thermal

Polyakov loop, which is a special kind of Wilson loop, is correct
and coincides with Eq. (25) in the limit P= T ' ((L, „,„
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IV. MODEL FIELD CONFIGURATIONS

We are ready now to discuss various models for the
vacuum field configurations in order to select the one that
gives reasonable behavior for the Dirac operator spec-
trum, field strength correlator, and Wilson loop. Our
main goal is to get some insight for QCD, and analogies
with the corresponding four-dimensional gauge-field
configurations will be constantly traced back.

The main ingredient in the four-dimensional models
discussed so far in the literature is the instanton solution.
It has two distinguishing properties. (i) It is essentially
local —the field strength and action density fall down
rapidly at large distances, and (ii) it carries a nonzero net
topological charge. The closest two-dimensional analo-
gue of the instanton is the vortex field configuration

$""'(x}= ln(x +p ) .1
(26)

2g

The field strength

(27)
22

g vort(& } gyvort( )
p

g(X 2+p2)2
falls down rapidly at large x, and the net two-dimensional
topological charge (7) of the vortex is equal to 1.

There is, of course, an important difference between
the vortex (26) and the four-dimensional instanton —the
former does not realize a minimum of the action. There
are also exact solutions to the Euclidean equations of
motion with a nonzero topological charge, but in two di-
mensions, they are essentially nonlocal, being character-
ized by the constant field strength and spread out along
the whole manifold. However, in the Schwinger model,
as well as in QCD, fields fluctuate strongly and the
weight of these special global field configurations in the
path integral is negligible.

Let us discuss this last point a little bit in more detail.
If.one tries to calculate the path integral in QCD in the
framework of quasiclassical approximation, i.e., expand
the action at its stationary points (instantons), retain only
quadratic terms in the expansion, and integrate them
over, one sees immediately that the main contribution to
the path integral comes from the instantons of large sizes
p-A&cD where the efFective coupling constant g (p) is
large, characteristic fluctuations are large too, and the
Gaussian approximation breaks down. In the exactly
solvable Schwinger model, the path integral is exactly
Gaussian and can be done explicitly. It is, however, still
true that the characteristic field fluctuations are large and
the weight of the field configurations close to the station-
ary points of the path integral is small.

Fluctuations of fields imply also the fluctuations of the
topological charge. At some space-time points, the topo-
logical charge density is positive, while at others it is neg-
ative. The field in the region with a positive topological
charge density may be associated with an instanton (vor-
tex) and the field in the region with a negative topological
charge density with an anti-instanton (antivortex). We
thus arrive at the picture of an instanton —anti-instanton
inedium in QCD [4—7] and at the picture of a vortex-
antivortex medium in the Schwinger model. Let us ex-
plore now whether or not this picture is reasonable.

We consider first the model of the instanton-anti-
instanton "crystal" discussed in detail by Diakonov and
Petrov [4(b}]. In this model, the field presents a regular
"polar crystal" of instantons and anti-instantons as de-
picted in Fig. 1. The analogous two-dimensional field
configuration in the Schwinger model is given by the sum

pcrYstal(x) gyvort(X (28)

P(x) =grt„{f"'"(x—na ), (29)

where 2)o are not fixed as in Eq. (28), but are stochastic
variables.

Equation (29) may be thought of as a linear transfor-
mation of variables in the functional integral. As the
original field correlators were Gaussian [higher correla-
tors were expressed via the pair correlator (tI't(x)$(0) ) ],
one can expect that the same is true for g and the whole
physics depends only on the pair correlator {2) rt ).

Of course, it is not quite true. The transformation (29)
is not a change of variables in the exact sense as it dimin-
ishes greatly the number of degrees of freedom —we

I A I A I

A I A I A

I A I A I

A I A I A

FIG. 1. Instanton —anti-instanton crystal.

where n is a two-dimensional integer vector and tf}"'"(x)
is given in Eq. (26). For the notion of the separate vor-
tices and antivortices to make sense, their characteristic
size p should be at least several times less than the dis-
tance a between adjacent crystal sites. We assume also
that the ratio L /2t2 is an integer and the sum in Eq. (28)
extends up to In, '"

~

=
~n

2'"
~

=L/2t2 (L is the size of the
torus).

Unfortunately, the model (28) does not provide the
correct behavior (2) for the fermion eigenvalues and is
unable to generate the fermion condensate (1). That fol-
lows just from the fact that the sum in Eq. (28) is conver-
gent and the resultant P""'"'(x) presents a finite periodic
function.

Thus the factor exp[2g[P(x) —P(y)]J in Eq. (12) is
bounded from above and the integral (12) diverges only as
the first power of the volume V [not as V as is required
to obtain the behavior (2) for the eigenvalues A,„].

The model (28) exhibits also the unpleasant property of
long-range correlations that contradict both physical in-
tuition and the exact result (22) for the field-strength
correlator. It was noted earlier that a realistic model for
the field configuration should implement stochastic prop-
erties so that long-range correlations are absent [15,4—7].
To implement stochasticity, consider the following model
for characteristic field configurations:
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have now a discrete set of variables I i)„] instead of a
continuous set [P(x)]. Thus we cannot expect to get in
this way any information on the field cor relator s
($(x)[I}(a)), (E(x)E(0)), etc. , at short distances x &a.
However, if we are interested only in the global charac-
teristics such a.s the fermion condensate and Wilson loop
average for large contours, the ansatz (29) with Gaussian

and a proper assumption on ( r)„ri ) should be
equivalent to original field theory. Let us check whether
or not it is true. The simplest assumption on the pair
correlator is

(30)

The model (29) and (30) imitates well, in fact, the features
of the quenched Schwinger model. The space time is
decomposed here in domains surrounding the sites
x„=na and the fiuxes (g/2n. ) Jb,[It(x)d x in the different

domains are totally uncorrelated. In this model, the Wil-
son loop (23) exhibits the area law behavior characteristic
of the quenched Schwinger model (that follows just from
the simple fact that the mean square of the Aux in the
large region D grows linearly with the area Ai, [15]).

Let us look now at the Dirac operator spectrum in the
model (29) and (30). To this end, we use the exact result
(12). Thus we substitute the field (29) on the RHS of Eq
(12) and perform the averaging over all realizations [i)„]
bearing in mind the Gaussian nature of i)„[all higher
correlators are expressed via elementary pair correlator
(30)]. We obtain

2(x—na) +p
exP[2g[P(xi Pty)[l) =exP . Qln z z2 „(y—na) +p

(31)

pears when calculating the average (32) exactly by the
"quenched" path integral (see Sec. II). Substituting the
estimate (32) in the integral (12), we see that the integral
grows exponentially with the volume. And that conforms
exactly with what we have observed from the exact
analysis in Sec. II for the quenched Schwinger model and
means that the low characteristic eigenvalues A,„are ex-
ponentially small and the fermion condensate is infinite.

This contradicts the statement of Ref. [16] that in the
quenched Schwinger model, the volume density of the
characteristic eigenvalues and the fermion condensate are
finite. This statement followed from a variational esti-
mate

p(A, =O) & Kg (33)

(K is a numerical constant) and the guess that the true
p(X=O) is not far from this estimate. This last guess is
just not true. It is possible to present a more accurate
variational estimate that shows that the low eigenvalues
are actually exponentially small and p()[.) diverges at
A. =O. This is done in the Appendix.

The fact that ( [tT[g )o is infinite in the quenched
Schwinger model has a natural interpretation in the dual
(as compared to that adopted in the present paper) ap-
proach. So far, we related the appearance of the conden-
sate to the small nonzero eigenvalues (2). In the massless
Schwinger model (as well as in the massless QCD with
N/=1), the condensate may also be related to the zero
fermion modes in the field configurations with a topologi-
cal charge v= 1 [11,12]. In this language, the condensate
is determined by the path integral

(gg)o=Z ' lim f IldA„det( i 0+m—)G„(x,x)
rn ~0 v=+1

The sum in the exponent diverges logarithmically at
large ~n~a && ~x~, ~y~. The cutoff is provided by the finite

size of the torus I.. Thus we get an estimate

exp I 2g [[}I[(x)—[I}(y)] ] ~ exp
2

ln
mC (x —y)

(x —y)

(32)

where ~ is a geometric numerical coefficient. The depen-
dence o-(x —y) In[1. /(x —y) ) in the exponent is ex-

tremely reasonable and is nothing other than the Green's
function of the double Laplacian operator 6, which ap-

Strictly speaking, the spectral decomposition (11) on which
the derivation of the sum rule (12) was based implied the ab-
sence of zero eigenvalues, i.e., the zero net topological charge
(7). In our model, that can be implemented by imposing the glo-
bal constraint g, i}„=0,which amounts to averaging with the
factor expIiag„i)„] and integrating the result over a after-

wards. This constraint does not change, however, the local
properties of the theory and is not crucial. It is also possible to
derive sum rules for nonzero A,„ in the sectors with a nonzero to-
pological charge [2]. Their characteristic scale is also ~ 1/X V.

X exp ——' F2 2x (34)

where G„(x,x) is given by Eq. (11)with —iA, „being sub-

stituted by iA„+m—. T, he finite result for (l([g)o in the
normal Schwinger model appears after the cancellation of
the large factor ~ I/rn in the zero-mode contribution in

the Green's function and the small factor ~m in the
determinant. If the determinant is absent (Schwinger
model is quenched), the factor o- I/m has nothing to can-
cel with and leads to the infinite condensate in the limit
m ~0.

The relationship between representations (1) and (34) is
discussed in detail in [2]. Here, we mention only that the
Banks-Casher approach is physically relevant as soon as

mg V »1 while the instanton approach (34) is relevant in
the opposite limit mgV«1. The result (5) for the con-
densate does not depend, however, on the value of the pa-
rameter mg V as long as m &&g and V &)g

We have seen that the crystal model (28) is not realistic
while the model (29) and (30) describes the quenched
Schwinger model. Can one suggest a model describing
the features of the normal (unquenched) Schwinger mod-
el? The answer is yes.

Consider the configuration (29) where, again, i)„are
Gaussian stochastic variables but another form for the
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pair correlator (2}nrlm) is adopted: not difficult to show that if the region is large and the
contour is smooth, the universal result

(35)
(@2) —C2 P

4a
(39)

where e is the integer vector of unit length, and all other
(2} q ) are zero. As we assumed that the vortices are
well separated, 2}„has the meaning of the fiux (7) in the
domain surrounding the site x =na. The correlator (35)
of the fluxes enjoys the property

(36)

is valid (P is the perimeter of the contour}. Substituting it
in Eq. (37) and comparing it with the exact results (25),
we see that the perimeter law for the Wilson loop is
reproduced and the correct coefficient may be obtained if
we require that the parameters of the model satisfy the
relation

which models the property (24) of the exact field-strength
correlator (22). In fact, the additional negative correla-
tors of the nearest neighbors in Eq. (35) imitate the
second term in the correlator (22).

Let us now determine the vacuum average of the Wil-
son loop (23). It is convenient to present it in the form

Consider now the Green's function

(P(x)P(y) ) = g(2),rim)in[(x —na } +p ]
1

4g 2

(40)

W(C)=expI 2n. (4—)D],
where the mean-square flux on the region D is just

(37) Xln[(y —na) +p ] . (41)

(38)

Most terms in the sum (38) cancel out due to the prop-
erty (36). The terms that survive come from x,=na lying
near the border of the region such that some of its closest
neighbors x 6nd themselves outside the contour C. It is

It is a sign-alternating series and most terms have the ten-
dency to cancel out due to the property (36). The main
contribution comes from the regions na-ma-x and
na -ma -y. Consider the second region. We shall see
that the series converges rapidly at ~na —

y~ &&a and we
may substitute na ~y in the first logarithm if ~x

—
y~ &&a.

We have

C2 4

(P(x)P(y))n, „= ln[(x —y)2+p ]g In[(y —na) +p ]——,
' gin[(y —na e, a)2—+p ] .

na y 4 n i=1
(42)

with e;=1. Expanding the logarithms in the internal
sum over the parameter a/~y —na~, one can be con-
vinced, indeed, that the sum over n converges rapidly
when ~y

—na
~

is large. Note that a sum

I

Now the cancellation in the sum (44) is not exact and the
terms with na lying near the border C of the region D
survive. If l »a, the sum (44) may be approximated by
the contour integral

S(y —e, a ) =gin[(y —e, a —na ) +p ] (43}

coincides formally with S(y) if changing the summation
variable n~n —e;. Thus seemingly, the sum in the RHS
of Eq. (42) is just zero. However, this is not true as the in-
dividual sums (43) involve the quadratic divergence at
large n and the change of variables is not legitimate. To
calculate the sum (42), we regularize it at large n and
write

4R" (y)=S" (y) —
—,
' g S"'s(y —e;a)

nED
ln[(y —na) +p ]

4——' g ln[(y —na —e,a ) +p2], (44)

where the region D embraces the point y and has a scale l
much larger than a but much less than ~x —

y~ (see Fig. 2). FIG. 2. Relevant region of na for the sum (42).



A. V. SMILGA

nC
(P(x)P(y) ) = — ln(x —y)

2g
(46)

in the region L ))
~
x —

y ~

))a. It coincides with the exact
Green's function (15) and provides for the correct behav-
ior of (expI2g[P(x) —P(y)]] ) and (g„l/A2 ) if the pa-
rameter C is chosen as

C
2

I

2~2p2
(47)

Combining it with the relation (40) obtained earlier, we
may fix also the parameter a:

1
a = Q~/N—f

which coincides exactly with the correlation length p
of the model.

Thus we see that the model (29) and (35) provides,
indeed, the correct behavior of the Dirac operator spec-
trum and of the Wilson loop if the parameters C and a
are chosen as in Eqs. (47) and (48).

V. LESSONS FOR QCD

The whole analysis performed so far was based on the
exact expression (9) for the fermion Green's function in
the arbitrary external field, which may be derived in the
Schwinger model. No similar formula exists in QCD and
we are unable at the moment to make rigorous state-
ments about the Dirac operator spectrum in this or that
model for characteristic four-dimensional field
configurations. We may suggest, however, some guesses
based on the results of our analysis for the Schwinger
model.

First of all, it seems that the model of an
instanton —anti-instanton liquid, in its gross features, de-
scribes the physics adequately. It is not really relevant
whether the main ingredients of the model are instantons
or something else —what is relevant is that field Auctu-
ates and topological charge density fluctuates too. What
is also relevant is that the instanton —anti-instanton medi-
um presents a liquid exhibiting short-range but not long-
range correlations.

Based on our results for the Schwinger model, we guess
that in the field configurations presenting regular
instanton —anti-instanton crystal with long-range correla-
tions, the level density p(A, =O) is, in fact, zero and the
fermion condensate is not generated. It is remarkable
that this guess has actually been confirmed in the analysis
of Ref. [6]. Shuryak and Verbaarschot accepted the
ideology of Ref. [4] that the nonzero density of eigenval-
ues at X=O may arise due to collectivization of individual
instanton and anti-instanton fermion zero modes, but

8 "s(y)= —,' —f(e~~dyc)IBln[(y —yc) +p2)e~]

—,' —f d Yah ln[(y —ya) +p ]= rr —(45)
D

(e~~ and e~ are unit vectors tangent and normal to the con-
tour C, respectively). Substituting it in Eq. (42) and add-
ing the similar contribution from the region na —ma —x
in the sum in Eq. (41), we finally get

after diagonalizing the corresponding overlap matrix,
they observed that the "conductivity zones'* happen to lie
apart from the region A, =O so that p(A, =O) =0. Perhaps
this *'experimental fact" has a deep physical reason and,
in any regular gauge-field background with long-range
correlation, the fermion condensate does not appear. At
least, this is definitely true in the Schwinger model —in
the periodic external field tI)(x), the large x behavior of
the fermion Green's function (9) is qualitatively the same
as for free fermions and (Pg)& =0.

reg

The stochastic gauge-field configurations were ana-
lyzed in detail by Simonov [7]. The stochasticity was,
however, implemented in a way that describes adequately
the physics in the pure Yang-Mills theory (or, if one
chooses, in quenched QCD) with the characteristic area
law for the Wilson loop. Our guess is that in the gas
models of this type (both short-range and long-range
correlations are absent), the level density and the fermion
condensate are actually infinite for the same reasons as
they are in the quenched Schwinger model [see the dis-
cussion before and after Eq. (34)—it can be applied
without change to QCD].

In the correct model for the relevant gluon field
configurations, topological charge densities should Auctu-
ate stochastically but in such a way that the perimeter
law for the Wilson loop average is satisfied and the topo-
logical susceptibility

2

f d x Tr(G„„G„,)v'"

2

(49)

K[S"']=exp i f „,d x K„n„.

~ 2

(50)

where

c„pTr A Gp+ A A Ap. (51)

and n„ is the normal vector on the three-dimensional
(3D) surface S' ', which is the border of the 4D region
D' '. K[$' '] is the direct 4D analogue of the Wilson
loop W[C] of Schwinger model. If the region D' ' is

large, K[S' '] must enjoy the four-volume law

K[S' '] exp —cvMAYMVD'
' . (52a)

in pure Yang-Mills theory, and the three-surface law

K[$"']~ exp —cocDAoc~'s ' . (52b)

in QCD.

which is the direct four-dimensional analogue of the
quantity (4„)/A in the Schwinger model, is zero.
(Ward identities imply that y should turn to zero in the
massless quark limit. ) Alternatively, one may consider
the quantity
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The coeKcient 2cYMAYM differs from the topological
susceptibility (49) as, in contrast with the Schwinger
model, field fluctuations are not Gaussian here. The lat-
tice measurements of this coefficient would be interesting
as the relative difference

(53}
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APPENDIX: VARIATIONAL ESTIMATE
FOR SPECTRUM LEVEL DENSITY

Elaborating the variational arguinents of Ref. [16], we
show here that the level density p(A, =O) and the fermion
condensate are actually infinite in the quenched
Schwinger model.

Consider a typical gauge-field configuration E'""(x) in
the quenched Schwinger model. Let D be a large region
of size R, g

' «R «L. A characteristic flux (7) on this
region is of the order of gR (which corresponds to the
area law for the Wilson loop). Consider now another
field configuration E(x) such that

E(x)=E'""(x), x ED,
E(x)=0, xKD . (Al)

The field configuration (Al) has a finite large flux -gR

may serve as an integral measure of the "non-Gaussian
nature" of the characteristic vacuum field fluctuations.

Speaking of QCD, the three-surface law (52b) for
K[S' '] implying the property y=0, as well as the perim-
eter law for the ordinary Wilson loop, may be satisfied if
the topological charges in adjacent regions correlate and
their correlator is negative. Thus if we rely on our ex-
perience with the Schwinger model, the instanton-anti-
instanton liquid model that satisfies this requirement (in
the technique of Ref. [6], the correlations appear due to
instanton-anti-instanton interaction via their zero
modes) should provide, indeed, for a nonzero finite value
of p(A, =O}and the fermion condensate.

A very interesting question is what the mechanism is
for providing the melting down of the fermion conden-
sate at high temperature and restoration of chiral symme-
try in QCD with several light quark flavors. We cannot,
however, say much new about it now. The analogies with
the Schwinger model do not help here.

The guesses about the Dirac operator spectrum in the
different models for the four-dimensional field
configurations can, in principle, be checked numerically.
The first results for the Dirac operator spectrum in some
models (unfortunately, not yet in QCD} have already ap-
peared [17]. But to perform the calculations in a particu
lar external field is a much more easy task than to do the
path integration.

g b,z""P(x) —gER (A3)

It follows both from Eq. (A2) and from the exact result

( [p(x)—p(y)][p(x) —p(y)] ) (x —y)' (A4)

for the Green's function in the quenched Schwinger mod-
el [cf. Eq. (32) and discussion thereafter] that the estimate
(A3) holds also for the field configuration of interest, Eq.
(Al), up to unessential logarithmic factors.

Under the general choice of the region D, the function
p(x) achieves its minimal value at the point x0 well inside
the region D. Then the normalized zero-mode function

pa(x) 0- exp[ —g[p(x) —p(x0)]]

is suppressed at the border C of the region D as

p0(x GC)-exp( —4n)-exp( —AgR ) .

(A5)

(A6)

The function (A5) is the zero mode of the Dirac equa-
tion with the gauge-field configuration (Al) but not for
the original configuration E'""(x). We may use it, how-
ever, to obtain a variational estimate for the lowest
characteristic eigenvalues of the Hamiltonian &=6 as-
sociated with the wave functions concentrated on a re-
gion of size R:

e0(R)-Aa(R)- f pa(x)I9 $0(x)d x, (A7)

where the integral extends on the whole manifold. The
integrand is nonzero, however, only outside the region D
where it is suppressed according to Eq. (A6). Thus we
get the estimate

A,0(R ) & g exp( —AgR ) .

That means that the total number N(e) of eigenstates
with the eigenvalues A.„(cis

L L
N(e) )

R (e) ln (g/e)
(A9)

and the level density

(A10)

is infinite. The main reason for that is the exponential
suppression (A6) for the quasi-zero-mode functions (A5).

In the unquenched Schwinger model, a suppression is

concentrated in the finite region D. According to the in-
dex theorem, it supports -gR different fermionic zero
modes. The corresponding eigenfunctions involve the ex-
ponential exp[ —gp(x)] [hp(x)=E(x)] multiplied by a
polynomial factor. One can always choose a particular
solution pa(x) for the Dirac equation Bpa(x)=0 for
which this polynomial factor is absent.

The crucial observation is that characteristic fluctua-
tions 5'""of the function

gP(x}-gf E(y}lnlx yl y (A2)
D

on the region D are of the order of the characteristic flux
@n. E.g., for the uniform field E, g P(x) =gEx /2 and
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also there but is much more weak,

g~D""((~(&)
I..q...b,a "»& (A 1 1)

power, and
—1/Xf —(Wf +1)/Nf

(A12)

the wave function at the border is suppressed only as a [see Eq. (19)].
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