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QED vacuum polarization on a momentum lattice
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We study the effect of a momentum (k) lattice as a regulator of quantum field theory. An an example,
we compute the vacuum polarization in noncompact (linearized) QED from k-lattice perturbation theory
to one-loop order and study the continuum limit. The amplitude has a finite part plus logarithmically,
linearly, and quadratically divergent terms. The amplitude violates gauge invariance {Ward identity) and
Lorentz (Euclidean) invariance and is nonlocal. For example, the linear term -A~k~ is nonlocal. Re-
normalization requires nonlocal counterterms, which is not inconsistent because the original action on
the k lattice already has a nonlocality. We explicitly give the counterterms, which render the amplitude
Lorentz and gauge invariant to recover the standard result.

PACS number{s}: 11.15.Ha, 12.20.Ds

I. INTRODUCTION

Since Wilson's [1] proposal to use a space-time lattice
as a regulator of a field theory, it has been noticed that
some symmetries are conserved while others are not. For
example, gauge symmetry is conserved by Wilson's con-
struction by expressing the action in terms of link vari-

ables instead of the gauge fields (compact or periodic for-
mulation of the action). However, there is a problem to
reconcile the conservation of chiral symmetry with the
absence of fermion doubling as has been noticed by Kar-
sten and Smit [2], as well as by Nielsen and Ninomiya [3].
The Nielsen-Ninomiya no-go theorem is based on the as-

sumption that the action is local. Over the years a num-

ber of proposals have been made to overcome those prob-
lems. An early attempt was made by Drell, Weinstein,
and Yankielowicz [4] who suggested expressing a deriva-

tive in the action as in continuum momentum space
(SLAC derivative). This introduces a nonlocality of the
action on a space-time lattice. A crucial test for a chiral
fermion lattice proposal is the axial anomaly (Adler-
Bell-Jackiw anomaly [5,6]). The Drell-Weinstein-
Yankielowicz proposal conserves chiral symmetry, and

produces no fermion doubling, but yields a vanishing axi-

al anomaly, as has been shown in a nonperturbative argu-
ment by Ninomiya and Tan [7]. The QED vacuum polar-
ization in the Drell-Weinstein-Yankielowicz formulation
has been computed in Ref. [8].

A number of other proposals have been made to deal
with the chiral fermion problem. Rebbi's chiral fermion
proposal [9] yields fermion spectrum doubling for the
vacuum polarization and the anomaly in two dimensions,
as has been shown by Bodwin and Kovacs [10]. Bodwin
and Kovacs [11]have considered the Schwinger model to
compare the lattice fermion proposals by Wilson, by Ko-
gut and Susskind, and by Drell, Weinstein, and Yank-
ielowicz by computing the anomaly, the mass gap, and
the chiral order parameter (gitj). The proposals by Aoki
[12] and by Funakubo and Kashiwa [13],which are local
formulations, have been shown by Bodwin and Kovacs
[14] to require nonlocal counterterms for renormalization
in the continuuin limit. In the proposal by Smit [15] fer-

mion doubling is present, but the fermion doublers are
decoupled by giving them a large mass. Recently, a pro-
posal has been made by Bodwin and Kovacs [18] intro-
ducing auxiliary Dirac fields. Recent reviews are given in
Refs. [16,17].

The above results show the failure of lattice theory to
yield gauge invariance, chiral invariance, absence of fer-
mion doubling, correct continuum limit of quantum ex-
pectation values in weak-coupling perturbation theory, in
particular for vacuum polarization and the axial anoma-
ly. This holds for a local lattice formulation by the
Nielsen-Ninomiya no-go theorem [3), as well as for
the nonlocal Drell-%einstein-Yankielowicz formulation
based on a nonperturbative argument [7].

As an alternative to a space-time lattice, the use of a
momentum (k) lattice has been investigated recently.
Kuti, Lin, and Shen [19,20] have applied it to the scalar

model (in one and four components) to estimate an
upper limit of the Higgs mass. Berube et al. [21] have
investigated the critical behavior of the scalar tII model
on a small momentum lattice and compared it with
Luscher and Weisz s [22] renormalization-group solu-
tions of high-temperature-expansion data. Brockmann
and Frank [23] have used a momentum lattice to com-
pute the equation of state of nuclear matter from quan-
tum hadrodynamics.

The potential advantages of a momentum lattice can be
summarized as follows: (a) Observables determined by
the low-momentum behavior of a theory (renormalized
mass, wave function renormalization, renormalized cou-
pling constant, etc. ) may eventually be determined more
easily on a k lattice. (b) Critical slowing down can be op-
posed by Fourier acceleration, which is related to modify-
ing the zero-momentum behavior. This can be imple-
mented on a k lattice in a straightforward manner. The
results of Ref. [21] show that critical behavior can be ex-
tracted on a quite small k lattice (3 ). (c) There is no fer-
mion doubling.

The implications of using a momentum lattice for
gauge or chiral theories has been investigated by Berube
et al. in Refs. [24—26]. In particular, the action has been
treated in the noncompact (linearized) formulation, i.e.,
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by writing the action in terms of the gauge and chiral
fields, instead of using the link variables. The question
arises: What happens to the symmetry group? Is the
classical action invariant? Are quantum expectation
values in the continuum limit invariant? In the naive k-
lattice formulation all answers are negative. However, a
one-to-one correspondence between a symmetry group of
local gauge transformations on a space-time lattice and a
corresponding symmetry group on a k lattice can be es-
tablished (then a gauge transformation is given by a cir-
culant and unitary matrix on the k lattice). This is also
possible for chiral transformations. The classical action
is invariant in a weak form, i.e., under infinitesimal trans-
formations with compact support (which means that the
exponential exponent is a nonvanishing matrix only in a
finite domain which is smaller than the size of the lattice).
To see what happens to quantum expectation values, the
axial anomaly has been computed in Ref. [26]. The stan-
dard Ward identities and axial anomaly are found, how-
ever, only if the amplitude is renormalized by using non-
local counterterms. The appearance of nonlocal counter-
terms is not surprising, because the original action con-
tains a nonlocality in the form of a jump discontinuity in
the kinetic term.

In Ref. [26) the Ward identities have been computed
from the triangle diagram, but not the vertex amplitude
itself. Here we want to study another example and com-
pute the full amplitude. We consider QED and compute
the vacuum polarization from k-lattice perturbation
theory to one-loop order. We give explicitly all nonlocal-
ities and compute the counterterms to find the standard
Lorentz and gauge-invariant result. Recently, Bodwin,
Kovacs, and Sloan [28] have studied noncompact (linear-
ized) QED on a space-time lattice and studied renormal-

ization. They also find counterterms not present in the
compact theory or in the continuum theory with a
gauge-invariant regulator. Also in their study of the Yu-
kawa model in light-cone quantization, Burkardt and
Langnau [27] have found the necessity to introduce non-
covariant counterterms in order to restore Lorentz in-
variance.

The motivation of this work is based on the following.
(a) The general interest in a noncompact (linearized) for-
mulation of field theory on a lattice. For example, for
U(1) gauge theory, the compact and the noncompact for-
mulation give a different phase structure. (b) Further ex-
ploration of the k-lattice regularization, which has been
shown to be a viable tool in numerical simulations. (c)
Finally, there is a more speculative point. The above re-
sults giving quantum amplitudes which require nonlocal
counterterms come from applying weak-coupling pertur-
bation theory (loops giving rise to infinities). There are
reasons to speculate that nonlocal counterterms would
not be needed by doing perturbation theory in a way
which gives finite amplitudes. Before investigating this
further, it is necessary in contrast to study in detail the
nonlocal structure in weak-coupling perturbation theory.

II. MOMENTUM LATTICE REGULARIZATION

We introduce a regular, hypercubic M momentum
(k) lattice, symmetric with respect to the origin k =0. It
has a lattice spacing (momentum resolution) b,k and a
high momentum cutoff A, related by A=hkM/2 if M is
even and A=6k (M —I )/2 if M is odd. The correspon-
dence to a space-time lattice with lattice spacing a is
given by A=a. /a. We write the Euclidean action as fol-
lows

4 12

(2m. ) 5(k~ —k~ kyar )l((kq)y„—A„(kJ)l((kyar )f(kr )[y„( i)(kr )„—+m ]g(kJ )+iehk hk

k 2m k~, kJ, k~
2m-

+ —,g F„,( k~)F„„(kr)+——g ( —i)( k~)„A„(kJ)—( i)(kg),—A—„(kg),hk — — A, b,k

J I

where

F„„=i (k~)„A,——( i)(k~)„A„—(k~) . (2)

Here f(kz) stands for a periodic, lattice function (with a period M hk in each dimension), i.e., we assume that all func-
tions (fields, 5 function etc.) defined on the k lattice are periodic. This periodic structure was introduced in Refs.
[24,25] to give the gauge transformations a group structure. [Note that for a periodic function U(k~ ), the matrix defined

by V(k~, kz)=v(k~ —kJ) is a circulant matrix, and circulant unitary matrices form a group. ] Euclidean Green s func-
tions are expressed on the k lattice by

f gdf(k )dg(k )add„(k ) . p( —S[f,f, A„])
k kj

k kJ
f g dP(k )dP/i(k ) g dA„(k ) exp( —S[P,g, A„])
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(0) (b) (c)

FIG. 1. (a) Photon line, (b) fermion line, and (c) vertex in
QED on k lattice.

FIG. 2. One-loop vacuum-polarization diagram in QED on k

lattice.

The Euclidean Feynman rules (in the Feynman gauge,
A, = 1) are: An internal photon line [Fig. 1(a)] is given by

5„,/(ki) . An internal fermion line [Fig. 1(b)] corre-
sponds to 1/[y„(—i)(kz)„+m] ', and the vertex [Fig.
1(c)] is ( —i)ey„(2m ) 5(ki —kJ —

kL ). According to
Quinn and Weinstein [29] the vertex employed in the
SLAC derivative formulation reads,

D„(k+q) D„(k)—
I &(k, q) =ey„

sin(q„a/2)
(4)

where D„(k)denotes the SLAC derivative. One should
note that this vertex difters from ours.

Let us consider now vacuum polarization. The stan-
dard result for the vertex amplitude for vacuum polariza-
tion corn. puted to one-loop order in the continuum limit

I

by Pauli-Villars regularization is given by Ref. [30]. It
reads in Euclidean form

I„,= [5„„k—k„k„]

X f dx x(1—x) ln
Mpv

2

m +x(1—x)k
(5)

where Mpv is the Pauli-Villars mass. This amplitude
satisfies the Ward identity

k„I„„(k)=0,
which expresses gauge invariance, and it is Lorentz (Eu-
clidean) covariant.

On the k lattice, the vacuum polarization diagram,
given by Fig. 2, corresponds to the amplitude

2

( —1) (2ir) 5(kM —k~) g
Mk kr, kJ

(2'�) 5(kM —ki+ ki )2'
1 1

XTr ( i)e y„— ( i )ey „—"y ( i)(ki) +—m y ( i)(kJ—) +m

We go over to the continuum limit in two steps: (a) 6 k ~0, but cutoff A=const, (b) A —+ ~. Performing the first step,
carrying out the trace and amputating the external lines yields

2f +A d p +w d q 4- Pl. qv qpPv pv P'q4

—A (2~)~ —~ (2~)~ [p ~+m ][q +m ]

All functions of the integrand are periodic with period
2A and hence so is the amphtude

A. Contribution from shift zero

First, let us consider the contribution from shift zero,

I„,(k) =I„„(k).

The periodic 5 function can be written as

5(k +p —q) =5(k +p —q)+5(k +p —
q +2A)

+5(k +p —
q

—2A)+5(k +p —
q +4A)

4 2

I„(k)= — f d p f„(k,p),
( 277) Box( k, A )

2P~ +p k +k~„—5„„(p+p.k +m )f„.(k,p)=
[p'+m2][(p+k) +m ]

+5(k +p —
q +4A)+ (10)

Let us consider k E[—A, +A], a=1, . . . , 4. Then
terms with shifts +4A, +6A, . . . do not contribute to the
integral. We have to consider only the shifts 0, +2A.

Box(k, A)=[p~~p ~
A, l(p+k) I

—A &=I . 4! .

In order to exhibit the singularity structure we expand
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—k' —2k p
(p+k) +m p +m N 0 p +m

(12)
[N =0, 1,2 subtr]

1

(p+k) +m

The series converges as a function of k for lkl (m /2.
We split the right-hand side (RHS) into terms with
N=0, 1,2 and N~3,

2 —k2 —2k p
N

(p+k) +m p +m N=O p2+m
[N =0, 1,2 subtr]

1

(p+k) +m

where

(14)[ I—& 2—1&.p] 1

[p +m ] [(p+k) +m ] p-~ p

define I (N =0 12 subtr] d f [N =0 12 subtr] by Eq (1 1 )

when replacing [(p+k) +m ]
'

by [((p+k)
2) —1][N=0,1,2subtr] Th S 1eldS I[N=0, 1,2subtr](k A) to

be finite and convergent with A~ 00.
We will not compute I[ " '" " explicitly, because

it gives the same finite contribution as computed from
standard continuum perturbation theory with Pauli-
Villars regularization. We will show, however, that it
satisfies the Ward identity. Let N ~ 3 and let us consider
the contribution for a given N [see Eq. (12)].

N 4e [2p~„+p„k„+k~„5„„(p—+p.k+m )][—k —2k p]I„,(k, A}=— d p(2~ } Box(k, A) [p2+ 2]N+2 (15)

Note that the integral is convergent, which allows us to replace for large A the integration domain Box(k, A) by a sym-
metric domain. Then one obtains

k„I„,(k, A) =—

=0.
p = —A A —+ txt

V

4e2 N +& 4 [k +2k p] +' [k +2k.p]
(2~)4 [p 2+m 2]N+ 2[p2 +m2]N+ 1

4e2 ( 1)N+1 +A [k +2I& p+2k„p„]
(2~)4 2(N+1) ~—p [p2+p2+m2]N+1

d p (16)

Here we have used partial integration and made essential use of N ~ 3. For N & 2 nonzero surface terms occur. This re-
sult implies

I(N=0, 1,2subtr](k} 0P P~

i.e., the correct Ward identity.
Now let us consider the terms with N =0, 1,2. These will give infinities in the amplitude and nonzero contributions

to the Ward identity. Let us see this in some detail. Let us assume k & 0, a =1, . . . , 4. Then

Box(k, A)=[pip: —A +A —k, a=1, . . . , 4} .

This domain can be decomposed into the following disjoint domains

Box(k, A)=D (A) —D'(k, A)+D (k, A) —D (k, A),

where

D'(A)=[pip: —A~+A, a=1, . . . , 4},
4

D'(k, A)= U [plpp. —A~+A, P=1, . . . , 4, PAa, p:A —k ~A},
a=1

4

[pip, : A+A, } =1, . . . , 4, yea, p—, p:A kA, p&.A —
k& A}, —

a&P=1
4

D (k, A)= U [PlPs..—A~+A, 5=1, . . . , 4, 5%a,P, y, P:A k~A—
a&P&y=l

p p..A —
kI1 ~A, py ..A —k ~A } .

This decomposition is useful to disentangle contributions to the amplitude with different degrees of divergence.
Let us start to consider the contribution from domain D,

4eI„(k)=— I d p f„(k,p) .
(2m )'

This expression is quadratically divergent by power counting. One obtains for the terms N =0, 1,2 [see Eq. (12)],

(19)

(20)

(21)
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4eI[D, )v=0) (k) 5 [ 2A2S(1)+ 2tn 2S(2)]+O (A
—1)P» (2 )4 P»

where 5'"' is given in the Appendix.

4 2

I ' (k)= — -[k k [
—I' '(A)+2S' ']+5 k I' '(A)]+O(A '),P» (2 )4 P PV

where I'"'(A) is given in the Appendix.

4 2

(k)= — k k —I' '(A) — S' '+ S' ' +5 k — I' '—(A)+ —S' '+ —S' '
PV 9 9

(22)

(23)

g(2) g(3)
Pv P P 3 3 P V

+5„(k)
m

8 ~(2)
3

+O(A ') . (24)

Next, we compute the contribution from domain D" '(k, A) [see Eq. (20)]. One obtains

2
I[ ](k)= — k k [2S' ']+5 k ——S' ' ——S"' +5 k k — S' '+ S' '

PV )4 P 3 3 P P P 3 3

I[D, )v= I](k)—
PV

4
+A y. k. ——S"'——S"' +Ak„——S"'+—S"' +O(A-'),

3 3 " 3 3
T

2

k k ——S")+—S"' +5 k' —S(2)+—S")
)4 P 3 3 3

(25)

+5 k k
' S"'— S'" +O(A-') .Pv P P 3 3

L

Note that due to Eq. (19), these terms enter into the total amplitude with an additional minus sign.
Finally, from domain D (k, A) [see Eq. (20)] one obtains

4 2 4I[„' ](k)= — k k [2T' ']+5„„k[ —T' ']+5„„k„k„[T'"—2T' ']+5 k g k [—T"')
7T' a=1

(26)

4+5„„yk k, T"'—
a,P=1

+O(A '),

where T'"' is given in the Appendix. The contributions from D'", I(I =2 and from D( ', X =1,2 are O(A ').

B. Contribution from shift +2A in one dimension

We continue to make the assumption k &0, a= 1, . . . , 4. Because we take k E[—A, +A], Eq. (10) shows that
nonzero contributions come only from 5(k +p —

q
—2A), i.e., only the shift —2A plays a role. Such a shift —2A can

occur in one, two, three, or four dimensions. In this section we consider the contribution from shift —2A in one dimen-
sion, say dimension a. According to Eq. (10), one has to sum over (2. This gives the following contribution [see Eq.
(11)],

4e' 4
I[one-dim shift —2A](k) ~ ~ y4 f (k(a)

where k &
'=k& —2A6 &. The integration domain is

Box(k, A)= U [p~pp..—A~+A —kp, P=l 4 P&a p +A —k ~+A] (28)

This domain can be decomposed into the following disjoint domains

Box(k, A) =D '(k, A) D(k, A)+D (k—, A) .

Then we compute the contribution from D '



46 @ED VACUUM POLARIZATION ON A MOMENTUM LA't I'ICE 5545

4e 5 4I['"' ' '"'' ' ' ](k)=I[ ' ](k)— 5 k —S' ' —4S' ' +A ~ k [+2S' ']+Ak [ —4S' ']PV )s (2 )4 )sv 3 a P

+k k ——S'' ——S''
6 3

+O(A '),
(30)

4 2
I[one-dtmshtft —2A, D', N il(k)=I[ '](k)— k k —S( ' ——S' ' +5 k [3S' ']PV )tv (2 )4 )t v 3 3 PV

+5„+„k„[—2S' '+10S' '] +O(A ') .

The contribution corresponding to D is given by

4eI[onedim shift 2A, D, N=—O](k) I(D, N=O](k) k k ( 2T(2))+5 p2(+T(2))+5 p k (
t T(2))

)sv (2 )4 p v P P P IJ]

4 4

+5q„g k kp( —T' ')+5„P„Qka(+ —,
'T' ') +O(A ') .

a,P=1

Note, this term contributes to the total amplitude with a minus sign.

a=1

(31)

C. Contribution from shift +2A in two dimensions

In this section we consider the contribution from shift —2A in two dimensions, say dimensions a and p, asap. Sum-
ming over a,p gives the following contribution [see Eq. (11)],

I[two-dim shift —2A](k)
4e2 4

d4 (k (aP)
(2W) a &p= i Box(k ',A)

where k z
'~'= kz —2A5ay —2A5&&. The integration domain is

(32)

Box(k, A)= [p~p: —A~+A —k, y=l, . . . , 4, ya, P, p:+A —k ~+Aa( =1

pp. +A —kp —++A] .

This domain can be decomposed into the following disjoint domains

Box(k, A)=D (k, A) —D (k, A) .

Then we compute the contribution from D

(33)

(34)

4eI[two dim shift 2AD, N=O](k) —I[D, N=O](k) k k ( 4T' ')+5 —k ( 2T' ') 5k —k ( —8T—' ')
PV )v (2 )4 ) v PV PV P P

4 4

+5„„kqg k ( —4T' ))+5„„+k kp[2T'2'] +O(A ') .
a=1 a,P=1

(35)

We close this section with the remark that contributions
with shift —2A in three or four dimensions are 0 (A ).

k„—+ —k„
(a) k k simultaneously for p and v.

V V
(36)

D. Symmetry of the amplitude

In Sec. II, we have seen that the vacuum-polarization
amplitude I„„(k)computed from the k-lattice regulariza-
tion, given by Eq. (8), is periodic. Moreover, as Eqs. (8)
and (10) show, I„„(k)is invariant under reflection of k.
More precisely, it is invariant under the transformation

and under the transformation

(b) k ~—k, independently for each aE [p, v] .

(37)

In the preceeding sections we have computed the ampli-
tude under the assumption k &0, a=1, . . . , 4. We
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found the following structure of the amplitude
4

I„„(k)=Ak„k +B5„„k+C5„,k„k„+D5„„k„gk
a=1

4 4+E5„+k kp+F5„,Ak„+65„Ag k
a, js'= 1 a=1

+a(A)5„.+I('„'g"'"](k)+O(A-'),

where

I(regular](k) [k k 5 k2]f (k2)

(38)

(39)

I„,(k) = Ak„k,+B5„,k +C5„k„k„
4 4

+D5„.lk„l g lk. 1+&5„.g lk. llkpl
a, P=1a=1

Re6ection symmetry dictates that the general amplitude,
valid for arbitrary sign of k, reads,

The corresponding changes have to be made in Eqs.
(22—(26), (30), (31), and (35). The term lkl corresponds to
a nonlocality of the amplitude.

III. COMPARISON WITH CONTINUUM
PERTURBATION THEORY

Thus the result for the vacuum-polarization amplitude
obtained in second-order perturbation theory in the k-
lattice regularization is given by Eqs. (22—26), (30), (31),
and (35). The standard expression from second-order
continuum perturbation theory, using Pauli-Villars regu-
larization is given by Eq. (5). We can check if the lattice
result is consistent with the Pauli-Villars result. The
Pauli-Villars result is obtained by taking the continuum
integral and subtracting the same amplitude with the
mass m replaced by a large mass Mpv.

2I„,(k)=—,I d'p[f„,(k,p, m)
(2~)

+F5„„Alk„l+G5„,A y fk. l

f„v(k~p~Mpv)] . (41)

a=1

+H (A)5p, +Ip[':g"1"](k)+0(A-1) . (40)
This expression is finite. We are free to rewrite f„„,given

by Eq. (11),using the decomposition of Eq. (13). Thus

(42)

2 0 CD'Nj & k
(k, Mpv)= 5„[Mpv—m ]+ [k„k 5„„k] ln(M—pv/m ) —2 +O(Mpv') .

m

4 2 +~ 2I d p g [f (k p ~) f„,(k,p M )]+f = " '" "](kp m)+O(M ')
7T N=0

The integral over f„„''" " (k,p, Mpv) is finite and vanishes for a large Pauh-Villars mass of O(M '). Now we
look at the amplitude obtained on the k lattice. We consider the contributions from shift zero and the symmetric in-
tegration domain with respect to cuto6' A, i.e., the domain D . For N =0, 1,2 these contributions are given by Eqs.
(22)—(24). If we subtract the amPlitude with m rePlaced by Mpv, we obtain (using a =e 2/4m)

(43)

On the other hand, the continuum result with Pauli-
Villars regularization, given by Eq. (5), yields after expan-
sion in k up to second order,

2

g [f~(,](k,p, m) —f( ](k,p, Mpv)]
N=0

I„,(k)= [k„k,—5„k][In(Mpv/m )+O(k )] .3'
(44)

After we impose the Ward identity as a renormalization
condition, the constant term vanishes on the RHS of Eq.
(43) and up to second order in k, both results agree Not.e
that we have used the expansion (12) in Eq. (43) and the
Taylor expansion in Eq. (44). Both are of course
equivalent, but there is not a one-to-one correspondence
between a given order X in Eq. (12) and a given order of k

in the Taylor expansion. Thus the term of order k4 of
the amplitude is only partially given by Eq. (43), there is
another contribution of that order coming from

D N=012s btrI ' " '" "j. On the other hand, the second term on
the RHS of Eq. (43) is obtained by evaluating the term

in expression (42). From this we conclude that the ampli-

tude obtained by k-lattice regularization, when taking the
symmetric domain D, and when making an additional
Pauli-Villars subtraction, agrees with the continuum re-

sult obtained with Pauli-Villars regularization (apart
from the quadratic constant term, which vanishes when

imposing the Ward identity).

IV. LAGRANGIAN COUNTKRTERMS

Let us come back to the amplitude obtained from the
k-lattice regularization, i.e., without Pauli-Villars sub-

traction, given by Eqs. (22)—(26), (30), (31), and (35). We

split it into two parts, the first part giving the standard
result of the amplitude and a second part corresponding
to those terms which will be made to vanish by introduc-

ing suitable counterterms.
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I'n" res(k) =Is (k)+I (k)

4 2
1 k 8Is (k)= — [k k —5 k ] — I'—'(A)+ —S' ' +I[N=0, 1,2subtr](k)

Pv (2 )4 i v Pv 2 3 PV

4 2

5 ( —2A S'"+2m S' ')+k k 2S' ' — S' '+ S' ' +5 k —S' '+ —S' '
(2~)4 P PV

(45)

where I„,can be written as [see the Appendix for I' '(A) ]

+5 k k —S'' — S''
Pv P P 9 3

I[D, N=0](k) I[D, N=1](k)+I[D, N=0](k)+I[one dim ehift 2A D, N—=0](k)+I[one dim shift 2A D, N—=i](k)
Jtl V PV |[lV Ill V

I[one dim shift 2A D—, N =0](k)+I[twodim shift 2AD—, N =0](k)+0 (A
—1)

PV PV t

I„(k)= [k„k,—5„„k2]ln C, k
m ~ m

+I [N =0, 1,2 subtr]( k)PV

c"~ 1 k2
[k k —5 „k] ln + —1 —6f dxx(1 —x)ln 1+x(1—x)

m 7T 0 m
(46)

'4

S';,'„„„„=g A A ( —kf ) A (kf ) .
7T

I
(47)

The same type of counterterm is needed to cancel 5„,m .
(b) Corresponding to the term k„k in the amplitude, the
action counterterm is

S,'b„'„„,= g ( —i)( —kf) A (
—kf)( i)—hk

27K
I

X (kf )pA p(kf

(c) Corresponding to 5„,k the counterterm is

(48)

This is the standard result, the term
ln(A /m )+C' '/fr —1 renormalizes multiplicatively
the coupling constant. In order to obtain I„,as a renor-
malized lattice amplitude, we have to introduce counter-
terms, such that I„",vanishes. Those Lagrangian coun-
terterms have the following form: (a) Corresponding to
the term 5„„Ain the amplitude, the action counterterm
1S

4

S,".„„„„=y ( —i)[k, ~A. ( —k, )

I
4

X y ( —i)~k, ~A.(k, ) .
P=1

(51)

5kScounter
x'7T

I
y (

—i)/k, /(
—i)/k, [

a, P=1

X Ar( —kf ) Ar(kf ) . (52)

[D N =0]
(g) Corresponding to 5„+~k„~,occurring in I[
the counterterm is

4

S,'s„'„„,= g A( i)]kf ~A (—kf)A (kf) . —
277

kI

(53)

(f} CorresPondinq to 5„„+4p 1 ~k ~)kp~, occurring in

I [one-dim shift —A, N j, the counterterm is
4

'4

$;,„„„,= g kf 2A ( —kf ) A (kf ) .
k 2'
I

(d) Corresponding to 5„„k„k„the counterterm is

(49)

(h) Corresponding to 5„Ag, ~k ~, occurring in
D N=0I ' the counterterm is

4

S',".„'„„,= y A y ( —i)~k, ~

2 7T

4
hk

( —i)( —kf) A (
—kf)( i)—

7T
I

X(kf ) A (kf ) . (50)

(e) Correspondin~ to 5„„~k„~g =, ~k ~, occurring in

I " ' '"' ' ' =, the counterterm is

XAp( —kf)Ap(kf) . (54)

V. SUMMARY

We have computed the QED vacuum-polarization dia-
gram to one-loop order using a momentum (k) lattice as
regulator. The result can be expressed as the standard re-
sult plus a number of terms, which are nonlocal and
violate Lorentz (Euclidean) invariance and gauge invari-



5548 H. KROGER, R. LAFRANCE, AND L. MARLEAU

ance. In order to get rid of these unphysical terms, one
can renormalize by introducing counterterms in the ac-
tion, which are also nonlocal and violate Lorentz invari-
ance and gauge invariance. The nonlocality is consistent,
because the original Lagrangian already contains a nonlo-
cality in the kinetic term. The counterterms are in terms
of momenta of the order 1, k, k . The original Lagrang-
ian has been constructed in terms of periodic functions
f(kt), in order to conserve the group structure of the
group of local gauge transformations. If we would have
abandoned this constraint, the amplitude would not have
the terms coming from shift +2A in one and two dimen-
sions. As Eqs. (30}, (31},and (35) show, the shift terms
partially replace terms and have the same structure as
terms which occur anyway. The shift terms do neither
deteriorate nor improve the result with respect to conser-
vation of Lorentz symmetry and gauge symmetry.

I'"'(A)= f
[p +m ]"

S'"'= d's
[s +1]"

d't+1 1

[t'+2]"
The integrals T'"' and S'"' are finite. One has

T"'=1.5369. . . ,

(Al)

T' '= —,S"'=4.2868. . . .
3&3

'

S"' is related to T'" by

T"' can be expressed in terms of the Lobachevskiy func-
tion.
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APPENDIX

The integra1 I'"' is finite for n ~3, it is logarithmica11y
divergent for n =2, and quadratically divergent for n =1.
The following relations hold

I"'(A)=4A S"'—m I' '(A) —4m S' '+O(A '),
(A3)

II2~(A)=2/7 In(A/m)+(, ~ ~ —~ +O(A }

where

In this section we will give some integrals, which oc-
curred in the preceeding sections. We define

CI"=f "d's ', , f —d' s
(s ) l~l —& (s )

is finite.
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