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Investigating decoherence in a simple system
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I present the results of some simple calculations designed to study the loss of quantum coherence. The
relevant physical issues are briefly reviewed, and then a very simple "toy" model is analyzed. Exact solu-
tions are found using numerical techniques. The type of decoherence exhibited by the model can be
changed by varying a coupling strength. I study the system from two points of view. One, the Schmidt
paths approach, is closely related to the conventional approach of studying decoherence by checking the
form of the density matrix. The consistent histories approach is also used, and the relationship between
the two approaches is explored.

PACS number(sj: 03.65.Bz, 05.30.—d, 98.80.Cq

I. INTRODUCTION

The "loss of quantum coherence" plays an important
role in our understanding of quantum mechanics. Loss of
quantum coherence provides a mechanism whereby
effects often attributed to "the collapse of the wave func-
tion" can arise in a system whose evolution is entirely un-
itary. This is accomplished by introducing a sufficiently
complex "environment" into the calculation [1—8]. (For
an introductory treatment see [9].) Such environments
are presented in most realistic physical situations.
Indeed, one finds that this mechanism is constantly in
operation all around us, and decoherence is in large part
responsible for the "state" in which we find many com-
monplace objects.

For example, one could never hope to observe a macro-
scopic pendulum in an energy eigenstate of its
"harmonic-oscillator" Hamiltonian, even if an initial
state could be prepared that way [10]. Local interactions
of the pendulum with its internal degrees of freedom, the
gas in the room, or even just with the cosmic microwave
background [11]would ensure its rapid "collapse" into a
much more localized state. This would be a consequence
of correlations being set up with these other degrees of
freedom which destroy the coherence of the initial state.
At any given time the wave function of the world would
then describe many localized copies of the pendulum,
each at different positions, and each correlated with
different environment states. The delocalized property of
the initial state would just be reflected in these different
positions being broadly distributed.

The physics of decoherence often points to the ex-
istence of preferred states, whose coherence is not des-
troyed by interactions with the environment. In the case
of the pendulum these resemble the "coherent states, "
which are localized, and follow classical pendulum trajec-
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tories [12]. Following the pioneering work of Zurek
[2—4,6], the preferred states are often referred to as the
"pointer basis. " The word "pointer" is used because of
the importance of the pointer basis in understanding
measurement devices (many of which have pointers).
However (as Zurek and others have noted), the process of
decoherence and the ability of special states to survive
the decohering effects of the environment is a widespread
phenomenon, and is not limited to manmade laboratory
equipment. For many objects (such as the macroscopic
pendulum) the pointer basis states are highly localized in
both position and momentum. This fact can give rise to a
classical treatment of these objects, in which both posi-
tion and momentum are sharply defined.

The role of quantum decoherence in the early Universe
is of particular interest. It may provide valuable insights
into questions relating to "initial conditions. " One can
ask which properties of the Universe relate directly to the
"initial state" and which are a consequence of dynamics
forcing systems into the preferred pointer basis states.
For example, in inflationary cosmology the state of the
Universe during inflation is a highly symmetric spatially
homogeneous one, even though many modes are excited.
The fact that we observe an inhomogeneous matter distri-
bution today is attributed to local interactions destroying
the coherence of this "initial" state [7] (see also [13—18]).
The pointer basis states in this case are not homogeneous.
Halliwell [19] has also emphasized the importance of
quantum decoherence when studying emerging classical
behavior in quantum cosmology. There has recently been
interest in the possible role that certain quantum gravity
effects ("wormholes") could play as an environment re-
sponsible for decoherence. In [20] Coleman shows that
the wormhole interactions serve to define a pointer basis.
Unlike general states, states which are members of the
pointer basis (or "A eigenstates" in Coleman's language)
do not lose coherence very rapidly to wormhole interac-
tions.

In familiar examples it is often easy to guess the nature
of the pointer basis. For example, pointer basis states for
the center-of-mass coordinates of macroscopic objects
tend to be localized in space. This can be attributed to
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the locality of interactions with the environment. In ad-
dition, these localized states need to have fairly sharply
defined momenta in order to remain localized in the
course of time. Of course, there are notable exceptions to
this rule. Superconducting Josephson junctions, for ex-
ample, involve highly delocalized states which maintain
their coherence [21—23].

In any case, when venturing into unfamiliar territory
such as the early Universe, one might want something
more than heuristic arguments to work with. A common
approach is to guess a pointer basis, and to check the di-
agonality of the reduced density matrix (in that basis)
produced by tracing out over the environment. Care
must be taken, however, since any density matrix can be
diagonalized, but a pointer basis does not always exist.
In many cases the decohering effects of the environment
will rapidly destroy the coherence of any state. A related
approach involves following the time evolution of the
eigenstates of the reduced density matrix (which define
"Schmidt paths"). To the extent to which the eigenstates
retain characteristic properties (such as locality)
throughout time, a pointer basis may be said to exist.

This paper includes a study of a simple system from
the "Schmidt paths" point of view. The system has a pa-
rameter which can be adjusted to change the nature of
the decoherence. Using the Schmidt point of view, I
show that in some limits a static pointer basis emerges,
while in other cases the pointer basis is dynamically
evolving. In many cases the system is just noisy, and no
state can survive the decohering effects of the environ-
ment.

The Schmidt paths provide information about instan-
taneous probabilities assigned to correlations, and allow
one to follow the time development of these probabilities
and correlations. The "consistent histories" or "decoher-
ence functional" scheme is related to the sum over his-
tories formulation of quantum mechanics. It is used to
determine whether one can assign well-defined probabili-
ties to different histories for a given system. When the
answer is in the affirmative, the histories are said to be
"consistent" or "decohering. "

In many cases correlations between a system and its
environment (or "records") play a crucial role in causing
certain histories to be consistent. I show how the
Schmidt paths can be useful in identifying which proper-
ties of a subsystem have been recorded. In turn this can
help determine which histories are consistent. I show
how the presence of a pointer basis allows a particularly
simple form of consistent histories to be constructed, but
the absence of a pointer basis does not prevent the con-
struction of consistent histories.

Section II is a review of the basic ideas of decoherence,
and Sec. III provides an introduction to the Schmidt
paths point of view. In Sec. IV, the toy model is intro-
duced. In Sec. V and VI, the behavior of the toy model is
analyzed from the Schmidt point of view. Section VII
starts with brief introduction to the consistent histories
approach, and discusses the important role of correla-
tions or "records. " The toy model is analyzed from the
consistent histories point of view in Sec. VIII. Compar-
isons with previous work are made in Sec. IX. Con-

clusions are presented in Sec. X. A number of technical
issues are addressed in the appendices. Throughout this
paper I use units in which fi= 1.

II. CORRKLATIQNS AND DECGHERKNCE

Here If), is the wave function of the system under study,
and

I f)„ is a state for the rest of the degrees of freedom
of the world, which do not concern the particular calcu-
lation at hand. In fact, one usually further assumes that

I g), itself can be written as a direct product:

l@&,=lg&tel&&2 lg&3 .
Itt &. (2)

The subscripts indicate the numerous subsystems into
which one divides the "system under consideration. "
These subsystems may be an incoming particle, a target,
a clock, etc.

The product form for a wave function is far from gen-
eral, and one might wonder why, instead of Eq. (1), one is
not forced to consider the more general case:

(3)
17J

where I li ), I and [ Ij )„] are bases which span the Hilbert
spaces of the "system" and the "rest of the world, " re-
spectively. One could just embrace the product form as
one of the initial assumptions, but there is another point
of view which is much more physically motivated. This
second point of view is closely tied with the notion of
"quantum decoherence" and is the subject of this paper.
I will start the discussion with some forrnal remarks, and
then bring in the additional complications which make
the picture more interesting and physical.

In order to exactly preserve the product form of Eq.
(1), the total Hamiltonian must generally be of the form

H =H, gI„+I,@H„

where I represents the identity operator in the labeled
subspace. '

However, given a separable Hamiltonian, one could go
beyond the simple product form of Eq. (1), and instead
have

Each Ig;), will evolve independently according to H, .
Furthermore, let us assume

~Another possibility is that Ill ), Ig) „ is an eigenstate of the
total Hamiltonian. This possibility will be relevant to later dis-
cussion.

A. The exactly separable limit

Whenever one studies a system quantum mechanically,
the wave function of the world, lg), is usually implicitly
assumed to have the direct product form
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(6)

Note that there is only one summation in Eq. (5), so each
state

~ g, ), is uniquely correlated with its own member of
the orthonormal set

~ P, ),. The special correlations
represented here have interesting implications.

In particular, the reduced density matrix for system s
takes the form

The correlations described by Eqs. (5) and (6) result in a

p, which is diagonal and which has eigenstates given by

~P, ), 's.
The probability for system s to in a state ~x ), is thus

given by

&x~p, (x &
= y a,*a, ~, (x(y, ), ,

where interference terms proportional to
, (x~1(, ), , (1(J ~x ), are completely absent.

The separability of the Hamiltonian allows one to
think of system s as being in independently eUolving states
~P; )„each with probability a; a;. The correlations with

system r ensure that interference among these states will
never be observed. The possibility for this kind of behav-
ior is a very important feature of quantum mechanics. It
forms the basis for the realization of Everett's "many
worlds" [24,25], in which different outcomes of a quan-
tum measurement subsequently evolve in an independent,
noninterfering manner.

B. Interactions and the origin of the correlations

This discussion has been focused on correlations be-
tween the system and the "rest" subspaces. So far, I have
had nothing to say about the origin of these correlations.
Because of the exact separability assumed for the Hamil-
tonian, the correlations are not a result of dynamics, but
are just a property of the initial state which is preserved
by the dynamics.

The reason these considerations are interesting, howev-
er, is that in the physical works one never has exact
separability. While there are cases which are separable
enough from a practical point of view, there are often
ways we can manipulate the situation to expose the addi-
tional degrees of freedom (or subspaces), and to exhibit
interactions among different ~g, )'s in a wave function of
the form of Eq. (5). (In some interesting cases, including
in an example I will present in this paper, the interaction
between system and environment will actually dominate
over the respective self-Hamiltonians. )

An important example is that of the "quantum mea-
surement. " A decaying nucleus can interact with a
Geiger counter, setting up correlations with its internal
degrees of freedom. Afterwards, the total wave function
can be thought of as having two essentially independent
terms: one describing the case where the Geiger counter
has clicked, and the other where it has not clicked. The

correlations wi11 prevent interference between these two
terms. In this case, the lack of exact separability allows
one to link the creation of the relevant correlations to the
interactions between the decay products and the Geiger
counter.

There has been a lot of theoretical work linking quan-
turn measurement with the setting up of correlations such
as those discussed above. I refer the reader to [1,3,11] for
further discussion.

With the abandonment of exact separability, one is
able to point to a physical origin for correlations under
discussion. However, confusion sometimes arises as to
how the correlations are to be discussed. For example,
the specially correlated form for the wave function [Eq.
(5)] is not generally preserved under time evolution unless
the Hamiltonian is exactly separable. In a typical discus-
sion one often sees

and

which are just Eqs. (5) and (6) with = replacing
However, the ambiguity introduced by "=" can be
confusing. One wonders, for example, how close to
equality is "good enough" in each of these expressions.
This is where the "Schmidt decomposition" can be quite
helpful.

III. THE SCHMIDT PATHS

(13)

and the density matrix for the system is diagonal.
It is quite common to then reverse the argument, and

say that if the density matrix is found to be diagonal in a
particular basis, then it is these basis states which are spe-
cially correlated with the environment. The "Schmidt
decomposition" is derived from the fact that any density
matrix can be diagonalized.

In fact, it turns out that the "specially correlated"
form of the wave function [Eq. (5)] is actually completely
general, even when the orthogonality relations [Eq. (6)]
are satisfied for both subsystems. This is an old result due
to Schmidt [26], and is related to the fact that, in addition
to p„one can construct

p—=trp (14)

Both p, and p„can be diagonalized, and both density ma-

In the approach outlined above, one studies

ps—= trrp~ ~

where one has traced out the rest space in

p (= ~g) (g~) to produce the reduced density matrix
for the system One note. s that if ~P) takes on the spe-
cially correlated form [Eq. (5)] then

(12)
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trices will have identical eigenvalues . (The p correspond-
ing to the larger Hilbert space will have additional zero
eigenvalues. }

A basis for the whole Hilbert-space can be formed as
the direct product space of the eigenstates of the two den-
sity matrices. When the state of the world is expanded in
this direct product basis one finds

H =H ) I2+I ( g H2+H~, (16)

where Iz represents the unit operator in the space of sub-

system k. The first two terms represent the self-
Hamiltonians of the environment and system, respective-
ly, and the last term gives an interaction between system
and environment. I choose the self-Hamiltonian of the
two-state system to be

(15) ~ =E (It&&ll+ll&&tl) . (17)

where the li ), and li )„denote the eigenstates (or
"Schmidt states"} corresponding to the nonzero eigenval-
ues p; of each density matrix. Phase information can be
incorporated into the eigenstates to allow positive real
values for the expansion coefficients Qp;.

Equation (15) shows that given a Ig)~, and a particu-
lar direct product form for the Hilbert space, the "spa-
tially correlated" from of Eq. (5) may always be exactly
obtained using the Schmidt procedure. In general, how-
ever, time evolution will not preserve this form, and the
Schmidt decomposition must be recalculated at each mo-
ment of time. People are often surprised by the Schmidt
result. Appendix A gives a brief proof and further dis-
cussion designed to give the result more intuitive appeal.

By nature, the Schmidt form of a state gives an exact
account of the correlations present between any two sub-
systems. (Each li ), is uniquely correlated with its own

li )„.) That makes it a natural starting point for a discus-
sion of decoherence. A particular application of interest
here is the search for a pointer basis. That means deter-
mining if there are any states for the system whose coher-
ence is not continually destroyed by the setting up of
correlations with the environment. The Schmidt states
will, in general, vary in some crazy way with time, as
Ig) evolves, indicating every-changing correlations be-
tween the system and the environment. My favorite ap-
proach to the search for a pointer basis is to follow the
evolution of the Schmidt states (which trace out
"Schmidt paths"). When their evolution becomes
sufficiently regular, one can say that they represent a
pointer basis. This point of view was first proposed by
Zeh [1],and has been further discussed in [27—29].

One of the goals of this article is to illustrate these
ideas with some simple examples. I turn now to the
description of a simple "toy system, "with which calcula-
tions are easy, yet for which the decohering behavior can
be adjusted by varying a parameter. The Schmidt paths
point of view will be used to analyze the system. Then
the "consistent histories" point of view will be reviewed
and applied to the same system.

IV. THE TOY SYSTEM

The system which I study is designed to exhibit
decoherence in a primitive form, with as little extra bag-
gage as possible. The world is divided into a two-state
subsystem (subsystem number 2) coupled to an "environ-
ment" of variable size, n, (subsystem number 1}. Thus,
the Hilbert space of the "world" is 2n

&
dimensional. The

Hamiltonian can be written

This causes the spin to rotate, from the point of view of
the [ I l ), I J, ) } basis, with a frequency proportional to E2.
The self-Hamiltonian of system 1 (the "environment") is

H, =E, XP, (18}

where R is a Hermitian matrix with the real and imagi-
nary parts of each independent matrix element initially
chosen randomly in the interval [—0.5,0.5) (by the
computer's random number generator), and held fixed
throughout the calculation.

The idea here is to have the environment (subsystem 1)
evolve in a way which exhibits no special relationship
with the "system" (subsystem 2). The random form of
H, insures this, without trying to mimic any particular
physical environment.

In a similar spirit, the interaction Hamiltonian is

(19)

The matrices H ~~ and H &~ are each different random ma-
trices constructed in the same fashion as k The idea of
this interaction is to set up different correlations between
the system and the environment depending on whether
the spin is up or down. If the spin is up, the first term in

Hz causes the environment state to be pushed in one
direction (in its Hilbert space), while if the spin is down,
the second term pushes the environment in another direc-
tion. In this sense the interaction can be thought of as
providing for a primitive "measurement, " with the

[ I l ), I 1 ) } basis being the "pointer basis" in which the
measurement occurs. However, although the two
different random H&'s ensure that the environment is
pushed in the two different directions in each of the

I
t')

versus I1) cases, there is purposely no attempt to attach
any additional interpretation to H t and H &~. I have made
this choice in order to keep the discussion focused on the
simplest possible example.

In real physical examples of the loss of quantum coher-
ence, the environment may or may not be as
"anonymous" as I have depicted it here. In some cases a
real laboratory measurement is being performed, and we
would easily identify some subsystem of the environment
as a "pointer" or a mark in a lab notebook, which has be-
come correlated with the state of the system under exam-
ination. In other cases the role of the environment may
be played by a photon scattering off the object in ques-
tion, and propagating off into "empty" space. In this
second situation one would have a fairly clear idea of the
state of the photon (at least until it interacted with a dust
particle or star). In yet other cases decoherence can be
caused by interactions with some sort of thermal bath
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no sign that the clean oscillatory behavior is degrading
with time, as it is with the dotted curve. This fact allows
one to regard the oscillating states as a pointer basis. The
wave function describes two possible paths for the spin,
each oscillating, but with different phases. The decoher-
ing effect of the environment does not dramatically effect
the evolution of the oscillating states. —.2—

(a)

I I I I

B. What does it meant —4
I I ) ) ) ) I

One way to ascribe physical meaning to these results is
to speak about how other systems interact with the spin
system. If one were to adhere strictly to the spirit of this
work, one would need to enlarge the Hilbert space so as
to include the additional systems. I will not do that here,
but instead describe in words what might be expected.

The results in Fig. 1 can be taken to mean the follow-
ing: If one were to interact at some time with the spin
system using an apparatus which couples only to the
spin, and not to the environment, then one may treat the
spin as being "in two different states" (the Schmidt
states), each of which leads to its own independent out-
come of the interaction. (Such an interaction could be
described along the lines of Sec. IIA, where the state
"~x )z" would be an eigenstate of the operator represent-
ing the measurement apparatus. ) The type of states one
could expect to find would be oscillating and 180' out of
phase. Here "oscillating" means that the states one
would actually find would depend on when in the phase
of the oscillation one chose to interact. (This discussion
assumes the interaction with the third system occurs rap-
idly compared with the time it takes the eigenvalues of p2
to change. )

The (oscillating) "state" of the spin is determined by
the dynamics. The only property which is determined by
the state of the "world" is the relative probability of
finding the spin with one phase or another. This way in
which correlations, rather than just the initial conditions,
determine the "state" one finds a system in is of particu-
lar interest in the field of cosmology. In cosmology one is
driven to contemplate the "initial conditions of the
Universe. " It is very important, however, that we clarify
what properties of our Universe are a reflection of the ini-
tial conditions, and which properties are the result of
correlations set up by the dynamics, and the nature of the
particular measurements we are able to make. (Of
course, such effects may also be related in some less direct
way to the initial conditions. )
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FIG. 2. Medium coupling (H, =H2=1 Hy=1) with a
~ f )28 ~random), initial state. Plots as in Fig. l.
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I
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interactions always decohere them. One is left with no
chance to view the evolution of the spin system in a sim-
ple way. Note that the entropy increases much more rap-
idly than in Fig. 1, in keeping with the disordered nature
of the more strongly coupled case.

For Fig. 3, the interaction strength has been increased

C. Strong coupling
.8

E]=1 E2=1 E~=1 (25)

Although there are some traces of the periodicity present
in the previous case, the clean effect is completely gone.
There is no clear pointer basis. Whatever states are spe-
cially correlated with the environment at one time, the

I now vary the problem by increasing the strength of
the interaction, relative to the self-Hamiltonians. Figure
2 describes a situation identical to that in Fig. 1, except
that now

I

4 I

I
I

~2 L

L
I

0 . I I

0

(b)

I ) ) ) I I ) I I ) I

5 10 15
T1D18

20

FIG. 3. Stronger coupling (H& =H2=-1, Hg=—3), wit»
~ t )z ~random ), initial state. Plots as in Fig. l.
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Including the measurement apparatus in the wave
function can help demystify the watchdog effect. Some-
thing which is accomplished in other treatments by the
insertion of projection operators can be achieved by ex-
plicitly increasing a coupling strength in this time. How-
ever, it is not clear that the system described here is a
good one for the purpose. For example, it is not at all
clear that the case with medium coupling really describes
a good measurement which merely happens to be occur-
ring more slowly than in the strongly coupled case. Fig-
ures 2 and 3 suggest a much more confused state of
affairs. Further discussion of the degree to which this
system is able to describe a good quantum measurement
will appear in Sec. IV C.

VI. THE HIGH ENTROPY CASK
a

m .4—

0
0 10

T1ZQ8
15

I I I I

80

So far I have discussed only direct product initial
states, which have zero entropy. In the situations where
a nice pointer basis appeared the entropy never really got
very large and, correspondingly, there was always one ei-
genvalue of the density matrix which was clearly the larg-
est. I now shift the discussion to higher entropy states.

A. Strong coupling

FIG. 4. Strong coupling (H, =H2 = 1, HI =50) with a
~ t )28 ~random ), initial state. Plots as in Fig. I.

to EI =3. Again, there is no simple behavior on the part
of the Schmidt paths, but there is a new feature: The
plotted Schmidt path is now more likely to be spin up
than spin down.

This feature becomes more pronounced as the interac-
tion strength is increased further. Figure 4 shows the
case where EI =50. In this case the two Schmidt paths
are very closely pinned to spin up (shown) and spin down
(orthogonal to the one shown). The paths are now con-
stant in time, except for small fluctuations. One can
again say that there is a pointer basis, but it is a different
one, as compared with the weakly coupled oscillating
case. The Schmidt paths for the spin are now roughly
constant, one t' and the other l.

D. The watchdog efFect

It is tempting to view the strongly coupled case as a
nice illustration of the "watchdog effect" ~hereby a fre-
quent measurement of a system in a particular state can
prevent it from evolving [30—35]. I argued in Sec. IV
that the environment (system l) plays the role of a primi-
tive measurement apparatus. Increasing the interaction
strength decreases the time it takes for correlations to be
set up with the environment, and thus increases the fre-
quency with which the "measurements" take place. The
spin is measured in the t ~ l ), ~

l ) ] basis. When the fre-
quency of measurement is increased (by increasing El)
the spin is prevented from evolving out of these states, as
exhibited by the constant Schmidt paths.

2The idea that the environment can often provide the "mea-
surements" necessary for the watchdog effect has been discussed
in the literature [4,11].

In the strongly coupled case (Fig. 4), the initial state
was pure spin up, and the evolution was one in which the

~

l') states remained stable. It is not surprising that the
world does not deviated too far from its low entropy ini-
tial state. The evolution looks the same even at much
later times and the entropy simply does not increase.

However, one can simply start with a high entropy ini-
tial state and see how the Schmidt paths behave. One
might expect that if the coupling were strong, the same
simple evolution would be obtained. Figure 5 shows the
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FIG. 5. Strong coupling (H& =H2=1 HI=50) with a ran-

dom initial state. Plots as in Fig. 1.
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results from a calculation that started with "random ini-
tial conditions. " Specifically, I chose the real and imagi-
nary parts of each expansion coefficient (in the working
basis) randomly on the interval [ —0.5,0.5), and then nor-
malized. Note how the entropy is initially close to maxi-
mal, as would be expected. The Schmidt paths clearly do
not reproduce the simple constant spin (up or down) evo-
lution of the low entropy case. One does see some long-
time features (on time scales —10) which might suggest a
tendency toward constant behavior, but that is far from
clear.

Perhaps the high entropy case needs a larger coupling
to achieve the simple constant spin pointer basis evolu-
tion. Figure 6 shows the results of increasing the relative
strength of the interaction even more
(EI /Ez =El/E& =10 ), and starting with the same initial
state. The behavior of the Schmidt paths in this case is
not qualitatively different.

What we are seeing here might be related to the
definition of the Schmidt paths. Schmidt paths are based
on the eigenvectors of the density matrix p2. The high
entropy case corresponds to the eigenvalues of p2 being
nearly degenerate (note how the larger of the two eigen-
values, given by the solid line in the lower plot, is close to
—,'). When the eigenvalues of a matrix are exactly degen-

erate, the eigenvectors are not uniquely specified. It
seems reasonable that when the eigenvalues are close to
degenerate, the eigenvectors depend in a delicate way on
small fluctuations in the elements of p2. This dependence
on small fluctuations appears to be washing out the nice
pointer basis behavior exhibited by the low entropy case.

While this explanation seems reasonable, the effect
should not be universal. For example, one should be able

I now turn to the case of high entropy, weakly coupled
systems. Figure 7 shows the results of using the same
high entropy initial state as above but now with

E, =1, Ez „E (26)

The story appears to be similar to the strongly coupled
case. Although there are vestiges of the oscillating be-
havior observed in the low entropy states (compare with
Fig. 1), the evolution is not as clean, and it is clear that
the same type of pointer basis behavior is not present.

Figure 8 shows the same arrangement as in Fig. 1

(weak coupling, with low initial entropy), viewed much
later in its evolution. As with the strongly coupled case,
the early behavior of the Schmidt paths persists at later
times. (Actually there does appear to be some modula-
tion of the amplitude here, but the effect is limited, and it
may be attributable to the small size of the environment. )

What is interesting is that in this case the entropy is very
high, at least as high as the entropy in the case of random

to construct an experiment where the probability that a
Geiger counter has ticked is as close to —,

' as one might
want. There should be no confusion about the existence
of two distinct outcomes in that situation. Certainly
there has been no observed degradation of Geiger counter
performance in that limit. (Since this work was complet-
ed, I have made progress in modifying HI and the initial
state to allow simple Schmidt behavior in strongly cou-
pled cases with fairly high entropy [36]. The problem
seems to be one of degrees. The higher entropy one
wants to cope with, the larger one must make the size of
the environment and/or the interaction strength. }

B. Weak coupling
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FIG. 7. Weak coupling (H, =H2=1, HI=0. 3) with a ran-
dom initial state. Plots as in Fig. 1.
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(32)

I[t.]&=I[tt]&+I[tl]&,
one can see that the general case is

&[t ]l[t ]&=&[tt]l[t t]&+&[to]l[ts]&
+ & [ t t] I[ t &] &+ & [ t s]l [ t t] &

(34)

=&[t t]I[tt]&+2Re(&[t&]l[&i]&)

+&[t~]l[tl]& . (35}

Only if the middle term happens to be negligible will the
sum rule [Eq. (33)] be obeyed. If, for a given set of pro-
jections and projection times, all the appropriate sum
rules are obeyed, then the corresponding set of paths or
histories are said to be "consistent" or "decohering. "
Since their probabilities add in the normal way, con-
sistent histories may be regarded as "independent" or
"noninterfering. " On the other hand, if the sum rules are
not obeyed, it is not reasonable to regard the amplitude
squared of the path projected states as a probability.

Cxell-Mann and Hartle [41] call the inner products of
path projected states the elements of the "decoherence
functional. " If the two paths are different, the inner
product gives an "off-diagonal" element of the decoher-
ence functional. The inner product of a state with itself
gives an "on-diagonal" decoherence functional element.
As illustrated by Eq. (33), the probability sum rules are
relations among the on-diagonal elements of the decoher-

By collecting all the g's at the front of the right side of
Eq. (28), one can write

~ $0(t) & as the sum of many path
projected states. The requirements given by Eq. (29) en-
sure that paths are "exhaustive" and "mutually ex-
clusive. " When constructing the path-integral formula-
tion of quantum mechanics a similar procedure is fol-
lowed, and the time between projection is taken arbitrari-
ly small. For present purposes the time between projec-
tions can remain finite, representing a coarse graining in
time. Different choices of the t, s, when projections are
inserted, correspond to different temporal coarse grain-
ings.

One can attempt to use the squared magnitude of the
path projected states as the "probability" assigned to the
corresponding path. However, in general, this quantity
will not behave like a probability. For example, consider
the case where just two projections are performed. A
probability should obey the sum rule

&[t ]l[t ]&=&[tt]l[tt]&+&[t&]l[t&]&, (33)

where the centered dot on the left side represents the ab-
sence of any projection at the first time. This is just say-
ing that the probability of the path which ignores the
state at the first time should be equal to the sum of the
probabilities of the paths for which all possible projec-
tions are made at the first time (in this example there are
only two). Using the identity

ence functional. For each probability sum rule there is a
corresponding expression which involves the addition of
off-diagonal decoherence functional elements and which
is always correct [an example of this is Eq. (35)]. For the
sum rules to be valid, the off-diagonal decoherence func-
tional elements should be small. [In fact, the net effect of
all the off-diagonal terms in the generalization of Eq. (35)
must be small. If many projections are made, individual
off-diagonal elements will typically be much smaller than
unity, but the generalization of Eq. (35) will contain many
off-diagonal elements, so the net effect can still be large. ]

A particular choice of projection times and sets of pro-
jectors to use at each time [each set obeying Eq. (29)]
completely specifies a (possibly coarse-grained) set of his-
tories. One says that the set of histories is consistent if a11

the relevant sum rules are obeyed.

B. Further discussion

The result of acting with Pt on a state ~P& is certain to
be of the form

I"'g lg&= I t & l((}&g=—~pl t &N lp&)

for some state of the environment
~ P & &. The second

equality uses a&=(, &P~P&&)' to extract the normaliza-
tion. For all paths which end in t, the path projected
states look like Eq. (36}.

Now consider the case [as in Eq. (34)] where there are
only two projection times. This results in four path pro-
jected states. Two of these will have the form given by
Eq. (36). For the sum rules to be valid, the inner product
of these two path projected states, which takes the form

(37)

must be small. There are two things that can make this
expression small: the norm (a) of one of the states can be
small, or the overlap between the environment states (the
~P&'s) can be small. Should the spin subsystem undergo
purely unitary evolution, the first case may always be
achieved for suitably chosen paths. One simply defines
one of the earlier projections as the final projection (Pt )
evolved back to t, with the (unitary) time evolution
operator. Operating by the orthogonal projection at t&

and then by P& at t2 wi11 give a path projected state with
zero amplitude. The inner product between this path
projected state and any other will give zero, and the sum
rule will be obeyed. In fact, this procedure works for any
final projection, so infinitely many consistent histories
can be constructed for a subsystem which evolves unitari-
ly.

Since the spin in the toy system does not generally
evolve unitarily, paths which are consistent because the
~P&'s have little overlap are of particular interest. If
& P, ~$2 & is small, one can say that the environment con-
tains a "record" of the path, since the state of the envi-
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ronment is different depending on which path was fol-
lowed. This clearly has to do with correlations between
the spin and environment being established at one time
and being preserved, in some sense, as time goes on.
Gell-Mann and Hartle use the term "medium decoher-
ence" when it is correlations with the environment or
"records" which suppress the inner products between
path projected states and allow the sum rules to be
obeyed [45].

I should remark that by requiring the off-diagonal
decoherence functional elements be small, I am exceeding
the less restrictive requirement that only the real parts
need be small, which is all that one needs to obey the sum
rules. Gell-Mann and Hartle also do this [41], and they
remark that there are no known physical examples where
the real parts are small but the imaginary parts are not.
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VIII. EVALUATING HISTORIES
FOR THE TOY SYSTEM .5—

I consider the following generalization of Eq. (35):

( [1 ] ~
[1 ] ) = ( [11]~ [11)) +2 Re(( [11]~ [12)) )

+ ([12]~[12]),
( [2 ]) [2 ] ) = ( [21]([21]) +2 Re(( [21]([22]) )

+ ([22]i[22]),

(38)

(39)

where 1 and 2 refer to projections which are generaliza-
tions of Eq. (30):

(40)

The basis { ~
1),~2) j which defines the projections will be

called the "projection basis" (PB).

I
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FIG. 9. Figures 9—14 show values of the decoherence func-
tional elements in Eq. (38) (upper panel) and Eq. (39) (lower
panel). The heavy curve gives the left-hand side and the dashed
curve gives the sum of the two on-diagonal terms of the right-
hand side. The heavy and dashed curves coincide when the sum
rules are obeyed. The light solid curve gives the first term on
the right-hand side. For this figure the projection basis states
are { ~ 1 ), ~ h ) j and the coupling is weak (as in Fig. 1).

A. Results

Figure 9 represents the various terms of Eqs. (38) and
(39). The heavy curve gives the left-hand side and the
dashed curve gives the sum of the first and last terms (the
on-diagonal decoherence functional elements) from the
right-hand side. To the extent that the sum rule is
obeyed, the dashed curve and the heavy curve should
coincide. The first term from the right-hand side is given
by the light solid curve. When the light solid curve is
close to the heavy curve or close to zero, the probability
of the coarse-grained path comes predominantly from
one or the other of the fine-grained paths. The top and
bottom panels represent Eqs. (38) and (39), respectively.
The first projection occurs at t =10. The x axis gives the
time elapsed until the second projection is made.

The initial conditions and coupling strengths used for
Fig. 9 are identical to those of Fig. 1 (weak coupling, spin
initially up). The projection basis is {~ 1 ), ~ 1 ) j. The fact
that the dashed and heavy curves are quite different indi-
cates that the sum rules are not obeyed. Figure 10
represents the same system as Fig. 9 but with the projec-
tion basis being the Schmidt states calculated when no
projections were done. (Note that the projection basis de-
pends on time now, as shown in Fig. 1). The heavy and
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FIG. 10. Checking the sum rules (as in Fig. 9). The projec-
tion basis states are the eigenstates of the unprojected pz and the

coupling is weak (as in Fig. 1).



46 INVESTIGATING DECOHERENCE IN A SIMPLE SYSTEM 5515

dashed curves are much closer, indicating greater validity
of the sum rules.

This result is not surprising. In the first case the pro-
jections were made with no particular regard to what
records had been made in the environment. The Schmidt
states are precisely the states which have been "record-
ed" by the environment. In the second case the Schmidt
states were used as the PB, and much better validity of
the sum rules was achieved.

I should note that for the sum rules to be valid, records
must not only be made, but also preserved. This tends to
work out naturally for this system, since once one is con-
sidering two orthogonal environment states, the random
environment evolution is pretty good about keeping them
orthogonal, especially when the size of the environment
subspace is large. (But see Sec. VIII B for further com-
ments on this point. )

Figures 11 and 12 correspond to Figs. 9 and 10, but
with the coupling set to the "medium" value (Ez = 1, as
depicted in Fig. 2). Again, when projections were made
on the Schmidt states the sum rules are more closely
obeyed, due to records being present in the environment.

The strongly coupled case is a little different. For one,
the j ~ t), ~J ) } basis is the Schmidt basis, and the initial

~ t ) state is so stable that there is very little loss of quan-
tum coherence. Still, the (very nearly) direct product
form of the state describes important correlations be-
tween the spin and environment and one can choose a
"bad" projection basis by ignoring these correlations.
Figure 13 depicts the strongly coupled case (Ez=50)
where the first PB was ~6)[—= (~ g )+~ j ) )/&2)] and the
second was j ~

1'),
~ l) }. Here no regard is paid to the
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FIG. 12. Checking the sum rules (as in Fig. 9). The projec-
tion basis states are the eigenstates of the unprojected p2 and the
coupling is medium (as in Fig. 2).
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correlations and the price one pays is the lack of validity
of the sum rules. Figure 14 shows the strongly coupled
case with PB=

I ~ l ), ~
j, ) J throughout. As expected the

sum rules are obeyed quite well.
In Sec. VIIB I made the point that valid sum rules

could arise either because the unitary subsystem evolu-
tion was being followed, or because suitable records were
being made in the environment. These two "different"
circumstances are actually unified by the use of the
Schmidt basis as the PB. Should the spin evolution be
unitary, the spin will continue to be in a pure state, and
its density matrix will continue to have but one nonzero
eigenvalue. The eigenstate (or "Schmidt state") corre-
sponding to that eigenvalue will be the state of the spin.
Thus, the Schmidt basis naturally follows unitary evolu-
tion, when it is present. However, as noted in Sec. VII 8,
when the evolution is truly unitary a multitude of sets of
consistent histories can be constructed. Only one of these
sets is chosen by projecting on the Schmidt basis. It is
the one which maximizes the extent to which the proba-
bility is peaked, rather than spread out among many
paths.

If the evolution is only slightly nonunitary, one eigen-
value of the density matrix will remain close to unity. It
is easy to show that the choice of Schmidt of the PB al-
ways maximizes the probability of the highest probability
path. Thus, there is a sense in which using Schmidt to
select the "best recorded" paths also selects the "most
unitary" paths.

B. Adding more projection times

We have seen how the presence of good records in the
environment have allowed consistent histories to be
found for systems with radically different behaviors. It
might seem particularly surprising that any sense could
be made of the medium coupled case, whose evolution
appears noisy and random. One might ask is there no ad-
vantage to be had, from the consistent histories point of
view, when a nice pointer basis is present?

The answer to this question becomes apparent when
one contemplates adding additional projection times. It
is a simple matter to evolve each path projected state,
and consider its Schmidt decomposition. That will tell
you what additional records have been made in the envi-
ronment since the last projection. However, in general,
the Schmidt basis for each path will vary greatly from
path to path.

Figure 15 illustrates this point. What is plotted is the
norm square of the overlap of Schmidt states with

~

1').
Each panel has two curves, representing the two path
projected states which one has following the first projec-
tion time (t, =10). The x axis is the time elapsed since
t, . In each case the Schmidt state corresponding to the
largest probability (or largest eigenvalue of pz) is chosen.
The top panel corresponds to weak coupling, and the
lower panel corresponds to medium coupling.

Figure 15 shows that for the weakly coupled case the
Schmidt basis is the same for the two path projected
states. (The "most probable" Schmidt states are actually
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FIG. 15. Comparing the Schmidt basis for the two path pro-
jected states. For weak coupling (upper panel) the two bases are
essentially the same, while for medium coupling the bases have
no simple relationship.
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orthogonal. ) This will allow one to use the same projec-
tion basis on both paths at the next projection time,
without compromising the goal of projecting on the "best
recorded" basis. The universality of the Schmidt basis
across the different paths is a consequence of the presence
of a preferred "pointer basis" for the weakly coupled sys-
tem. In contrast, the medium coupled case (lower panel)
has no particular connection between the Schmidt states
on the different paths (and no particular pointer basis).
To project on the best recorded basis, one must choose a
different projection basis on each path.

Gell-Mann and Hartle [41] stress that one should not
expect the best projections to always be onto the same
basis on different paths. I agree with them. This example
is simply an illustration of how the presence of a pointer
basis can be rejected in the nature of the consistent his-
tories.

I should note that as more projection times are added,
one puts more strain on the simple system discussed here.
I have been counting on the largeness of the environment
space, combined with the randomness of the evolution
within that space, to ensure that environment states are
orthogonal (to a good approximation) whenever this is
necessary for a "good record" to be present (just as in
[3]). The size of the environment space in the toy model
is only 12, so there are only so many mutually orthogonal
"records" one can have. To emphasize this point, I note
that the "Schmidt paths" depicted in Figs. 1-4 are
resolved to a time scale of ht =0. 1 over a period of 20
units of time. If the same resolution were used for con-
sistent histories, one would require 2 different paths,
which is much more than one could hope to record in the
small environment used here. This serves to illustrate not
only the limitations of the toy model, but also the lack of
a simple one-to-one correspondence between Schmidt
paths (of which there are only two in this example) and
consistent histories.

On the other hand, the Schmidt decomposition appears
to be a helpful way to analyze path projected states. It
can point one toward useful projections to choose when
constructing the decoherence functional. Furthermore, it
is likely that the Schmidt paths and the consistent his-
tories can be brought closer together in the case where
the environment is better resolved. It might be the case
that the environment space can be decomposed into
separate subspaces, so that the location of each record
can be identified (as a spot on a magnetic tape, for exam-
ple). The Schmidt decomposition may be applied repeat-
edly to separate out each subspace. The resulting decom-
position of the wave function will have many more fac-
tors in each term (corresponding to many more subsys-
tems) and, consequently, many more terms (resulting in
more Schmidt paths). If all the relevant records are
resolved in this way, the Schmidt paths should closely
resemble the particular consistent histories for which
those records are relevant.

C. Reducing the time between projections

So far I have not discussed the role of the coarse grain-
ing in time which is brought about by the finite time be-

tween projections. If one can rely on the Schmidt decom-
position to determine which measurements have actually
been made, and choose the projections accordingly, what
is to prevent one from letting the time between projec-
tions go to zero? Should not this prescription give per-
fectly consistent histories?

The answer to this question is "no." The reason the
prescription fails lies in the fact that nowhere have I
managed to get perfect accordance with the probability
sum rules. None of the Figs. 9-14 have the dashed line
exactly on top of the heavy line. This imperfection will
have an increasing impact on the results as the time be-
tween projections is decreased.

Consider for a moment Fig. 10. When only a small
amount of time has elapsed since the first projection, two
of the paths have very low probability. This can be de-
duced from the fact that the light solid curves are close to
either the heavy curve or zero on the left side of Fig. 10.
The reason for this is that there has not been enough time
for much branching to occur. As a result the sum rule
violations are large compared to the probabilities as-
signed to some of the paths. In general, when the projec-
tions are made sufficiently frequently, the probabilities as-
signed to most of the paths will be smaller than the sum
rule violations. For example, in Fig. 10 (top panel) the
light solid curve eventually deviates significantly from the
heavy curve, indicating that the second path eventually
acquires a large probability. If many projections had
been made in the same time period, this probability
would have been divided among many paths, and in most
cases the path probability would be smaller than the sum
rule violation.

Which paths one requires to have probabilities larger
than the sum rule violation depends on the physical prob-
lern one is addressing. The point of this subsection is that
the coarse graining in time is way to control this effect.

IX. COMPARISON WITH OTHER WORK

Other authors have also studied two-state systems cou-
pled to an environment. In particular, such systems ap-
pear in some of the pioneering papers on the loss of quan-
tum coherence [3,11]. The main way the calculations
presented here differ from previous work is that here ex-
act (to machine precision) solutions are provided for a
much more complex system then most of those which
were solved exactly before. The work also represents the
first time a side-by-side comparison of the consistent his-
tories and the Schmidt paths has been made. (For more
calculations using consistent histories, see [46].) In most
previous work, the cases which were solved exactly were
very simple. Some cases involved a Hamiltonian which
was (or became) exactly separable. In other cases the
pointer basis states were exact eigenstates of the total
Hamiltonian. These simplifications made it easy for
correlations to be discussed, since they were exactly
preserved as time evolved. (Another complex example
which is solved exactly is given by Unruh and Zurek [7].)

More complex examples have been studied, but various
approximations were used. One thing the work here
shows clearly is how there are many ways the Schmidt
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states can deviate from a simple pointer basis. In some
cases the deviations are large, while in other cases the de-
viations amount to small, stable Iluctuations. (Presum-
ably the latter fluctuations are present at some level in
any realistic example. ) I believe that the previous work
was sufficiently simplified as to not distinguish among
these different possibilities. For example, the time scale
of these deviations alone is not enough to distinguish be-
tween the two cases.

The model studied here is very close in spirit to
Zurek s model in [3], but it is less idealized. Although
plots appear in [3] of off-diagonal density matrix elements
which are small, but not precisely zero, the plots are for
the case where the on-diagonal elements are degenerate.
In this case the off-diagonal elements would be equally
small in any basis, and the role of the interactions in
choosing a pointer basis is less apparent.

I should stress, however, that I am not calling into
question or even adding to the major advances made by
Zurek [3] and by Joos and Zeh [11] in identifying the
mechanisms which cause the loss of coherence, and their
important role in quantum physics. What I am doing in
this paper is trying out different ways of viewing these
mechanisms in action, on a system with a slightly greater
degree of complexity.
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APPENDIX A:
THE SCHMIDT DECOMPOSITION

1. Proof

lli&= Xa;, lt &)Ij&2. (Al)

Furthermore, one can define

(A2)

Here is a brief proof that the Schmidt decomposition
may always be performed: Consider a state lf) in a vec-
tor space which we choose to regard as a direct product
space. Let j Ii), ] and [Ii)2] each be some orthonormal
basis in the corresponding subspace. There always exist
a; 's such that

X. CONCLUSIONS

I have investigated the decohering properties of a sim-
ple toy system from a number of points of view. One goal
was to determine the extent to which the interactions
with the environment defined a "pointer basis" whose
quantum coherence was not destroyed by the interac-
tions.

In the "Schmidt paths" point of view, the system was
studied by following the evolution of the eigenstates of
the reduced density matrix. Depending on the coupled
strength, there was either (1) a constant pointer basis
(strong coupling), (2) a simply oscillating pointer basis
(weak coupling), or (3) noisy behavior, with no pointer
basis (medium coupling).

I also utilized the "consistent histories" approach to
study the toy system. Correlations between a system and
its environment (or "records") play an important role in
causing certain histories to be consistent. The Schmidt
decomposition provides an exact account of the records
or correlations which are present, and I showed how it
can be used to good advantage in constructing consistent
histories. The presence of a pointer basis allowed a par-
ticularly simple form of consistent histories to be con-
structed, but the absence of a pointer basis did not
prevent the construction of consistent histories. I sug-
gested that when the records are better resolved than
they are in this particular toy system, the Schmidt paths
and certain consistent histories should very closely
resemble one another.
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so that one can always write

(A3)

One can then see that the
I
i ), 's must be eigenstates of pz..

p, —=«, (ly&(ql) =g lt &„(t I
. (AS)

Finally, one notes that the nonzero eigenvalues of both p&

and p2 are both given by p;=2(ili)z, and one can con-
struct the normalized states

li&;—= (p, ) '"Ii&, . (A6)

Equation (A3) then becomes

IW&= g v~p;lt &fit &~, {A7)

which is the quoted result.

2. Remarks

Here is a remark which often helps people develop
some intuition about the Schmidt decomposition: If one

In general, the Ii )2's will not be orthogonal or normal-
ized.

Now consider the special case where the [Ii),]'s are
the (normalized) eigenstates of p, [

—= tr, ( I g) ( gl )
= g, ka,'"ak,

I
i )»( k

I ], call them [ I
i ), ]. In this case

the ( I
i ) 2] must be orthogonal because we must have

g(ilpglj &&=g(il g lk&g p(klan&2)(il Ij &f
k, l

(A4)
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is given a particular vector in a vector space, and is al-
lowed complete freedom to choose a basis, one can al-
ways choose a basis in which the expansion of the partic-
ular vector has but one term. One simply chooses the
first basis vector proportional to the state in question. To
get a complete basis, one then constructs an orthonormal
set around that first basis vector (using the Gram-
Schmidt orthogonalization procedure). If one does not
have complete freedom to choose a basis, but is allowed to
choose any basis within two predetermined subspaces,
then it should not be surprising that, in general, one can-
not get down to a single term in the expansion. However,
one should be able to reduce the number of terms, since
there is some remaining flexibility, and that is what the
Schmidt form does. Note that the number of terms in
Eq. (A7) is equal to the minimum of the two subspace
sizes, rather than the product of the two sizes which
would arise in a typical expansion.

APPENDIX B: COMPUTATIONAL METHODS

The computational methods employed in this work are
straightforward. The total Hilbert space has a size of
2n &, where n, is the size of the environment subspace. I
start by considering an orthonormal set I ~i ) ~i

= 1,2n
& I

(the "working basis"), which spans the whole space. This
set may be viewed as a direct product of two sets of vec-
«rs, III&~, ll&21 and tlj&, /j=l, n&J, each of which
spans one of the two subspaces. The direct product form
for each ~i ) can be realized by writing

( T ) ~(i+1)/2), , i =odd,

~ $ )8 ~(i)/2) &, i =even .

In this way a working basis is defined in each of the sub-
systems as well. Any state of the system can be
represented by a set of 2n

&
complex numbers, a;, normal-

ized to g;a,*a;=1, giving the expansion coefficients of
the state in the working basis. These numbers can be
equivalently labeled a~ ~;+,~&2 or a~ ~;~&2 according to Eq.
(Bl). Likewise, any operator can be represented by a
2n, X2n, array of numbers giving all the matrix elements
of the operator in the working basis.

In order to do a calculation, first the expansion
coefficients of the initial state in the working basis are
calculated. Then the array corresponding to the total
Hamiltonian is constructed, and diagonalized [using a
packaged subroutine from the International Mathemati-
cal and Scientific Library (IMSL)]. One then has a spec-
trum of eigenvalues I E; I and a unitary operator 0 for
transforming in and out of the eigenbasis. Using 0, I cal-
culate the expansion coefficients of the state in the eigen-
basis of the Hamiltonian. Then time evolution is reduced—iE,. t
to evaluating a new phase e ' for each of the energy
eigenbasis expansion coefficients.

At any time 0 t can be used to return to the expansion
coefficients in the working basis. In this basis, it is easy

to construct the matrix elements of p2, or any other quan-
tity of interest. For example,

nl

(B2)

With all the elements of p2 in hand, one can then diago-
nalize it, and examine the eigenvalues and eigenvectors
leading to the Schmidt paths. Likewise, the projections
needed to construct the path projected states are easy to
perform.

APPENDIX C: OTHER NUMERICAL ISSUES

1. The size of the environment

All the cases discussed here had n
&
=12. I have stud-

ied the system for a variety of different n&'s. The value
12 was chosen because it was large enough for the envi-
ronment to play the desired role, but not much larger, so
the computations could run as rapidly as possible.

2. Tests of the code

All calculations were performed with double precision
complex numbers on a Vax computer. In general, there
should not be a problem in accurately evaluating the
time-dependent phases of the energy eigenstates for the
time ranges considered. In any case, one does not expect
numerical errors to build up in time in this sort of calcu-
lation. The state of the world at each time is calculated
directly by shifting the phases of the initial state as ex-
panded in the energy eigenstates. There is no dependence
on the state at intermediate times.

Perhaps one could be concerned that the correct phys-
ics depends on the realization of precise relationships
among the energy eigenstates. One example of this is the
EI=O case, where the simple evolution of system 2 de-
pends on the relationship A,; —A, . =E2 holding among
pairs of energy eigenvalues of the "world. " I have
checked this case, and found the expected sinusoidal evo-
lution to be followed to high precision. This test was per-
formed with a large environment (n, =50) so that half of
the 100 energy eigenstates have an appreciable overlap
with the initial (~I)~random)) state. The resulting
simple evolution indicates that the special relationships
among all these states are being correctly accounted for.
In this test the phase of oscillations and direct product
form of the state were preserved to t =1000 and beyond.

Another confirmation of the code came from indepen-
dently calculating all the terms separately and checking
that Eqs. (38) and (39) do indeed apply.

Each calculation uses a particular random number seed
to generate the parts of the Hamiltonian and of the initial
state designated as "random. " The seed was changed
from time to time, and it does not appear that any results
reported here represent atypical realizations. This issue
was not investigated systematically, however.
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