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We investigate various problems related to the theory of the electroweak phase transition. This
includes determination of the nature of the phase transition, discussion of the possible role of the
higher-order radiative corrections, and the theory of the formation and evolution of bubbles of the
new phase. We show, in particular, that no dangerous linear terms in the scalar field P appear in the
expression for the efFective potential. We have found that, for the Higgs-boson mass smaller than
the masses of W' and Z bosons, the phase transition is of the first order. However, its strength is

approximately 3 times less than what follows from the one-loop approximation. The phase transition
occurs due to production and expansion of critical bubbles. Subcritical bubbles may be important
only if the phase transition is very weakly first order. A general analytic expression for the probability
of the bubble formation is obtained, which may be used for study of tunneling in a wide class of
theories. The bubble-wall velocity depends on many factors, including the ratio of the mean free

path of the particles to the thickness of the wall. Thin walls in the electroweak theory have a
nonrelativistic velocity, whereas thick walls may be relativistic. A decrease of the cubic term by the
factor 3 rules out baryogenesis in the minimal version of the electroweak theory. Even though we

concentrate in this paper on the phase transition in this theory, most of our results can be applied
to more general models as well, where baryogenesis is possible.

PACS number(s): 98.80.Cq, 12.15.Ji

I. INTRODUCTION

Twenty years ago Kirzhnits discovered that the sym-

metry between weak and electromagnetic interactions
should be restored at the very early stages of the evo-

lution of the Universe [1]. Symmetry breaking between
weak and electromagnetic interactions occurs when the
Universe cools down to a critical temperature T, 10z

GeV. His results were confirmed by an investigation per-
formed in 1974 by Weinberg, by Dolan and Jackiw, and

by Kirzhnits and Linde [2], and soon the theory of the
electroweak phase transition became one of the well-

established ingredients of modern cosmology. Surpris-
ingly enough, a complete theory of this phase transition
is still lacking.

In the first papers on this problem it was assumed that
the phase transition is of the second order [1, 2]. Later
Kirzhnits and Linde showed [3] that in the gauge theories
with many particles, and especially with particles which
are much more heavy than the Higgs boson P, one should

*On leave from Lebedev Physical Institute, Moscow.

take into account corrections to the high-temperature ap-
proximation used in [1,2). These corrections lead to the
occurrence of cubic terms gsgsT in the expression for
the effective potential V(P, T). As a result, at some tem-
perature, V acquires an extra minimum, and the phase
transition is first order [3). Such phase transitions oc-
cur through the formation and subsequent expansion of
bubbles of the scalar field P inside the symmetric phase

P = 0. A further investigation of this question has shown
that the phase transitions in grand unified theories are
always strongly first order [4]. This realization, as well

as the mechanism of reheating of the Universe during the
decay of the supercooled vacuum state suggested in [3,5],
played an important role in the development of the first
versions of the inflationary Universe scenario [6]. (For a
review of the theory of phase transitions and inflationary
cosmology see Ref. [7].)

For a long time it did not seem likely that the elec-
troweak phase transition could have any dramatic con-
sequences, unless the Higgs boson is exceptionally light.
Even though the possibility of a strong baryon-number
violation during the electroweak phase transition was

pointed out 15 years ago by Linde [8] and by Dimopoulos
and Susskind [9], only after the ground-breaking paper by
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Kuzmin, Rubakov, and Shaposhnikov [10] was it realized
that such processes do actually occur and may erase all
previously generated baryon asymmetry of the Universe.

Recently, the possibility that electroweak interactions
may not only erase but also produce the cosmic baryon
asymmetry has led to renewed interest in the electroweak
phase transition. A number of scenarios have been pro-
posed for generating the asymmetry [11—18]. All of them
require that the phase transition should be strongly first
order since otherwise the baryon asymmetry generated
during the phase transition subsequently disappears. In
all of these scenarios the asymmetry is produced near the
walls of the bubbles of the scalar field P. Thus, an un-

derstanding of the nature of the phase transition in the
electroweak theory and investigation of the structure of
the bubbles produced during the phase transition are of
some importance. For this purpose one should make a
much more thorough analysis of the electroweak phase
transition than the analysis which is necessary for an ap-
proximate calculation of the critical temperature.

Unfortunately, despite the fact that one is dealing with
a weakly coupled theory, many aspects of the phase tran-
sition are surprisingly complicated. Indeed, the literature
contains contradictory claims and statements on almost
every important question. In this paper we will attempt
to resolve a number of these questions, or at least to de-
lineate the issues which are crucial to a complete analysis.
We will confine our attention to weakly coupled theories,
not because strongly coupled theories (e.g. , technicolor
theories) are not of interest, but simply because we will
find these problems quite difficult even in theories with
explicit Higgs-boson particles. Even more specifically we
will discuss the simplest version of the electroweak the-
ory containing only one Higgs boson. We doubt that
the baryon asymmetry can be generated in this simple
model; in fact, we will find some new evidence against
it. However, this model will help us to illustrate various
possibilities which may be realized in more complicated
theories.

The first problem to be studied is whether the phase
transition is first order, and precisely how strongly first
order it may be. One clear requirement arises if no net
B Lis produc-ed at the transition (in the model of Ref.
[16] a net B Lis produced-). In this circumstance, as first
stressed in Ref. [11],the rate of baryon-number-violating
transitions after the phase transition is completed must
be smaller than the expansion rate. In practice, this
means that the ratio of the Higgs-boson field P inside
the bubble to the temperature T cannot be smaller than
one, in order that the sphaleron energy not be too small.

This condition was used in Refs. [11,19] to impose a
strong constraint on the Higgs-boson mass in the min-
imal version of the electroweak theory, mH 4 42 GeV.
This, of course, already contradicts the present experi-
mental limits m~ h 57 GeV [20]. However, more care-
ful consideration of various theoretical uncertainties in-
dicated that the constraint might be somewhat weaker,
permitting mH up to 55 GeV, or possibly higher [21].
In any case, successful baryogenesis almost certainly re-
quires some extension of the standard model, possibly
including more scalar fields. In multi-Higgs-boson mod-

els [19, 14], the limits are substantially weaker. Indeed,
Anderson and Hall [22] have noted that simply adding
a scalar singlet to the model significantly weakens the
constraint.

Before one can discuss details of the process of baryo-
genesis, it is necessary to check that the results of our
investigation of the phase transition are reliable. This is
not a trivial issue even in the minimal electroweak the-
ory. Indeed, as stressed in Refs. [3, 5], each new order
of perturbation theory at finite temperature may bring a
new factor of g2T/m ~ gT/P for the theories with gauge-
boson masses m ~ gP. This means that the results of the
one-loop calculations may become unreliable at P 6 gT.
A rather unexpected (and often overlooked) consequence
of this observation is that we cannot even say in an abso-
lutely reliable way that symmetry at high temperatures is
completely restored; one may say only that the strength
of the symmetry breaking is limited by the constraint
P & gT, m & g T [7]. In theories with g « 1 this result
is quite informative. However, gauge coupling constants
in the electroweak theory are not much smaller than one.
Therefore, the reliability of our results concerning the
region P 4 T deserves a detailed investigation.

This issue became more urgent with the recent claim
by Brahm and Hsu that higher-order corrections lead
to the appearance of a term in the effective potential

gsPTs [23—]. This term is linear in P; it is very large
at small P, and it removes the local minimum of V(P, T)
created by the cubic term ~ gsgsT. A—s a result, the
phase transition ceases to be first order. In fact, the
phase transition ceases to be a phase transition, since
the scalar field does not vanish at any temperature. At
large temperature the scalar field remains smaller than
gT, which means that this result is not in direct contra-
diction with our earlier eonelusions. But still, the result
of Ref. [23] seems somewhat surprising.

The importance of understanding these issues has been
highlighted even more dramatically by the recent work
of Shaposhnikov [24]. He has also found a linear term in
the effectiv potential, but with an opposite sign. Sha-
poshnikov concludes that the phase transition is much
more strongly first order than expected. He argues that
baryogenesis in the minimal electroweak model is possi-
ble despite the problems with the CP violation and ob-
tains an improved constraint on the Higgs-boson mass,
mH 4 64 GeV, which is quite consistent with the ex-
perimental constraints. Thus, without a proper study
of the higher-order corrections to the e6ective potential,
one may be unable to make any conclusions concerning
the possibility of baryogenesis in the standard model.

The authors of Refs. [23, 24] obtained linear terms by
simply substituting the e6ective masses found at one loop
back into the one-loop calculation of V(P, T). Such a
procedure is generally reliable when calculating Green's
functions, or tadpoles corresponding to &+&(P, T). How-

ever, it leads to combinatoric errors when calculating the
free energy. Our investigation of this problem shows that
if one is careful with counting of Feynman diagrams and
with gauge invariance, neither positive nor negative lin-
ear terms gsPTs appear in the effective potential [25).
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Moreover, we will argue that, despite all uncertainties
with higher-order corrections, the expectation value of
the scalar field P actually disappears, P = 0, at a temper-
ature higher than some critical temperature To. (Note,
that this would be impossible in the presence of linear
terms of either sign. )

However, high-order corrections do lead to a defi-
nite and significant modification of the one-loop results.
Namely, they lead to a decrease of the cubic term gsgsT
by a factor s. This effect decreases the ratio P/T at
the point of the phase transition by approximately the
same factor s. This makes baryogenesis virtually impos-
sible in the context of the minimal standard model with
mH ) 57 GeV.

Assuming that one knows the shape of the effective po-
tential at small P, one should still work hard to determine
the ratio P/T at the point of the phase transition. One
needs to know at what temperature the transition actu-
ally occurs, and some details of honr it occurs. At very
high temperatures the effective potential of the Higgs
field, V(P, T), has a unique minimum at the symmet-
ric point P = 0. As the temperature is lowered, a second
minimum appears. At a critical value T„ this second
minimum becomes degenerate with the first one. How-

ever, the phase transition actually occurs at a somewhat
lower temperature, due to the formation of bubbles of
true vacuum which grow and fill the Universe. The usual
way to study bubble formation is to use the Euclidean
approach to tunneling at a finite temperature [27]. One
should find high-temperature solutions, which describe
the so-called critical bubbles. Then one should calculate
their action, which leads to an exponential suppression
of the probability of bubble formation. Typically, these
calculations are rather complicated, and analytic results
can only be obtained in a few cases. One of these is
the thin-wall approximation, which is valid (as in the
case of transitions at zero temperature) if the difference
in depth of the two minima of V(P, T) is much smaller
than the height of the barrier between them. In this case
the radius of the bubble at the moment of its forma-
tion is much larger than the size of the bubble wall, and
the properties of the bubble can be obtained very eas-
ily. Recently Anderson and Hall performed a thorough
analytic study of the phase transition in the electroweak
theory in one-loop approximation [22]. Their results for
the one-loop effective potential V(P, T) completely agree
with the results of our investigation [21]. However, in
their study of the bubble formation they assumed that
the thin-wall approximation is applicable. As we will

see, for the Higgs-boson masses in the range of inter-
est, mH ( m~, this is not the case even if one takes
into account modification of the cubic terms by higher-
order corrections. Fortunately, we were able to obtain a
simple analytic expression which gives the value of the
Euclidean action for theories with an effective potentials
of a rather general type, V(P, T) = aP —bP + cP . We
hope that this result will be useful for a future investiga-
tion of bubble formation in a wide class of gauge theories
with spontaneous symmetry breaking.

On the other hand, validity of the standard assumption
that the phase transition occurs due to formation of crit-

ical bubbles should be verified as well. Kolb and Gleiser
[28] and, more recently, Tetradis [29] have argued that
the phase transition may occur by a different mechanism,
the formation of small (subcritical) bubbles. If this is the
case, the transition is completed earlier and by a difFer-
ent mechanism than in the conventional picture. While
this idea is very interesting we will argue that it is only
relevant in cases where the transition is very weakly first
order and the Euclidean action corresponding to critical
bubbles is not much larger than one. This is not the case
for the strongly first-order phase transitions, where the
relevant value of the Euclidean action at the moment of
the transition is S 130 —140.

Determination of the baryon asymmetry produced at
the phase transition requires knowledge not only of how
bubbles are produced, but also of how they evolve. Be-
cause the expansion of the Universe is so slow at this time,
a typical bubble grows to a macroscopic size before col-
liding with other bubbles. In the first scenarios proposed
for the formation of the asymmetry, baryon number was
produced in the bubble wall [11—17]. This mechanism, at
best, is not terribly eScient, because the baryon-number-
violating processes turn ofF rapidly as the scalar field ex-
pectation value turns on. The resulting asymmetry is
sensitive to the speed and thickness of the bubble [32].
The most effective scenarios for electroweak baryogene-
sis have the baryons produced in front of the wall, in the
symmetric phase [18]. In this picture, scattering, for ex-
ample, of top quarks from the bubble wall leads to an
asymmetry in left vs right-handed top quarks in a re-

gion near the wall. This asymmetry, resulting from an
asymmetry between reflection and transmission of differ-
ent quark helicities at the wall, biases the rate of baryon
number violation in the region in front of the wall; the
resulting value of nb/n~ can be as large as 10 . How-
ever, the authors of Ref. [18] assumed that the wall was
rather thin, with a thickness of order T '. For thicker
walls, the asymmetry goes rapidly to zero. This can eas-
ily be understood. In order to have an asymmetry in
reflection coefBcients, the top quarks must have enough
energy to pass through the wall. For m& 120 GeV, this
means typically the energy must be greater than about
T/2. If the wall is very thick compared to this scale,
the motion of the top quarks is to a good approxima-
tion semiclassical, and the reHection coefficient is expo-
nentially suppressed. The analyses of other authors also
exhibit sensitivity to the wall shape and velocity.

Clearly, then, it is important to understand how the
bubble propagates after its initial formation. In this pa-
per we will consider some aspects of this problem. A
complete description of the wall evolution is rather com-
plicated. We will see, however, that in certain limits it
is not too dificult to determine how the velocity and
thickness of the wall depend on the underlying model
parameters. In this analysis, it is crucial to recall that
in addition to the various microscopic parameters, there
is another parameter of great importance: the expansion
rate of the Universe. Imagine a world with an arbitrar-
ily small value of Newton's constant. In such a world,
the phase transition occurs at a temperature arbitrarily
close to T, and the pressure difference on the two sides
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of the wall is arbitrarily small. Thus, in this limit one
expects that the wall will move arbitrarily slowly, and
a systematic expansion of the relevant physical quanti-
ties in powers of the wall velocity should be possible.
Since in the real world, the expansion rate of the Uni-
verse is indeed quite small at T„ it seems plausible that
the real velocity of the wall should be small, and that
the expansion in powers of velocity should be a fair ap-
proximation. Even within the framework of this small
velocity approximation, we will content ourselves with
a quite crude picture for the processes which damp the
wall's motion. Within this framework we will find that
for plausible values of Higgs-boson masses, the wall ve-
locity is indeed small, varying from v 0.01 to v 0.3;
at the same time the wall will typically have a thickness
of order 10's of T i' s.

There have been a number of attempts in the past to
compute the wall parameters, including efforts by some
of the present authors. In Ref. [27] a simple formula
for the wall velocity was given, based on a semielassieal
picture in which one species of particles gains a large mass
M » T as it passes through the wall. Balancing the
force on the wall due to these particles with the pressure
difference between the two phases gives a relation of the
form

v = i (1)
P

where p is the pressure and p is the internal energy. We
will see that an expression of this form holds only if the
mean-free paths of the particles are large compared to the
thickness of the wall, and that this condition is not likely
to hold for the electroweak transition. We will argue that
the actual wall velocity is somewhat larger than would
be expected from this formula.

In Ref. [15] a difFerent approach was adopted. Assum-
ing the temperature and velocity are constant across the
wall, momentum and energy conservation give an expres-
sion for the velocity of the form

2

As we will see in the present investigation, however, one
cannot neglect the change in temperature and velocity of
the gas as it passes the wall. For relativistic gases, one
always obtains expressions linear in the velocity.

More recently, Turok has argued [30] that these types
of analyses are incorrect. He suggests that reflection of
particles from the wall does not slow the wall at all. In-
deed, he argues that the only way in which the wall can
dissipate energy is through rather complicated particle
production processes, suppressed by several powers of
coupling constant. As a result, even if the phase transi-
tion is very weakly first order, the bubble wall becomes
ultrarelativistic. To buttress his case, Turok shows that if
the gas is everywhere in thermal equilibrium (correspond-
ing to the local value of the scalar field) then the force
on the wall is independent of the velocity. This is indeed
correct. However, all of the effects we find arise because
of small, velocity-dependent departures from equilibrium
[33].

To a large extent, our analysis will be an extension
of the semiclassical reasoning of Ref. [27]. We begin by
pointing out that there is an important assumption made
more or less explicitly in all of these analyses: that by
the time the wall has grown to a macroscopic size, it has
achieved a steady state. If this is the case, the prob-
lem can be analyzed in the rest frame of the wall, where
the scalar field and the particle distributions are inde-
pendent of time. We describe a simple situation (due to
Susskind) where this is not the case, and which we refer
to as the "snowplow. " In this situation, there is a steady
pileup of particles near the wall. While we do not expect
that precisely this snowplow phenomenon occurs in the
cases of interest, it makes clear that there are additional,
potentially important effects which must be taken into
account and which are left out of existing treatments.
We then consider these three limiting situations. In the
first of these, a typical particle does not scatter off of
other particles of the gas as it passes through the wall.
This "thin-wall" case is that for which (a modification
of) Eq. (1) is valid, and tends to give a very small value
for the wall velocity. In the second case, the wall is thick
compared both to typical mean-free paths for elastic scat-
tering and for scatterings which change the numbers of
different particle types. In this case, the gas is nearly in
equilibrium everywhere. The velocity is larger than in
the thin-wall case by a factor depending on &, where E

is some typical mean-free path and 6 is the wall thick-
ness. In the third situation, the wall is thick compared to
typical mean-free paths for elastic scattering, but not for
scatterings which change particle number. Thus, one has
some approximate kinetic equilibrium locally, but parti-
cle numbers are not equilibrated in the wall. This is the
situation which appears to have the greatest relevance to
the electroweak transition. Here, phenomena similar to
the snowplow effect occur, and there is an enhancement
of the density of tops, W's and Z's in the wall. This tends
to reduce the wall velocity, giving a result intermediate
between the thin- and thick-wall cases.

The plan of the paper is the following. In Sec. II we will
describe the phase transition in the electroweak theory in
one-loop approximation. In Sec. III we will consider the
theory of bubble formation during the phase transition.
Section IV will contain a discussion of the role of the
higher-order corrections. In Sec. V we will deal with
the issue of subcritical bubbles. Finally, in Sec. VI, the
bubble wall propagation will be considered. Details of
relevant calculations will be contained in the Appendix.

II. THE PHASE TRANSITION

Let us consider the form of the effective potential at fi-
nite temperature. Contributions of particles of a mass
rn to V(P, T) are proportional to m T, m T, and
rn4 ln(m jT). We will assume that the Higgs-boson mass
is smaller than the masses of W and Z bosons and the
top quark, mH & m~, my, mq. Therefore we will neglect
the Higgs-boson contribution to V(P, T).

The zero-temperature potential, taking into account
one-loop corrections, is given by [7]
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Vp = ——P +—(5 +2Bvpg —B—P +BP ln
~

—
2

p' ~ A 4 ~ ~ 3 4 4 ~4'
2 4

(3)

Here

0.000

m„
mi

B = 4(2mw+mz —4m, ),4 4 4
64+2v0

(4)
—0.002

vp = 246 Gev is the value of the scalar field at the min-
imum of Vp, A = ia /vp, mH ——2p . Note that these
relations between A, ia, vp and the Higgs-boson mass mH,
which are true at the classical level, are satisfied even
with an account taken of the one-loop corrections. This
is an advantage of the normalization conditions used in

[7]. An expression used in [22] is equivalent to this ex-
pression up to an obvious change of variables.

At a finite temperature one should add to this expres-
sion the term

T4
V~ = 2, [6I (yw)+ 3I (y, ) —6I, (y,)],

where y, = M;P/vpT and

I+(y) = + d2: 2: ln(l p e '/* +"
) .

0

The results of our work are based on numerical calcula-
tion of these integrals, without making any specific ap-
proximations [21]. However, in the large temperature
limit it is sufficient to use an approximate expression for

V(Q, T) [1,22]:

—0.004

for
for

—0.006
0 0.25 0.5 0.75 1

V/T

1.25

FIG. 1. The potential V(P, T) at the critical temperature
T, and the tunneling temperature Tt, , using the (unimproved)
one-loop result.

2
T2 0

1 —9E~/8A~, D
(12)

The value of the field P in this minimum at T = Ti is

equal to

tions coincide with the one-loop results of Refs. [21,22].
The behavior of V(P, T) is reviewed in Refs. [7, 31]. It

will be useful for our future discussion to identify several
"critical points" in the evolution of V(P, T).

At very high temperatures the only minimum of
V(P, T) is at P = 0. A second minimum appears at
T =Tq, where

V(P, T) = D(T —Tp)(P —ET/ +

Here

1
D =,(2mw + mz + 2m,'),

Sv02

1E = s(2mw+mz) 10
4m'v03

Tp —— (0 —4Bvp) = (mH —8Bvp),

(7)

(8)

(9)

2
T2 0

1 —E2/AT'. D
(14)

At that moment the field P in the second minimum be-
comes equal to

2ETc
AT.

3ETy

2AT,

The values of V(P, T) in the two minima become equal
to each other at the temperature T„where

3 f 4 rn~w 4 rn2z

, , ~
2mwln, +mz

16~zvp4 ( aBT aBT

m2

apT2)

where lnaB = 2ln47r —2p 3.91, lnaF = 21nvr —2p
1.14.

To avoid misunderstandings we should note again that
due to our choice of more convenient renormalization
conditions, the form of some of our equations is slightly
different from the form of expressions used in [22]. In
particular, instead of large coeKcients cB and c~ in the
equation for AT in [22], we have smaller constants a~ and
ap. However, all physical results obtained by our equa-

The minimum of V(P, T) at P = 0 disappears at the
temperature Tp, when the field P in the second minimum

becomes equal to

0—3ET0
ATO

(16)

III. BUBBLE FORMATION

In the previous section we noted that the two minima
of V(P, T) become of the same depth at the temperature

The results of a numerical investigation of V(P, T) for a
particular case, mH ——50 GeV and mq ——120 Gev, are
shown in Fig. 1.
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P A(T) exp ]
——

)

( Ss&
(17)

Here A(T) is some subexponential factor roughly of order
T4; Ss is a three-dimensional instanton action. It has the
same meaning (and value) as the fluctuation of the free
energy F = V(P(x), T) which is necessary for bubble
formation. To find Ss, one should first find an O(3)-
symmetric solution P(r) of the equation

dzP 2 dP
dr r dr

+ =V(P) (18)

with the boundary conditions P(r = oo) = 0 and

dP/dr]„p = 0. Here r = ~x, ; the z, are the Euclidean
coordinates i = 1,2, 3. Then one should calculate the
corresponding action

T„Eq. (14). However, tunneling with formation of bub-
bles of the field P corresponding to the second minimum
starts somewhat later, and it goes suKciently fast to 611

the whole Universe with the bubbles of the new phase
only at some lower temperature T when the correspond-
ing Euclidean action suppressing the tunneling becomes
less than 130—140 [13, 21, 22]. Some small uncertainty
in this number is related to the speed with which bub-
ble walls move after being formed (see the next section)
and to the exact value of the critical temperature, which
is very sensitive to the top-quark mass and to the value
of the cubic term. In this paper (see also [21]) we per-
formed a numerical study of the probability of tunneling.
Before reporting our results we will remind the reader of
some basic concepts of the theory of tunneling at a finite
temperature.

In the Euclidean approach to tunneling (at zero tem-
perature) [36], the probability of bubble formation in
quantum field theory is proportional to exp( —S4), where
S4 is the four-dimensional Euclidean action correspond-
ing to the tunneling trajectory. In other words, S4 is
the instanton action, where the instanton is the solution
of the Euclidean field equations describing tunneling. A
generalization of this method for tunneling at a very high
temperature [27] gives the probability of tunneling per
unit time per unit volume:

Ss = ——r b,V+ 4xr Si,4x 3 2

3

where

(20)

Sy —— d 2,T (21)

The radius of the critical bubble r can be found by find-
ing an extremum of Ss(r). However, one must be very
careful when using these results. Indeed, as can be easily
checked, this extremum is not a minimum of the action,
it is a maximum (T.his just corresponds to the fact that
critical bubbles are unstable and either expand or con-
tract. ) Similarly, the action corresponding to the true
solution of Eq. (18) will be higher than the action of
any approximate solution. As a result one can strongly
overestimate the tunneling probability by calculating it
outside the limit of validity of the thin-wall approxima-
tion. For example, in Ref. [22] the phase transition in
the electroweak theory with rnH 50 GeV was stud-
ied and it was found that it happens very soon after the
temperature approaches T„occurring due to formation
of bubbles with thin walls. As we have already men-
tioned, the phase transition in the electroweak theory
is completed when the ratio Ss/T becomes about 130—
140. According to [22], this happens at e = 0.14, where

T2-T
&, . However, the authors did not check the valid-

ity of the thin-wall approximation in this case. Whereas
our one-loop results for the effective potential V(P, T) are
in complete agreement with the results of Ref. [22], our
conclusion concerning the bubble formation is somewhat
different. Our calculations show that Ss/T 130—140
at s 0.21. In Fig. 1 we plot the shape of the effec-
tive potential and in Fig. 2 the shape of the solution of
Eq. (18) corresponding to Ss/T 140 for m~ = 50 GeV
and mq ——120 GeV. (The results for tunneling and for
the ratio P/T prove to be not very sensitive to the mass
of the top quark in the interval 100 GeV 6 mq 4 150
GeV. ) The efFective potential V(P, T) at e = 0.14 looks
very similar, but the value of Ss/T in this case is about
270, which is two times larger than the result obtained in

Ss = 4n r dr —
~

—
~

+ V(P(r), T)
1 (dP&'

p 2 t dr) (19)

0.8

Usually it is impossible to Qnd an exact solution of
Eq. (18) and to calculate Ss without the help of a com-
puter. A few exceptions to this rule are given in Refs. [7,
27]. One of these exceptional cases is realized if the ef-
fective potential has two almost degenerate minima, such
that the difFerence s between the values of V(P, T) at
these minima is much smaller than the energy barrier
between them. In such a case the thickness of the bub-
ble wall at the moment of its formation is much smaller
than the radius of the bubble, and the action S3 can be
calculated exactly as a function of the bubble radius r,
the energy difFerence AV, and the bubble wall surface
energy S~.
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0 25 50 75
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100 125

FIG. 2. The shape of the critical bubble at T~.

150
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[22] in the thin-wall approximation. It is clear from these
gures and the results of numerical calculations of Ss/T

that the thin-wall approximation is far from being appli-
cable for the investigation of the phase transition in the
electroweak theory, unless the phase transition is weakly
first order. However, the last case is not particularly in-
teresting from the point of view of baryon asymmetry
generation.

We must note that the numerical results obtained
above are modified when one takes into account higher-
order corrections to the effective potential. As we will
s ow in the next section, these corrections change the
numerical value of the coefficient E in the cubic term
in (7). The final numerical results of our study of the
probability of tunneling will be contained, therefore, in
the next section. Here we just wanted to show the difFer-

ence between the results of the numerical investigation
of tunneling and the results obtained in the thin-wall
approximation. This difference remains large after the
modification of the coefficient E.

the
We would now like to obtain an analytic estim t fimae o
e probability of tunneling in the electroweak theor,

which can be used for any particular numerical values of
constants D, E, and A~. As shown in Ref. [22], Eq. (7)
in most interesting cases approximates V(P, T) with an
accuracy of a few percent. This by itself does not help
very much if one must study tunneling anew for each
new set of the constants. However, it proves possible to
reduce this study to the calculation of one function f(a.),
wherecr is some ratioofconstants D E and A . I h tz'. Il w a
o ows we will calculate this function for a wide range of

values of cr. This will make it possible to investigate
tunneling in the electroweak theory without any further
use of computers.

First of all, let us represent the effective Lagrangian
I (P, T) near the point of the phase transition in the form

L(P T) (g P)2 ( ) P2 + ETP3 ~ P4
2 4

(22)

Here M2(T) = 2D(T2 —Tos) is the effective mass squared

of the field!t! near the point P = 0, Aq is the value of the
effective coupling constant A~ near the point of the phase
transition (i.e., at T ~ T&, where Tt, is the temperature at
the moment of tunneling). With a very good accuracy,
the constants Aq, A~„A~, Az; are equal to each other.

MDefining P = 2E&C!, x = XjM, the effective La-

grangian can be written as

10

6 I—
L

2 l—

!!-

0 ! I I I I I I

0 0.2 0.4
I

0.6 0.8

FIG. 3. The function f(n) describing tunneling ampli-

tude.

d2C 2 dC 3 2 1

dRs R dR 2 2

Solving this equation and integrating over dsX
M —3A3d x gsves the following expression for the corre-

sponding action:

(25)

Ss 4.85 Ms
, f(). (26)

Ss 38.8Ds~ f AT! /2Ao DDT~!
r4 T )I fl! EsT (28)

Using these results one can easily get analytical expres-

sions for the tunneling probability in a wide class of
theories with spontaneous symmetry breaking, includ-

ing grand unified theories (GUT's) and the minimal elec-

troweak theory.

The function f(a) is shown in Fig. 3. It is equal [27] to
1 at n = 0, and blows up when n approaches 1. In the
whole interval 0 & n & 1, this function, with an accuracy
of about 2'%%uo, is given by the simple expression

f(cr) = 1+ — 1+ ' + ', . (27)
n ( 2.4 0.26

4 ( 1 n (1 —o)

In the vicinity of the critical temperature Tp, i.e. , at
AT = T To « To, the—action (26) can be written in the
form

where

ApM2
A =

2@'2T2

(23)

(24)

The overall factor 4@,&, does not affect the Lagrange
equation

IV. INFRARED PROBLEMS AND
RELIABILITY OF THE PERTURBATION

EXPANSION

In our previous discussion we have considered only the

one-loop corrections to the effective potential. In this

section we discuss the role of higher-order corrections.

Early investigations of the electroweak phase transition

[1] did not take into account corrections due to strong

interactions, since at that time most physicists did not

expect that top quarks would be heavier than W and Z
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bosons, and thus their contributions were not expected
to be terribly important. Given what we now know
about the top quark mass, it appears that top quarks
give the largest contribution to the parameters D and Az
in Eqs. (8) and (11). Thus, it is natural to ask whether
strong interaction corrections are likely to be important.

Our preliminary investigation of this question indicates
that this is not the ease. For example, one of the most
important effects would be a change of the Fermi distri-
bution at a finite temperature due to the modification of
the quark mass by interactions with gluons. According
to [35], quarks at a high temperature acquire a correction
to their effective mass squared:

Am, (T) = —'T
6

with g, the strong coupling constant [37]. This gives
hm~z(T) 0.2Tz at the temperature of the electroweak
phase transition, T 10z GeV. A similar contribution
to the boson mass could lead to important effects (see
below). However, because of Fermi statistics, fermion
propagators contain terms [(2n+1) m T]z [7]. As a result,
all thermodynamic quantities rather weakly depend on
the effective mass squared of the fermions, until this mass
becomes comparable with vrT.

One should note, of course, that hm~z(T) 0.2Tz
is not a true correction to the top-quark mass squared;
rather it is a square of the mass gap in the spectrum of
fermionic excitations. Therefore a more detailed analysis
of the higher-loop diagrams involving strong interactions
is desirable. Nevertheless, our estimate suggests that the
strong-interaction effects are actually insignificant for the
description of the phase transition. They just lead to
a small modification of the critical temperature. More
importantly, they do not change cubic terms gsgPT
in the eff'ective potential and do not induce linear terms
~ gspTs.

However, higher-order corrections in weak interactions
at T ) T, may be very important. It is well known that,
in field theories of massless particles, perturbation theory
at finite temperature is subject to severe infrared diver-
gence problems. For small values of the scalar field, the
gauge bosons (and near the phase transition, the Higgs
boson) are nearly massless; as a result, as was pointed
out in the early work on this subject [3, 5], one cannot
reliably compute the efFective potential for very small P.
In this section we attempt to determine whether the stan-
dard one-loop calculation of V is indeed reliable in the
range of P relevant to our analysis. One might worry, for
example, that since the term ETPs in the effec—tive po-
tential, which leads to the first-order phase transition, is
important only for rather small P, there might be large
corrections changing the order of the phase transition.
We will show that indeed the coefficient of the Ps term is
altered to s of its one-loop value. This renders the phase
transition, for a given value of the couplings, less Grst or-
der and can have signi6cant eKects on baryogenesis. On
the other hand, we will argue that perturbation theory
is not in terribly bad shape, and that one can determine
the nature of the phase transition with some confidence

aild

D;~(&u = O, k) =
z z P;~(k),k'+ mzw

where P;~ = 6;~ —k,
' . The mass of the vector field W at

the classical level is given by mw = gvp/2. Propagators
of the Higgs-boson field P and of the "Goldstone" field g
in this gauge are given by

1
4( )=k, + (32)

D„(k) = —. (33)

Let us review several ways of obtaining the stan-
dard one-loop expression for the cubic term in the ef-
fective potential, Eq. (7). The most straightforward is
to carefully expand Eq. (5) for the effective potential in

from low-order calculations.
Recently, in a very interesting paper, Brahm and Hsu

reach the opposite conclusion [23]. These authors find
that at small P, higher-order corrections to the scalar
field contribution to the effective potential contain a large
negative linear term —gsgTs, which eliminates any trace
of a first-order transition. They argue, moreover, that
their calculation is reliable, i.e. , that all other higher-
order corrections are under control and do not modify
their conclusion.

On the other hand, Shaposhnikov considers higher-
order corrections to the vector particle contribution to
V(P, T) and finds a large positive term +gsPTs. He
concludes that the phase transition is strongly first order
(P/T ) 1) even for m~ 64 GeV [24].

We will show that neither positive nor negative linear
terms appear in the expression for V(P, T) if one stud-
ies higher-order corrections paying particular attention
to the correct counting of Feynman diagrams [25]. We
will employ two separate approaches to this problem: a
straightforward enumeration of Feynman diagrams and
an efFective action analysis valid for a discussion of in-
frared effects.

We will consider here for simplicity the contribution of
the scalar particles and the W bosons only; adding the
contribution of Z bosons is trivial. As we have already
noted, for questions of infrared behavior, fermions may
be ignored. Coulomb gauge, V W = 0, is particularly
convenient for the analysis, though the problem can be
analyzed in other gauges as well. In this gauge, the vec-
tor field propagator D„„after symmetry breaking (and
after a proper diagonalization) splits into two pieces: the
Coulomb piece Dpp and the transverse piece D,~. For
nonzero values of the discrete frequency, ~„=2n nT, the
Coulomb piece mixes with the "Goldstone" boson. How-
ever, for the infrared problems which concern us here, we
are only interested in the propagators at zero frequency.
For these there is no mixing. One has [3]

1
Dpp(~ = O, k) =
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gay = „,T = 2T. Indeed, the contribution of W bosons
to the efFective potential at T ) mdiv(P) is given by

Vw(4', T)

f 7r2 4 m2i4, (P) 2 msi4, (P)
90 24 12vr )

( ~2 g2$2 g3$3
=»&3&&

]

——T4+ T' — T+ "(
96 96m.

(34)

de, g PT
dP 2

dsk 1 g2$ T= —2
(2~)3 k'+ m' 8~

2mw ~

(35)

where, by keeping only the zero-frequency mode, we

have dropped terms which are analytic in m, 2 [38]. The
Coulomb lines give half the result of Eq. (35). Integration
of the total vector field contribution correctly represents
the cubic term in (34).

A complete gauge boson contribution to the tadpole,
including the nonzero frequency modes, is [3]

FIG. 4. One-loop tadpole diagrams involving transverse

gauge bosons (squiggly line), Coulomb line (dashed), and

scalars (solid).

Here the expression in large parentheses coincides with
the contribution of a scalar field with mass m~, the fac-
tor 2 appears since there are two W bosons with oppo-
site charges, while the factor 3, which will be particularly
important in what follows, corresponds to the two trans-
verse and the one longitudinal degrees of freedom with
mass mph'.

Alternatively, we can obtain the cubic term by looking
directly at the one-loop Feynman diagrams. For this pur-
pose, it is only necessary to examine the zero-frequency
contributions. Certain diagrams containing jour exter-
nal lines of the classical scalar field naively give a con-
tribution proportional to g4$4; the cubic term arises be-
cause the zero-frequency integrals diverge for small mass
as T/mvt - T/gy.

Consider, in particular, the zero-frequency part of the
expression for the one-loop free energy in momentum
space. It is simplest to compute the tadpole diagrams
for dV/dP, as indicated in Fig. 4, and afterward inte-

grate with respect to P. The transverse gauge bosons
give a contribution

dVw(Q~T) g2$ ( 2 3mwT

g2$ ( 2 3gPT
48 q 2'

(36)

One can easily check that integration of this expression
with respect to P gives Eq. (34).

With these techniques we are in a good position to
study higher-order corrections to the potential. The au-
thors of Refs. [23, 24] found a linear contribution to
the potential by substituting the mass found at one loop
back into the one-loop calculation. The effective masses
squared of both scalar particles and of the Coulomb field
contain terms of the form gsTrtp, which, upon substi-
tution in (34), give linear terms. But this procedure is
not always correct. It is well known that the sum of
the geometric progression, which appears after the in-
sertion of an arbitrary number of polarization operators
II(P, T) into the propagator (k2+ m2) i, simply gives
[k + rn + II(Q, T)] . Therefore one can actually use
propagators [k +m +II(T)],which contain the efFec-
tive mass-squared m2+ II(P, T) instead of m2. However,
this trick with the geometric progression does not work
for the closed loop diagram for the effective potential,
which contains ln(k + m ). A naive substitution of the
effective mass-squared m2 + II(P, T) instead of m2 into
ln(k2 + m2) corresponds to a wrong counting of higher-
order corrections.

A simple way to take into account high-temperature
corrections to masses of vector and scalar particles with-
out any problems with combinatorics is to compute tad-
pole diagrams for &&, these are then trivially integrated
to give the potential. One can easily check by this
method that no linear terms appear in the expression
for V(P, T). Indeed, at a given temperature and effective
mass, the tadpoles are linear in P [see, e.g. , Eq. (36)]. To
take into account the mass renormalization in the tad-
poles, one should substitute the effective mass-squared
rn + II(P, T) into the one-loop expression for the tadpole
contribution; as we explained above (see also [3]), this is
a correct and unambiguous procedure for tadpoles. Since
m2+ II(P, T) is not singular in the limit P —+ 0, the tad-
pole (36) in this limit remains linear in P. Therefore its
integration with respect to P, which gives the correction
to the efFective potential, is quadratic in P; i.e. , it does
not contain any linear terms.

As we mentioned above, the absence of linear terms can
be understood in an effective infrared action approach as
well; for more information see [39].

Even though there are no linear terms g3PT3,
higher-order corrections do have a dramatic effect on the
phase transition, which has apparently not been noted
before. This effect is a modification of the cubic term.

As we have shown above, the cubic term appears due
to the contribution of zero modes, w„= 2vrnT = 0.
This makes it particularly easy to study its modifica-
tion by high-order effects. Indeed, it is well known that
the Coulomb field at zero frequency acquires the Debye
"mass, " mz ——IIoo(u„= 0, k ~ 0) g2T2 This leads.
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to an important modification of the Coulomb propagator
(30):

1
Dpp k~ 0 k'+m' +m' (@)

(37)

For the values of P of interest to us, mii &) rnw(P). Thus,
repeating the calculation of the cubic term, the Coulomb
contribution disappears. However, the transverse contri-
bution, which is two times larger than the Coulomb one,
is unaffected at this order, due to the vanishing of the
"magnetic mass" [5,42]. As a result, the cubic term does
not disappear, but it is diminished by a factor [40] of s
[41]:

1E = s(2msw+ msz)
6mep3

(38)
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FIG. 5. The scalar field at the tunnehng temperature, Tg,
VS YAH.

This small correction proves to be very significant. In-
deed, Eqs. (15) and (16) show that the ratio of the scalar
field P to the temperature at the moment of the phase
transition is proportional to E, i.e., to the cubic term.
Actually, the dependence is even slightly stronger, since
for smaller E the tunneling occurs earlier. Results of
a complete numerical investigation of the ratio P/T at
the moment of the phase transition, as a function of the
Higgs-boson mass are shown in Fig. 5, for the top-quark
mass rnid = 120 GeV. We have found that the ratio P/T
is not very sensitive to the mass of the top quark, in the
interval 100 GeV 6 mq 4 150 GeV, and it decreases for
rn& outside this interval. Even before the reduction of
the cubic term was taken into account, the ratio P/T for
rnH 4 57 GeV was slightly less than the critical value
P/T —1. The decrease of this quantity by a factor of
s makes it absolutely impossible to preserve the baryon
asymmetry generated during the phase transition in the
minimal model of electroweak interactions with m~ k 57
GeV.

Is this the end of the story? The efFective coupling con-
stant of interactions between W bosons and Higgs-boson
particles is g/2. In this case, a general investigation of
the infrared problem in the non-Abelian gauge theories

at a finite-temperature suggests that the results which we
obtained are reliable for P 2 $ T T/3 [5, 42]. Thus,
a more detailed investigation is needed to study behav-
ior of the theories with m~ 2 10 GeV near the critical
temperature, since the scalar field, which appears at the
moment of the phase transition in these theories, is very
small (see Fig. 5). However, we expect that our results
are reliable for strongly first-order phase transitions with

P 2 T, which is quite sufficient to study (or to rule out)
baryogenesis in the electroweak theory.

Finally, we would like to address a fundamental ques-
tion: since the theory for P « gT is infrared divergent,
can we definitely establish that the symmetry is restored
at high temperature, or is it possible that P always has
some small, nonzero value'? To address this question,
we can work at T &) Tc. In this case, the scalar field
is massive, and scalar loops are not singular in the in-
frared. Potential infrared problems arise only from gauge
boson loops. For these, the situation is similar to that
in high temperature @CD [42]. The standard assump-
tion about /CD is that the infrared divergences are cut
off at a scale rn ~s g~T (the detailed mechanism of
the infrared cutoff will not be important to us). The
free energy, 0, is nonsingular through order g4T4. At
order gs T4, there is a logarithmic infrared divergence;
0 gs T4ln(m ~ /T) gs T4lngz. Higher-order cor-
rections go as gs T (g T/rn~~ )s", i.e. , they are all of the
same order. It is usually assumed, then, that the free
energy can be computed through order gsT41ngz. A
similar investigation suggests that the efFective mass can
be calculated with an accuracy g4T lng .

What are the consequences of these assumptions for
the electroweak theory? First, the existence of an in-
frared cutoff of order g~T means that the potential is
analytic in ~P[, for small P. This implies, in particular,
that there are no linear terms in P. Consider, then, the
calculation of the P2 term, which determines the value
of the critical temperature. At lowest order, one has
the standard result DTzg ~ g T gP. At two-loop or-
der, there is a correction proportional to g T P lng;
higher-order corrections all go as g4Tzpz. Thus, as in
@CD, we can say that the mass term can be calculated
to order g4T lng2. This is a small correction, and the
one-loop calculation is reliable: for small P, the curva-
ture of the potential is the sum of the (zero-temperature)
negative term —~2/2 + 2Bva2$2, and a positive term
DT2$ +O(g ln gz)T Pz which grows with temperature.
Thus, we have a phase transition, and the higher-loop ef-
fects can only lead to corrections g2lng to the value
of the critical temperature obtained in the one-loop ap-
proximation.

Note that this discussion is valid for any value of the
Higgs-boson mass. If these arguments are correct, then
we expect the situation with the phase transitions in the
non-Abelian gauge theories to be the same as in the stan-
dard case: infrared problems may prevent a simple de-
scription of the phase transition in a small vicinity of the
critical point (unless the phase transition is strongly first
order), but everywhere outside this region, the symmetry
behavior of gauge theories can be described in a reliable
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way. We hope to return to a discussion of this interesting
question in a separate publication.

V. SUBCRITICAL BUBBLES

Despite our semioptimistic conclusions concerning the
infrared problem, it is still desirable to check that the
whole picture of the behavior of the scalar field described
above is (at least) self-consistent. This means that if the
efFective potential is actually given by Eqs. (7), (8), (10),
(11), and (38), then our subsequent description of the
phase transition and the bubble formation is correct. In-
deed, one would expect that the theory of bubble forma-
tion is reliable, since the corresponding action for tun-
neling Ss/T is very large, Ss/T 130 —140. However,
recently even the validity of this basic assumption has
been questioned. Gleiser and Kolb [28] and Tetradis [29]
have argued that in many cases phase transitions occur
not due to bubbles of a critical size, which we studied
in Sec. III, but due to smaller, subcritical bubbles. We
believe that these authors raise a real issue. However, we

will now argue that this problem only arises if the phase
transition is extremely weakly first order.

The basic difference between the analysis of Refs. [28,
29] and the more conventional one is their assumption
that at the time of the phase transition there is a com-

parable probability to find different parts of the Universe
in either of the two minima of V(P, T). The main argu-
ment of Refs. [28, 29] is that if the dispersion of thermal
fluctuations of the scalar field (P2) ~ T is comparable
with the distance between the two minima of V(P, T),
then the field P "does not know" which minimum is true
and which is false. Therefore it spends comparable time
in each of them. According to [28], a kind of equilibrium
between the domains of the two types is achieved due to
subcritical bubbles with small action Ss/T if many such
bubbles may appear within a horizon of a radius H

In order to investigate this question in a more detailed

way, let us reexamine our own assumptions concerning
the distribution of the scalar field P prior to the mo-

ment at which the temperature drops down to Ti, when

the second minimum of V(P, T) appears. According to
Eq. (13), the value of the scalar field P in the second
minimum at the moment when it is formed is equal to

For mH 60 GeV (and taking into ac-

count the coefficient 2/3 in the cubic term) one obtains
0.4T. Thermal fluctuations of the field P have

the dispersion squared (P~) = T~/12. (Note an impor-
tant factor yg

which was absent in the estimate made
in [28].) This gives dispersion of thermal fluctuations

g(P~) 0.3T, which is not much smaller than Pi.
However, as the authors of [28] emphasized in their

previous work [43] (see also [29]), the total dispersion

(P ) T2/12 is not an adequate quantity to consider
since we are not really interested in infinitesimally small
domains containing different values of fluctuating field

P. They argue that the proper measure of thermal fluc-

tuations is the contribution to (P2) from fluctuations of
the size of the correlation length g(T) M i(T). This

leads to an estimate (P~) T M(T), which also may be
quite large [43]. Here again one should be very careful to
use the proper coeKcients in the estimate. One needs to
understand also why this estimate could be relevant.

In order to make the arguments of Refs. [28, 29] more
quantitative and to outline the domain of their validity, it
is helpful to review the stochastic approach to tunneling
(see [44] and references therein). This approach is not as
precise as the Euclidean approach (in theories where the
Euclidean approach is applicable). However, it is much
simpler and more intuitive, and it may help us to look
from a different point of view on the results we obtained
in the previous section and on the approach suggested in

[28, 29].
The main idea of the stochastic approach can be illus-

trated by an example of tunneling with bubble formation
from the point P = 0 in the theory (22) with the efFective
potential

(39)

For simplicity we will study here the limiting case Ao —+ 0.
At the moment of its formation, the bubble wall does

not move. In the limit of small bubble velocity, the equa-
tion of motion of the field P at finite temperature is sim-

ply

P = d P/dr + (2/r)dP/dr —V'(P) . (40)

The bubble starts growing if P ) 0, which requires that

~d P/dr + (2/r)dP/dr~ ( —V'(P) . (41)

A bubble of a classical field is formed only if it contains
a sufficiently big field P. It should be over the barrier, so
that dV/dP ( 0, and the effective potential there should
be negative since otherwise formation of a bubble will be
energetically unfavorable. The last condition means that
the field P inside the critical bubble should be somewhat

larger than P„where V(P„T) = V(0, T). In the theory

(39) with Ao ~ 0, one has P, = M2/2ET. As a simplest

(but educated) guess, let us take P 2P, = M2/ET
Another important condition is that the size of the bub-

ble should be sufficiently large. If the size of the bubble
is too small, the gradient terms are bigger than the term
~V'(P) [, and the field P inside the bubble does not grow.

Typically, the second term in Eq. (41) somewhat com-

pensates the first one. To make a very rough estimate
one may write the condition (41) in the form

~ir 2 2ik~ & -'k2,„-p '~V'(p)
~

- 2M2. (42)

Let us estimate the probability of an event in which ther-
mal fluctuations with T )) M build up a configuration
of the field satisfying this condition. The dispersion of
thermal fluctuations of the field P with k ( k „ is given

by
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(4')a&i ..
k~dk

v'k~+ M exp
~

~ +z
I

—1

T " kdk
2'~ p

k~ + M~ (43)

Note that the main contribution to the integral is given
by k~ k~ 4M~. This means that one can get a
reasonably good estimate of {P~)g&g,„by omitting M
in the integrand. This also means that this estimate will
be good enough even though the effective mass of the
scalar field M~(P) = V"(P) changes between P = 0 and
P. The result we get is

3ET
(47)

This yields

As~ 10hz,
4(&')~&a..„-&~ (48)

For the Higgs boson with rn~ 60 GeV one obtains

Note that this estimate is much smaller than the naive
estimate (P~) ~ TM.

The crucial test of our basic assumptions is a compar-
ison of this dispersion and the value of the field P at the
moment T = Tq, when the minimum at P = Pq g 0 first
appears. Using Eqs. (7) and (13) one can easily check
that the mass of the scalar field at T = Tq, P = 0 is given
by

AimaxT „„Tk,
F 0 27r2

C TM
7r2

1
PV ~

5
(49)

(44)

Here C 1 is a coefficient reflecting the uncertainty in
the determination of k ~„and estimating the integral.

Thus, we have a rough estimate of the dispersion of
perturbations which may sum up to produce a field P
which satisfies the condition (42). We can use it to eval-
uate the probability that these fluctuations build up a
bubble of the field P of a radius r ) k ~„. This can be
done with the help of the Gaussian distribution[45]

P(P) exp ~—
Al&Almax

Thus, even with account taken of the factor s in the ex-
pression for E, the dispersion of long-wave fluctuations
of the scalar field is much smaller than the distance be-
tween the two minima. Therefore, the field P on a scale
equal to its correlation length M is not equally dis-
tributed between the two minima of the effective poten-
tial. It just fluctuates with a very small amplitude near
the point P = 0. The fraction of the volume of the Uni-
verse filled by the field Pz due to these fluctuations (i.e. ,
due to subcritical bubbles) for rnH 60 GeV is negligi-

le:

( Ms~' & f 492M'&
2C'E'T' q C'E T y

(45)

P(&~) -exp
I

—
2 &&&max

~exp — ~ e
q 4X',") (5o)

Note that the factor in the exponent in (45) to within a
factor of C~ = 1.02 coincides with the exact result for
the tunneling probability in this theory obtained by the
Euclidean approach [27] [see Eq. (27)]:

( 4.85Ms&P exp/— (46)

Taking into account the very rough method we used to
calculate the dispersion of the perturbations responsible
for tunneling, the coincidence is rather impressive.

As was shown in [44], most of the results obtained in
the tunneling theory by Euclidean methods can easily be
reproduced (with an accuracy of the coefficient C~ 1
in the exponent) by this simple method.

Now let us return to the issue of subcritical bubbles. As
we have seen, dispersion of the long-wave perturbations
of the scalar field (&P)l,&~ "z ", is quite relevant to
the theory of tunneling. Its calculation provides a simple
and intuitive way to get the same results as we obtained
earlier by the Euclidean approach [44]. To get a good es-
timate of the probability of formation of a critical bubble
in our simple model one should calculate this dispersion
for k~~„2M(T), which gives (gP)l, &A, „=TM/~ .

Since we already successfully applied this method for in-
vestigation of tunneling, we expect that this estimate is
also reliable [48]. The answer remains rather small even
for mH ~ 100 GeV, when the phase transition is very
weakly first order.

Moreover, even these long-wave fluctuations do not
lead to formation of stable domains of space filled with
the field P g 0, until the temperature is below T, and
critical bubbles appear. One expects a typical subcriti-
cal bubble to collapse in a time 7 k ~; this is about
13 orders of magnitude smaller than the total duration of
the phase transition, Lt ~ 10 H ~ 10 M„T . We
do not see any mechanism which might increase r by such
a large factor; effects such as decrease of the speed of the
collapse of such bubbles due to 6nite-temperature effects
(considered in the next section), or the inefficiency of ra-
diating away the energy of oscillating subcritical bubbles
[46] are much more modest.

Despite all these comments we think that subcritical
bubbles deserve further investigation. They may lead
to interesting effects during phase transitions in GUT's,
since the difFerence between T and the duration of the
GUT phase transitions is not as great as in the elec-
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troweak case. They may play an important role in the
description of the electroweak phase transition as well, in
models where the phase transition occurs during a time
not much longer than T . This may prove to be the
case for very weakly first-order phase transitions with
mH 2 102 GeV, when the distance between the two min-
ima of V(P, T) at T T~ is smaller than the dispersion
Q(p2) „„QTM/vr.

VI. PROPAGATION OF THE BUBBLE WALL

deed, one might guess that in this case there is a layer of
molecules in front of the wall, which grows in size linearly
with time. Moreover, viewed in the frame of the wall,
there is a steady "wind" of particles. These particles col-
lide with the ever growing layer of molecules, which is
stationary in the frame of the wall. The molecules in
this wind, presumably, equilibrate, so the wind comes to
rest in the wall frame. This build-up of particles leads to
an increase in pressure near the wall of order pv~, where
p is the molecule density and v the velocity. Balancing
the stresses on the wall then gives

A. General considerations

After bubbles are formed, one expects that they will
grow until they collide. Since the expansion rate is so
small at this time, provided the bubbles have a velocity
which is not extremely small, typical bubbles will grow to
a macroscopic size. Thus, it is important to understand
how bubbles propagate long after their formation. An
underlying assumption in discussions of the evolution of
the bubble wall to date is that some time after the forma-
tion of the bubble, a steady-state situation is achieved,
in which the scalar field, temperature, and particle ve-
locities are all constant in time in a frame which we will
call the "wall frame. " While it is plausible that such a
state is achieved, we will not prove that this is the case;
indeed, as we explain below, one can imagine situations
in which this is not the case. To develop some intuition,
we will consider two simple models. One picture, which
suggests that a steady state will arise, is the following. As
the wall passes through the medium, it dissipates energy
and heats the gas. Since the wall is quite permeable, es-
pecially to light quarks, heat is readily transported both
behind and in front of the wall. Once the wall is very
large, the problem becomes one dimensional, so consider
as a model a point source of heat, moving in an incom-
pressible fluid with velocity v. The temperature will obey
a diffusion equation, with diffusion coefficient g. The so-
lution of this equation is

q dx' t' (x —x' —vt)2
T —T = exp~ v

v y x 0 4Xx'

(51)

where T~ is the temperature as x ~ oo. Note that this
is a function only of x —vt, so that in the wall frame one
has a steady distribution. y is of order a mean-free path
E Thus, if v. is small, the temperature varies on a scale of
order E/v, i.e. , on a scale large compared to a mean-free
path, S.

Thus, it seems plausible that a steady-state situation is
achieved. However, Susskind has given a simple example
in which this is not the case, which we refer to as a "snow-

plow. " Suppose one has, in the original, unbroken phase,
a nonzero density of some exactly conserved quantum
number; we will refer to these particles as "molecules. "
Suppose also, that the molecules have a big potential en-

ergy in the broken phase. Then it is easy to convince
oneself that there is no steady solution; necessarily, there
must be a build-up of molecules as time evolves. In-

Note that it is important, in determining the force on the
wall, that the properties of the gas near the wall depend
on the velocity of the wall.

In the standard model, there is no exactly conserved
quantum number of this type. However, there are sev-
eral approximately conserved quantum numbers, and one
can ask whether something like this snowplow effect can
occur. Again to develop some intuition, it is helpful to
consider a simple model. Imagine a wall passing through
a region of "sticky dust. " The dust particles, when struck
by the wall, stick to it, but after they hit the wall they
have a lifetime w. Then the number of particles per unit
area on the wall, N, satisfies

dN 1= npv —-N,
dt (53)

dP' 3 d3k Bm
d3x n(k, x) (54)

With the assumption that the velocity and temperature
of the gas are nearly uniform across the wall, the density
in the wall frame is simply the I orentz-boosted distribu-

where np is the density of particles and v is the wall ve-
locity. For a steady state, N = npv'7. In our case, the
analog of the dust particles are top quarks, and the life-
time r is some characteristic time to change the number
of top quarks and top antiquarks (we will discuss this
in more detail below). Thus, we do in fact expect some
velocity-dependent enhancement of the top-quark density
near the wall, but we do not expect that the layer out
front should grow indefinitely. For the rest of this paper
we will assume that the wall does indeed achieve a steady
state. On the other hand, as we will discuss shortly, the
enhancement of the density we have discussed above may
be an important factor determining the wall velocity.

Turok [30] has argued that reflection of particles from
the wall does not slow the wall's motion. His argument
starts with the (correct) observation that if the velocity
and temperature of the gas are constant across the wall,
and if everywhere the system is described by equilibrium
distributions appropriate to the local value of P, the force
on the wall is independent of the velocity. It is instruc-
tive to consider this part of the argument, and indeed a
modified version of the method for estimating the force
on the wall will be useful in our analysis.

In the wall frame the net force on the gas is simply
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tion from the gas frame. On the other hand, n(k, x)
transforms as a Lorentz scalar. Since 2&,&z",

&

is the
Lorentz-invariant volume element, a simple change of
variables gives for the net force a result independent of
the wall velocity. Prom this Turok concludes that one
needs to find other sources of dissipation if the wall is
not to accelerate conti~uously.

Our earlier discussion suggests, however, that the par-
ticle distributions near the wall will exhibit a more com-
plex dependence on the wall velocity. In other words,
even for a small velocity, there will be departures from
equilibrium proportional to the velocity. In the following
sections we will try to take this velocity dependence into
account, and estimate the damping of the wall's motion
due to scattering of particles from the wall. There will,
of course, be other sources of damping; in some regimes,
these may be larger. However, we will see that from this
source alone, damping is sufficient to give nonrelativistic
motion of the wall for a wide range of parameters.

The calculations which follow make use of the in-
frared improved effective potential described in Sec. IV
for which, as already pointed out, baryogenesis has been
ruled out experimentally. However, the study of the
propagation of the bubble wall in a hot plasma receives
its main motivation from the understanding of the baryo-
genesis at the weak scale. We will consequently use the
above potential as a toy model in a range of parame-
ters so chosen that baryogenesis is a viable phenomenon.
To this end we will often use in what follows the value
m~ = 35 GeV for which P/T 2 1.

B. Three limiting cases

This discussion suggests that there are three limiting
cases which one might wish to consider. In the first, the
wall is thin compared to mean-free paths for all scatter-
ing processes, both elastic and inelastic. Then a typ-
ical particle, as it passes through the wall, loses mo-
mentum chiefiy through its interaction with the wall.
Near the wall, one expects significant, ii-dependent de-
partures from equilibrium. A second extreme will occur
if the mean-free paths for both elastic and inelastic pro-
cesses are short compared to the size of the wall. In
that case, the system will be quite close to equilibrium;
deviations from equilibrium will be proportional to the
velocity and some power of a typical mean-free path.
Finally —and this is the situation which we will see is
closest to reality —mean-free paths for elastic processes
may be short, but for inelastic processes long. In this
case, in addition to the small deviations from equilib-
rium we have just mentioned, there will also be a density
enhancement as in our snowplow discussion. We expect
that the wall will be slowest if the "thin-wall" picture is
valid, fastest in the "very-thick-wall" case (where mean-
free paths for inelastic processes are short) and will have
some intermediate velocity in the third case.

In this and the following two sections we will consider
these three cases. ARer estimating the relevant length
scales, we will make a series of (admittedly preliminary)
computations of the velocity and wall thickness. We will

Ax =
/2V(P, T)

For a Higgs-boson mass of 35 GeV, and a top quark mass
of 120 GeV, one finds that the wall thickness is

6' ~ 40 T (57)

This estimate of the wall thickness will provide a useful
benchmark in what follows.

Indeed, it is useful to compare this number with the
mean-free paths for various processes. In considering
the properties of the bubble wall, the relevant mean-free
paths are those for particles which interact with the wall,
i.e., principally top quarks, W's and Z's. The processes
with the shortest mean-free paths are elastic scatterings.
These exhibit the characteristic singularities of Coulomb
scattering at small angles. What actually interests us,
however, is the momentum and energy transfer in these
collisions. This is a problem which has been extensively
studied and we can borrow the relevant results. For a
relativistic top quark of energy E, one has [50)

dE 8z
dx 3

—a,T ln(E/—T) . (58)

We expect a similar formula to hold for W and Z scat-
tering, with a, replaced by o.iv. This number is to be
compared with the momentum loss due to interaction
with the wall:

dp~ 1 dm

dx 2J dx (59)

Assuming that the wall thickness is of order 6 40T
and noting that for the t quark, hm2 0.3Tz, while for
the W and Z, hmz 0.2T2, one sees that the moinen-
tum loss per unit length due to scattering is in both cases
much larger than that due to the wall.

We can understand this result in an alternative way.
The elastic scattering cross section diverges at small an-
gles, in empty space. In the plasma we expect that
this divergence is cut off. Examining the expression for
the gluon propagator in Ref. [51], we see that for the
Coulomb Qelds, this cutoff is the Debye mass

see that all three limits suggest a nonrelativistic value of
the wall velocity.

Before considering the properties of the bubble wall, it
is useful to consider the system at the critical tempera-
ture T, . At this temperature [47] it should be possible
for the phases with broken and unbroken gauge symme-
tries to coexist. Regions of different phases should be
separated by a wall, which we refer to as a bubble wall
or domain wall, at rest. It is easy to determine the form
of this bubble wall. One is looking for a static solution
of the equations of motion in the presence of the gas; the
relevant equation is simply

Bzg BV(P, T)
Bxz BP

We require that P tend to a constant as x -+ +oo, so we
can immediately solve the equation by quadrature:
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2T2
m& ——(2N, + Ny)

' = 2.5T

while for transverse gauge bosons, it is mzz, kpz/3kz. Ac-
tually, the fact that m~ is comparable with T means
that one should go back and self-consistently calculate
the propagators (more or less as we did in our discussion
of the Higgs-boson potential earlier). We will not do this
here, but instead simply assume that both the transverse
and longitudinal gauge boson exchanges are cut off at a
scale of order T. So to get a crude estimate of the mean-
free path we simply calculate the elastic scattering cross
section with a gauge boson propagator

gp, v
2 T2

Q

One then obtains a total cross section

(61)

(62)

C. Thin wall

The first limiting case we will consider, in some ways
conceptually the simplest, is what we refer to as the "thin
wall. " In this limit, the thickness of the wall b is less than
a typical mean-free path E for relevant particles [52]. In
particular, the momentum transferred by scattering to
top quarks, W's and Z's (the particles which gain mass
in the broken phase) as they pass through the wall is

small compared to the change in their mass. These par-

To estimate the mean-free path we multiply this by the
flux of quarks. Similarly one can estimate the contri-
bution due to scattering from gluons, and the mean-free
paths of W's and Z's. Finally one obtains an estimate
for the mean-free path of order I. 4T i for quarks and

12T i for W's and Z's. We will see below that the
wall velocity goes as QE; we expect that the uncertain-
ties here will not qualitatively affect those calculations.
It would be desirable to redo this analysis including the
screening self-consistently and using real transport equa-
tions. However, it is reassuring that they are consistent
with the expression above for the stopping power.

We will also need an estimate of the mean-free path
for processes which change the number of top quarks or
the number of W's and Z's. A good measure of this
distance is provided by the lifetimes of these particles
in the high-temperature plasma. If we treat the scalar
field as approximately constant in space, then we expect
that these decay rates have essentially the same form as
the zero-temperature rates, with the zero-temperature
masses replaced by P-dependent masses, and including
the appropriate factor for time dilation. Hence the ratio
of widths to masses is the same as at zero temperature,
weighted by the Lorentz factor. These give numbers of
order 1% or smaller and thus the mean-free path for de-
cays will be of order 100's of T 's. While we have not
attempted to do a complete analysis, it appears from an
examination of many cross sections that processes which
equilibrate the various types of particle numbers are not
likely to be effective at distances of order b.

ticles constitute roughly 20% of the plasma. The other
80%, made up of light particles, are irrelevant in the sense
that they interact only very weakly with the wall, but
play an active role in establishing a steady state. In this
limit one can compute the force on the wall semiclassi-
cally by assuming some distribution on either side, and
then simply following trajectories of individual particles
across the wall. In the rest frame of the wall, energy is
conserved, so it is easy to compute the momentum trans-
ferred by individual particles to the wall as they pass
through or are reflected back. To estimate the force on
the wall in this case, we will take advantage of the one-
dimensional geometry of the problem, and suppose that
the wall is moving in the +z direction with velocity v.
We will assume that the wall is surrounded by a plasma
of roughly constant temperature and velocity. Indeed,
our discussion of the diffusion Eq. (51) suggests that the
temperature and other quantities should vary on a scale
l/v. For small-wall velocity, this is much larger than the
thickness of the wall. This assumption will be justified a
posteriori.

We noted in the first section of this paper that a simple
estimate, Eq. (1), was obtained in Ref. [27]. This esti-
mate is valid for strongly first-order phase transitions,
when the main difFerence in energy density p inside and
outside the bubble is due to heavy particles, which ac-
quire mass m » T inside the bubble. Such particles,
coming from the phase P = 0, are completely reflected
by the bubble wall. However, in the minimal electroweak
theory, the masses of the particles are not very large com-
pared to the temperature and one cannot neglect the ef-
fect of particles crossing the wall. We have presented full

details of the calculation in the Appendix. We quote the
results here, obtained by expanding in small v:

vE'+ O(v ) = V(0, T) —V(m, T) .

Here

(63)

m2
E' = p(O, T) —p(m, T)— E np(E) dE .

ET/'+-p' —A —A7+2B
~

41n ——7
~

3 s 1

4 vp

(65)

and

V(O, T) —V(m, T) =
~

———'(1 —e) ~

(T (P, l Az.

kT, P y 8

with e given by

(64)

In the limit of large masses (m » T), the last term in
this equation vanishes and the Grst two accounts for the
energy density contrast b,p(0, T), in agreement with (1).
To study the properties of Eqs. (63) and (64) further,
we make an expansion in powers of m/T. After a little
algebra we obtain
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(67)

In the case of small e, when T is close to T, and P
$,(1+ e), Eq. (63) gives

'F 7t A —AT
v — 1 + —(1 + t)61+m 6 A

2B f'

~4ln ——7~
va )

(68)

O
0
QP

0.15

0.10

0.05

rn„= 35 GeV

rrii = 120 GCV

The relevant value of c corresponds to the time when the
biggest bubbles propagate in the plasma, which is also
the time when bubbles fill up the Universe. Figure 6
shows that e varies between 0.1 and 0.3 for a large range
of Higgs-boson masses and is rather insensitive to the
top-quark mass; we use the value 0.26 corresponding to
a Higgs-boson mass of 35 GeV to illustrate our results.
For a zero top-quark mass, the term in parentheses is
approximately 1; in such a case

~ 0.1 .61+a (69)

As the top-quark mass increases to a value )mz, its con-
tribution becomes dominant and the velocity decreases
significantly; as an example, for m&

——120 GeV, v 0.06.
We have analyzed Eq. (63) numerically, Fig. 7 shows the
dependence of the velocity on s while Fig. 8 illustrates
the dependence of the velocity on the top-quark mass.

We now elaborate further on the situation describing
the steady state. Since particles change their momentum
in crossing or bouncing off the wall, the local thermal
distribution is spoiled; its restoration requires the release
of energy momentum at a certain rate, implemented by
the fiow of light quarks. Clearly, to satisfy the conser-
vation of energy and momentum, the plasma has to ad-
just its velocity and temperature distributions. For this
purpose the wall and the nonthermalized particles can
be viewed as a source of energy momentum of a size of

0.00
0 0.2 0.4 0.8

FIG. 7. The velocity of the bubble wall v in the thin-wall

approximation vs e.

p'2 v' p(m, T') —V(m, T')

v p(0, T) —V(0, T) = 0,

a few mean-free paths, moving in a relativistic plasma
with a nonrelativistic velocity. This situation is similar
to the diffusion problem described in Sec. VIA. Quali-
tatively, one expects a steady-state situation in the rest
frame of the source, a rather uniform distribution of tem-
perature and velocity behind the source extending across
the source on a typical distance l~ —.From our esti-
mate of the velocity above, l~ is typically 20 times larger
than / which justifies the assumption that the wall is
interacting with a plasma of uniform velocity and tem-
perature. Furthermore, as a good approximation, we can
assume this velocity and temperature to be the ones far
away from the wall. We can then write equations for the
conservation of energy and momentum across the wall:

0.30

1

t

I I I I

~

I

p' v' p(m, T') —V(rn, T')

—p v p(D, T) —V(D, T) =0,
0.25

0.20

0.15

where v' = v + bv and T' = T + bT are the quantities
defined behind the wall.

It is easy to compute the changes in velocity bv and
temperature bT of the plasma as it crosses the wall.
These equations and the steady-state assumption, to-
gether arith

0.10
V(0, T') —V (rn, T') —v'8' 0, (71)

30
I I I f I I I I I I I I I I j I I I t

40 50 60
m„

FIG. 6. The temperature Tt, (plotted as e) vs mH.

70
yield a unique answer for these quantities. Typically,

+1%, so the velocity, v, is still given accurately

by Fig. 7. For the temperature variation one Bnds T is
negative and of the order of or less than —0.0001% [53].
Furthermore, bv is positive; the process is a deflagration.
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FIG. 8. The velocity of the bubble wall v in the thin-wall
approximation, vs m~.

It is also easy to check that a small amount of entropy
is produced in the plasma, in agreement with the second
law of thermodynamics.

One can attempt to obtain the shape of the wall by
writing Eqs. (70) and (71) in a

differential

for. At e = 0,
the resulting equation is just that which we studied ear-
lier for the domain wall separating the coexisting phases.
At finite e, however, there are velocity-dependent correc-
tions to the equation, and it is more difficult to analyze.
Because the temperature and velocity vary in space, the
problem one has to solve is analogous to the motion of
a particle in a time-dependent potential. Moreover, the
two minima of this potential are not degenerate, so one
needs to understand how the oscillations of the scalar
field in the true minimum are damped. However, for
small e (and U), we do not expect the shape of the wall
to be too much different than for e = 0; in particular,
the size of the wall [see Eq. (56)] is still given to a good
approximation by

there were only elastic processes, i.e., no processes which
changed the separate numbers of different particles and
antiparticles. Suppose, also, that (for example) all top
quarks were reQected from the wall. Then we would be
in precisely the snowplow situation, except now in a rel-
ativistic version.

More realistically, consider the possibility that, say for
top quarks, the probability of reHection from the wall
of a given quark is f S.uppose, also, that the mean-
free path for processes which change the number of top
quarks or top antiquarks is 7. Then there will be some
build-up of top quarks near the wall. The time required
for the wall to catch up with a given top quark goes as ~,
where f is a typical mean-free path. As a result, in the
limit of very small v, the wall does not catch up with a
typical particle before it undergoes an "identity change. "
Thus, we have something like the "sticky dust" picture
described earlier. Per unit area of the wall, there is an
increase in the number of top quarks of order ~fvn, where
n is the equilibrium top quark density. These quarks are
spread over a distance of order v 6., so their density is
of order fun~& This. gives an extra contribution to
the force on the wall of order vhpnf ~&, where Ap is
the free energy difference on the two sides of the wall.

It is easy to compute f; for bosons, f =
z~&~~zll z, for

fermions, the result is s as large. Assuming that the
square root in this expression is a number of order 5—10,
this is comparable to the force we have computed above
and will tend to decrease the velocity of the wall. This
discussion, of course, is extremely crude, but it suggests
that there are various effects at least as large as those we
have considered above, all of which slow the wall. Thus,
if the thin-wall approximation is a good guide, the wall is
likely to be quite nonrelativistic. We will see that there
are similar effects in the case of a thicker wall.

D. Thick wa11

6~2 40TE (72)

As this is several times bigger than the mean-free paths of
the relevant particles (far, z 12T and Eq~~ 4T ),
the thin-wall approximation just described is question-
able within the minimal version of the electroweak the-
ory. However, this approximation may be valid in some
extension of the standard model. For instance, the au-

thors of Ref. [22] have argued that baryogenesis at the
weak scale is viable in a model with a singlet scalar and
one Higgs-boson doublet. The presence of a light sin-

glet makes the transition more strongly 6rst order, and,
consequently, allows for a Higgs-boson mass above the
experimental bound. In such models, the wall tends to
be thinner.

So far, we have assumed for our thin-wall analysis that
the density to the left and right of the wall (of particles
moving to the right and left, respectively) are precisely
the equilibrium densities. However, our discussion ear-
lier of the snowplow problem suggests that there may be
other effects we should consider as well. Suppose that

g gthin + g gthin
b g f y (73)

where 8 is the suppression factor dependent on 8. They

We now consider the case that the wall is extremely
thick. As is clear from our earlier discussion of mean-free
paths, this, like the thin-wall case, is not completely re-
alistic. These calculations, however, should bracket the
true situation. At the end of this section we will try to
estimate the effects of the density enhancement which
occurs because particle numbers are approximately con-
served. So we first consider the case where the mean-free
paths for both elastic and inelastic processes are short.
To get an idea of how finite elastic scattering lengths af-

fect the velocity of the bubble wa11, we assume that par-
ticles propagate freely over distances of order a mean-free
path f. We view the bubble wall as a succession of slices
with thickness of order E, and for each of these we repeat
the thin-wall analysis. We refer the reader to the Ap-
pendix for the details of the derivation and the precise
formulas, and just summarize the results here. We write
the result in the form
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are not very sensitive to rnid and AH, and are well fit

by 8 = i ~ l (see Fig. 9). Using the values quotedgi+(i'ls)'
above (k~z 12T, Et,~ 4T ), the equations for
8 from the previous section and assuming m~ 35 GeV
(6 ~ 40T i) and mi ~ 120 GeV, we find a velocity of
about

0.30

0.25

sol
0.20

I I I I I

v 0.2 . (74) da

Figure 10 illustrates the velocity for a range of top-quark
masses, for two values of the Higgs-boson mass.

In reality, however, we expect, because the numbers of
top quarks and top antiquarks (and similarly W+'s and
W 's) are not quickly equilibrated, their densities will
be enhanced near the wall; since this enhancement will
depend on the velocity, there will be a velocity-dependent
drag on the wall, similar to that we discussed above in
the thin-wall case.

Again, we will content ourselves with an extremely
crude estimate. As in the thin-wall case, we imagine
that as particles pass through the wall, some fraction is
reflected. These reflected particles make a random walk
until they decay, or undergo scattering processes which
change their identity, with a lifetime r. Then the num-
ber of particles per unit area on the wall is N = fnni,
where as before, f is the fraction of particles which are
reflected. This extra density of particles will be spread
over the thickness of the wall, or over ~Sr, whichever is
larger. For our crude estimate we will assume this density
is spread uniformly over the wall. In other words, we will
assume that the density is the equilibrium density (for a
given value of the scalar field), except enhanced by a fac-
tor of the form 1+ "'&" . In this case, one obtains an

increase force on the wall of order b,F = ~"&" Ap, where,
as before, hp denotes the internal energy difFerence on
the two sides of the wall. As an estimate of the quan-
tity f, we take the ratio of the equilibrium densities on
the two sides of the wall. For top quarks, this gives a
number of order 5%%up. The ratio ~& is likely to be of or-
der 1—3. Thus, this effect may be as important as the

0. 15

0. 10

I

120
TOP-QUARK MASS (GeV)

100 140

FIG. 10. The velocity of the bubble wall in the thick-wall
approximation.

VII. CONCLUSIONS

effects we have considered above, i.e., we have probably
overestimated the wall velocity.

We can also ssk about the wall thickness in this limit.
Our discussion here suggests that the thickness will be
modified from its value at To by a factor of the form
1+ ™~z",i.e., by a small amount. However, it is some-
what harder to develop a complete theory of the wall
shape in this limit. For example, in the analogue me-
chanics problem, if one allows for spatial variation of the
temperature, one has to consider a system with time-
dependent forces. Moreover, one has to consider how the
"motion" of P damps out in the region of broken symme-
try. This may require consideration of types of damping
other than those we have considered up to now. We will
not explore this issue further here, and simply assume
that the shape of the wall is only slightly modified from
its form at T,.
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FIG. 9. The thick-wall correction factor 8 vs E/b.

The study of the electroweak phase transition began
two decades ago, and stimulated work in many areas of
what has come to be called astroparticle physics. How-
ever, until now it was not very important to know any
details of the theory of this phase transition. For most ap-
plications it was quite suEcient to know that in the early
Universe at a temperature higher than about 10 GeV
the symmetry between weak and electromagnetic inter-
actions was restored. Recently it has become clear that
if we wish to investigate the possibility of electroweak
baryogenesis, we must have a complete and detailed pic-
ture of the phase transition, from the accurate compu-
tation of the critical temperature to the investigation of
the motion of the bubble walls. In this paper we have
taken some steps toward a systematic investigation of all
relevant features of the first-order phase transitions in
electroweak theory.

We have seen how to organize the perturbation expan-
sion in light of the infrared problems which exist at high
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temperature. We have shown that no dangerous linear
terms arise in the effective potential; on the other hand,
we have seen that the coefBcient of the cubic term, which
is responsible for the first-order nature of the transition,
is reduced by a factor s from its lowest-order value. This
means, in particular, that theories with a single Higgs-
boson doublet cannot be responsible for the observed
baryon asymmetry, given the present experimental limits
on the Higgs-boson mass.

We have also understood some aspects of the strongly
first-order phase transition relevant to baryogenesis. For
such theories, we have seen that the phase transition typ-
ically proceeds through the formation of critical bubbles
with thick walls. We have developed a method of ana-
lytic investigation of the probability of bubble formation,
which is valid for a large class of theories. With the help
of the stochastic approach to tunneling, we have found
that subcritical bubbles are only likely to be important
(in the minimal standard model) for Higgs-boson mass
larger than about 100 GeV, when the phase transition is
second order or very weakly first order.

We have considered the problem of propagation of the
bubble wall. To this end, we have considered the minimal
Higgs-boson model with a light Higgs boson (mH ( 35
GeV). While this possibility is ruled out, we believe this
theory is a good toy model, whose features mimic those
of more realistic theories in which baryogenesis is possi-
ble. Investigation of the bubble wall motion turns out
to be surprisingly difficult; indeed, we have identified im-
portant mechanisms for slowing the wall which have been
omitted from previous treatments. Our own treatment
is crude, and may omit additional damping effects, but
it suggests that the bubble wall is typically nonrelativis-
tic or only mildly relativistic in these theories, and tends
to be rather thick. It would be interesting to construct
theories where this is not the case, which might realize
the scenario of Ref. [17] in which baryons are produced
quite efficiently.

While in this paper we have seen that theories with
a single Higgs-boson doublet cannot give rise to the ob-
served asymmetry, there is still much work to be done
to determine whether or not baryogenesis can occur in

extensions of the minimal theory. Needless to say, such
extensions are interesting in their own right, and also be-
cause they can provide larger CP violation than exists in
the minimal model. Apart from the issues of the phase
transition discussed here, further work on B violation
rates and the detailed mechanisms of baryon production
is still necessary. Hopefully the observations contained
in this paper will represent a positive step on the road to
a complete understanding.
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APPENDIX: CALCULATIONS OF
THE %ALL VELOCITY

In this appendix we give the details of our calculation
of the force exerted on the advancing bubble wall by the
plasma. As discussed in the text we will assume that
there exists a steady state; that is, there is a well-defined
rest frame of the wall, at sufficiently late times after the
appearance of the bubble. In this frame we have a (time-
independent) velocity and temperature distribution for
each component of the plasma that reduce to those of
the surrounding Universe at spatial infinity. We focus
on those species that are relatively heavy in the broken
phase; these will obviously give the greatest contribution
[54].

In principle to solve this problem in all generality, we
would write Boltzmann equations for each component
of the plasma, as well as an equation of motion for the
scalar fields. However, in the simplest cases, we can learn
a great deal by looking at the equations for local energy-
momentum conservation. These may be written in the
form

where we have (arbitrarily) separated off the classical
(zero-temperature) stress tensor of the scalar field. We
can also write

(A2)

where (i) labels components of the plasma and F(') is the
force density on the wall of the ith species. Combining
Eqs. (Al) and (A2) we find the full equation for the scalar
field:

We now turn to the evaluation of F .
Consider a volume element of width s in the x direc-

tion. For our analysis we will assume that particles of
the plasma typically traverse this distance without in-

teracting; we can calculate the force on this slice of the
bubble wall by following individual particles of the dis-
tribution. We will present the analysis for a general s
below, but note now that the size of s distinguishes the
three cases considered in the text. Namely, the thin-
wall scenario corresponds to s b', where b is the wall

thickness, the very thick wall corresponds to s in6nitesi-
rnal, and the intermediate scenario to s E, with E some
relevant mean-free path. We will suppose that particles
entering the volume element on either side are described
by equilibrium distributions appropriate to the masses
on either side (mp 01' mi, with mi ) mp). Note that
particles leaving the volume element will not, in general,
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be thermally distributed; we assume that equilibrium is

restored in a distance of order a mean-free path. In other
words, for particles entering the volume, we are assuming
the distribution

n(E) = np [p„(E—vy ), T, p], (A4)

d'y
,n(y T)(&y*)lv*l (A5)

We write the integration measure as dEEdy~/4x .
There are various regions of integration, correspond-
ing to whether the particles have sufficient momentum

[y, ) (m~ —mp)] to go through the slice, or are refiected.

with E = p~+m~p ~.

We compute the force per unit area as follows. In

time dt, there are n, (y, T) is ~l, ]v ~dh particles per unit

area providing a force Ay~/dt Thu. s, the pressure is

For particles bouncing off the wall, incident from the
right, the momentum transfer is just —2y . We arrive at

~PI = "Edy* y np[7 (E —vy*) T'] (A6)
4'~

where the region of integration is [(mp, my) x

( —g(E2 —m~~), 0)] + [(mq, oo) x (—rr, 0)] with o

my mp ~

For particles incident from the right with [y i
) 0 we

find Ay~ = —gy, —0 —y, and the pressure is

dE
&&I = 4 n (n +VLCC

—~')
4m~

xnp[p„(E —vy ),T], (A7)

where the region of integration is [(mq, oo) x (—
Q(Es —mp2), —0)].

For particles incident from the left, the momentum

transfer is by = gys+os —y, and so

1kali =, dEdy p (
—p, +gp,'+~') no[v (E —vy, ),T|, ( 8)

where here the integration region is [(mq, oo) x

(0, Q(E2 —ms, ))].
We need to now integrate over the thickness of the wall.

If there are N b/s slices we write

N

Z. =) SP„, (A9)

where here EP„ is the sum of Eqs. (A6)—(A8) with mp

the mass at the nth step, given by

dms dP n2
(A10)

In the last step we have made a linear approximation to
the wall profile.

We may proceed in a variety of ways. If we assume
that the speed of the wall is small, we can expand the
distribution (A4) to lowest order in v. On the other hand,
we could expand in powers of m/T, at the risk of making
a small error for the top quark. In this appendix we will
choose the former expansion. We Gnd

np[p„(E —vy )] = np(E) —vy (E) + 0(v2) .

(A11)

To lowest order we have

6P„=— np(E T) (E —m ) ~ —(mp ~ mg)[p]
2 QE3, 4m'~

Summing over the wall and over species we find the sim-

ple result

FP =F(0) -F(m') . (A13)

The pressure difference, to lowest order, is the difference
of free-energy densities. We have neglected contributions
proportional to gradients in temperature and chemical
potential.

The next-to-leading-order terms account for the forces
of the plasma on the wall. To order v~ we find

mq

hP~ j = —2v 2 np(E) E(E —mp)4'~

oo dE
2 np(E) E~ (E2 —m2, )l, 4+2

(E~ —m(~))
~

dEFi'j =v
~

p(0) —p(m) —m Enp(E)
~4vr'

(A14)

The next step is to sum this over the wall. We will do
this for the three cases separately. For the thin wall we
simply take N = 1, mp ——0, and mq ——m, and obtain

= F(mp, T) —F(mg, T) . (A12) =vE' . (A15)
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It is useful to expand this expression in powers of m/T.
For 8 and Z bosons we End

+m&
/

ln4( mz
apvzzTz 2)

(A14) has no linear term in d2:, and we recover Turok's
result [30] that there is no v dependence in the force on
the wall in the limit l —+ 0 [56]. Presumably there are
other effects that are ignored in this computation that
slow down the wall.

The case of greatest interest is finite l/b. We have
performed the analysis numerically and find that E can
be written in the form

Likewise, for top quarks, we find [55]

(A16)

where

gthin + g gthinf f b b (A19)

3/4 4 ( mP 7~ (fm) )
16z~vo4 ' ( apvczT2 2 j ( i, T) J

(A20)

The total E' is then

(A17) Sf and Sh are rather insensitive to mt and mH. We have
plotted these factors in Fig. 9 vs E/b. The behavior of
this plot is adequately approximated by a linear function:

E = -ET/ + -P A- A~+2B
~

41n ——7
[

3 4

vr 4

(A18)

If the wall is much thicker than any relevant mean-free
path, we take s proportional to dz. We can easily see that

QI + (l/b)'
( 21)

for both fermions and bosons. We Bnd then, that the
wall velocity, for mH = 35 GeV and mt ——120 GeV, is
approximately v 0.2 (see Fig. 10).
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