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Solving two-dimensional P field (complex scalar) theory by discretized light-front quantization
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The discretized light-front quantization method is applied to P field (complex scalar) theory in 1+ 1

dimensions. The interaction Hamiltonian is constructed in its normal-ordered form, and calculations are

performed with and without finite-mass renormalization in the charge-0 sector of the field. It is found

that, like real scalar theory, finite-mass renormalization prevents the phase transition by restricting the

theory to the weak-coupling region. A comparison of the results with and without mass renormalization

demonstrates the same estimate of the critical coupling for which the mass gap vanishes. The invariant

mass of various states is calculated as a function of bare coupling. In the weak-coupling region where

extrapolation to the continuum limit is easily found, there is evidence for scattering, but there is no two-

particle bound state in agreement with the well-known result established for constructive quantum field

theory. Also, no multiparticle bound states are found. The essential outcome is that the results valid for

real-scalar theories are found to be valid for complex scalar theory also.

PACS number(s): 11.15.Tk, 11.10.Ef, 11.10.Lm, 11.15.Me

I. INTRODUCTION II. REVIEW OF LIGHT-FRONT QUANTIZATION

Discretized light-front quantization (DLFQ) was pro-
posed recently [1,2] as a method to solve relativistic
field-theory problems nonperturbatively. This method
has been applied to solving some relativistic field-theory
problems [1,2], which have been studied previously by
other means. Among the popular field-theory models,
two-dimensional P theory has received much attention
[3] since many of its properties have been established
rigorously from the viewpoint of constructive quantum
field theory [4,5]. Real-scalar two-dimensional P [(P )2]
theory has been solved with the DLFQ scheme in the
literature [6]. An investigation with the DLFQ scheme
of the (P )2 theory in the complex scalar region of the
field has not yet been attempted. So a straightforward
application of the DLFQ method to solving relativistic
complex-scalar (P )2 theory is investigated in this paper.

This paper is organized as follows. In Sec. II the in-

teraction Lagrangian density is suitably chosen to work
in the complex scalar region of the field. The light-front
quantization of self-coupled scalar-field models for com-
plex scalar theory is reviewed. Discretization is intro-
duced and the momentum and Hamiltonian operator are
constructed. In Sec. III the points to be investigated with
the DLFQ method are discussed somewhat and the
relevant issues, such as choosing the Fock-shape basis in
the charge-0 sector of the field, the implication of the
mass renorrnalization to keep the finite mass-gap con-
straint, etc. , are also discussed, along with the underlying
theoretical significance. In Sec. IV numerical results are
established, and the essential outcome arising out of the
solution of the problem is pointed out. A comparison of
the results with those valid for the real-scalar theory ob-
tained by the DLFQ method, and also by other means, is
made. The summary of the main results and the con-
clusions are presented in Sec. V.

Light-front quantization was proposed originally by
Dirac [7] from his work on the forms of relativistic dy-
namics, and rediscovered by Weinberg [8] in the context
of the covariant formulation of time-ordered perturbation
theory. The formal foundation of the light-front quanti-
zation approach to quantum field theories was laid by
Yan and collaborators [9—12]. Certain results from Refs.
[9,10] are reviewed for the case of the complex-scalar
(P ), theory.

The description of real-scalar (P )2 theory as given in
Ref. [6] does not allow a distinction between particles and
antiparticles. Particles and antiparticles have to carry
some opposite-charge quantum number, whatever the na-
ture of this charge may be. Classically, the minimal cou-
pling prescription requires at least a complex field. In the
quantum case let us therefore introduce a doublet of Her-
mitian fields P, and Pz represented by the complex quan-
tity

4=(0i+t A)~&2

and its Hermitian conjugate.
I start with the Lagrangian density

X=(t)„P) (t)"P)—m P ttp (P +6/ —
P—PP—+P ) .

(2.1)

A, is chosen greater than zero so that the Harniltonian is
bounded. The mass parameter m is chosen positive so
that the vacuum state is the normal vacuum at least for
small coupling.

It is well known [9] that the number of independent
variables describing a dynamical system in the light-front
formulation is only one-half of that given in the conven-
tional equal-time reformulation. The equations of motion

46 5497 1992 The American Physical Society



5498 S. N. GHOSH

and the commutation relations between true dynamical
variables are derived from Schwinger's action principle
[13].

In 1+ 1 dimensions, the equations of motion are

C}

c)x

where

x+ =x'+x ',

and

4a+a P+m P+ ——(4P +12/ $$)=0
4! 2

(2.2)
aIld

X =X X0 1

4a a y'+m Pt+ —(4—$3+12/"Pgt)=0.1
(2.3) The metric tensor g"' is given by

Here

and

'8 +
a

ax+
Suppose one has arbitrarily fixed both P and P at some
particular light-cone time x + =x 0+ on the interval
x E( L,L)—. The equations of motion (2.2) and (2.3)
can be integrated as

a+/(x, x+)= ——I dy e(y —x ) m P(y, x )+——[4P (y,x+)+12/ (y, x+)P(y, x+)P(y, x+)]

(2.4)

and

a+/ (x,x+)= ——J dy e(y —x ) m P (y,x+)+——[4P (y,x+)+12/ (y, x+)P(y, x+)P (y,x+)]

where e is the antisymmetric step function:

E'(x) = —25(x) .

(2.5)

I

It is noted that both T++ and T+ are positive definite.
From the stress tensor T" we construct the energy-
momentum operator P":

Thus, the equal light-cone time canonical commutation
relations are given by

P"=—' dx T+"
2

(2.12)

[P(x,x +
),P(y, x +

) ] + = —i —,
' e(x —y ),

[Pt(x,x+ ), Pt(y, x+ ) ] I„+= i ,'e(x ———y ),
and

[P(x,x+ ),yt(y, x+ )] I +
—— i ,'e(x ——y -) .

(2.6)

(2.7)

(2.8)

The stress tensor T"' is constructed from the Lagrangian
density X by

The conservation of T"'(a„T" =0) implies that T+" is

conserved, which, in turn, implies that T+" and hence
P+ and P are independent of the light-cone time x+.
Thus, both P+ and P are positive definite, conserved,
and independent of the light-cone time.

The free-field solutions $0(x+,x ) and Po(x+,x ), in

terms of the free-field annihilation operator a (defined by
aIvac) =0) and the creation operator at, can be written
as

T"'= a"p—g"'x .= a
aa„Q

Thus

T++ =(a+y)"(a+y)

where

a+ =2a =2
BX

2' 2
a

BX

(2.9)

(2.10)

$0(x+,x ) = [a (k)e '"'"+b (k)e' "],
2k+

(2.13)

Po(x +,x ) =
dk'

[b(k)e '"'"+a (k)e'" ] .
2~ 2k+

(2.14)

The commutation relations between the annihilation and
creation operators are

[a(k+),a (k )]=[b(k+),b (k +)]

and =2m2k+5(k+ —k +), (2.15)

T+ =2m P /+2 ——(P +6/ P PP+P ) . (2.11)
1 y4 with all other commutators vanishing. Now, following

the conventions of Pauli and Brodsky [1],I construct the
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light-front rnomenturn and energy operator in the discre-
tized version. Discretization is introduced by the re-
placement

and

H =Ho+H1+H~+H3+H4 (2.24)

k+~k+= n, n =1,2, 3, . . . , A .+ 2'
L

A determines the highest possible value of k+ for each
fixed L. Since k+ =k +k ', k+ can be zero for a massive
particle only when k '~ —oo.

An important point is that the above construction om-
its the zero-momentum states (k+ =0) and neglects what
is referred to as the zero-mode problem. The inclusion of
this k+=0 state could be a significant issue and would
require an extension to the method.

In the discretized version, the free-field solutions are
given by

where

Ho=+ —a„a„m +
n

"" 4+2 k

+$ bt—b„m +1 y 2 A, 1 1

„n "" 4~2 k k

akal a a„+b„b blbk
H =—

8 4 ~ ~k( m+n k+I5

akal b b„+bkbl a a„+ 5

(2.25a)

and

;k() n t,k() n
$0(x+,x )= —g (a„e " +b„e " )

4m. „) n

(2.16)

+ 1
~

1 -k„("'nn
&

k„'"' n

P,(x+,x )= —g (b„e ~ +a„e ~ ) .
4m. „,&n

(2.17)

bkal b a„
2 2 4 g ~ k+I, m+n

mn klmn

akblb b„+a„a al bk

12 4~ „,„„&klmn k'™+"
bkala a„+b„b bl ak

(2.25b)

(2.25c)

The factors I/&4m and I/&n are introduced to main-
tain the following commutation relations:

(2.25d)

[a„,a ]=5„ (2.18)
bkblb a„+

4 4 4 g ~ k, l+m+n
klmn klmn

[b„,b ]=5„ (2.19)

At x+ =x o+ =0, the interacting field (}( is chosen to coin-
cide with $0:

akala b„+a„b bl bk

4 4 X ~ k, l+m+n
klmn klmn

(2.25e)
(()(x,O) =go(x, O) .

It is convenient to introduce the dimensionless variable

(2.20)

Then

—,'k+x =ng .

The operators E and H are introduced such that

P+ 2' E
L

and

(2.21)

P-= H.2' (2.22)

K =
—,
' g (naJa„+nb„b„)

n=1
(2.23)

E is the dirnensionless momentum operator and H is the
Hamiltonian operator with dimensions of mass squared.
The invariant-mass operator M =P+P =EH is in-
dependent of L. In the discretized version, the momen-
turn E and the Hamiltonian H are given by

The results obtained as solutions lead to divergences as
per expectation. As in real-scalar theory [6], in complex-
scalar ((}I( )z theory the only divergent graph is the "tad-
pole" (one-loop self-energy), which is logarithmically
divergent [14]. The logarithmically divergent additive
term to m in Ho is the DLFQ manifestation of the tad-
pole contribution. This divergence can readily be re-
moved by considering the normal-ordered Hamiltonian
[15],which is adopted for numerical work.

III. RELEVANT DISCUSSIONS

For a given finite E, I get a finite number of basis states
(provided I neglect the zero-mode problem). The Fock-
space basis is chosen with the normal (perturbative) vacu-
um as the lowest-energy state in the spectrum. The exact
spectra is only obtained as E~~, the continuum limit.
As expressed in Table I, the dimensionality of the Hamil-
tonian matrix increases rapidly with increasing E. So be-
cause of major computational difficulties in obtaining nu-
merical solutions due to the large dimensionality of the
Hamiltonian matrix, I restrict the discussions to large but
finite values of E. Of course, I will show how my results
with the DLFQ method approach the continuum limit as
a function of the coupling constant k.
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TABLE I. The dimensionality N of the Hamiltonian matrix
as a function of K.

2
4
6
8

10
12
16

1

4
11
27
63

141
614

IV. NUMERICAL ANALYSIS AND RESULTS

A general state in the Fock-space basis in the charge-0
sector of the field is denoted as

!
ml m2 m~ m

I mP mN Xn] np . . . ng n ] n 2 . . . n g /

I have neglected the k + =0 states which should, in
principle, be included even at finite values of K. This
might open the possibility of a zero-momentum conden-
sate and would require an extension to the method.

I concentrate my numerical discussions on the charge-
0 sector of the field. The corresponding Fock-space basis
states are constructed by putting equal numbers of parti-
cles and antiparticles with their respective momenta.

In the remainder of this paper I will show how com-
plex scalar theory yields results consistent with real-
scalar theory, and also somewhat consistent with what is
known from quantization in ordinary space-t™e. I will
show evidence for a lack of multiparticle bound states.
In addition, I demonstrate that the method is currently
limited to the weak-coupling region.

I treat the mass parameter in the Lagrangian as the ad-
justable bare mass, and the lowest eigenvalue of the
invariant-mass matrix as the fixed physical mass. K is a
bounded operator which commutes with the Hamiltonian
H. I construct the invariant mass-squared operator
M =KH, which is independent on the box length L.

In order to avoid divergences I need only the renormal-
ization of the mass. This can be done by normal ordering
with respect to the mass parameter appearing in the La-
grangian. There are various methods incorporating the
processes of mass renormalization. In Ref. [1] Pauli and
Brodsky followed the mass-renormalization scheme in-

troduced by Brooks and Frautschi [16] for that same
model in ordinary space-time. I followed the mass-
renormalization scheme implied by Harindranath and
Vary [6]. For given values of A, and m „„,one diagonal-
izes the Hamiltonian matrix for an initial guess for the
bare mass m and obtains the lowest eigenvalue e]. Then
iteration is performed to solve the nonlinear equation

e, [m, k] —
m~„~, =0

until convergence is achieved to within a required accura-
cy (I h„, was chosen to be 1.0). By definition, this mass-
renormalization scheme preserves the mass gap, and in

my theory I now show that it restricts the solution to the
weak-coupling region.

This represents a state with m i quanta (particles) with n,
units of momentum and m, quanta (antiparticles) with n,
units of momentum such that the number of particles
(m, +mz+ . +mz) is equal to the number of antipar-
ticles (m, +mz+ . . +m~) for any state. Also, for a
given K, the relation

K —n]m] +npm2+ ' +n~m~

+ n ] m ] + num 2 + +n/m/

is satisfied for each state.
The square of the physical mass of each quanta of the

field is denoted as m h, . The finite-mass renormalization
is implemented by insisting that for each value of K the
lowest excitation (in other words, the mass gap with
respect to the perturbative vacuum) has the invariant
mass m phy The Fock-space dimension is not only finite,
it can be as small as 1. Since a 2 X 2 matrix can be trivial-
ly diagonalized, a number of cases can be treated analyti-
cally. In the following, I shall increase the resolution
stepwise in order to see how the invariant-mass spectrum
gains complexity as a function of K.

(a) K =0. Since zero modes (k =0 states) are neglect-
ed, the only basis state is the vacuum state !vac ):

K vac) =0!vac) .

Hence M ! vac ) =0!vac ). Thus !vac ) is the only state
with I =0. This Fock-space vacuum is identical with
the physical vacuum.

(b) K = 1. This case is not an issue in the charge-0 sec-
tor of the field since I cannot place both particles and an-
tiparticles with an integral unit of momentum in any
state.

(c) K =2. I have a single state

with

M', =(llM Il)=4m + =4m „,+2

4~ p"y' 4~

For K =2, finite-mass renormalization is not an issue.
! 1 ) is the state containing one particle and one antiparti-
cle which are at rest with respect to each other. Since A,

is greater than zero M] is greater than 2m phy
thus prov-

ing that complex scalar (P )2 theory has no two-particle
bound states. This is in agreement with the well-known
result for the real scalar (P )z theory [5].

(d) K ~ 4. Exact spectra are obtained only in the con-
tinuum limit. The limit is attained when I take K ~ ~,
since then the fractional momenta (x, =k,.+/K) carried
by the constituent particles vary continuously from 0 to 1

in each state. But, practically, the dimensionality of the
Harniltonian matrix grows rapidly as K increases, as illus-
trated in Table I.

Because of the large computational difficulties arising
from the large dimension of the Hamiltonian matrix for
increasingly large values of K, I concentrate my discus-
sion on large but finite values of K. I adopt the notation
that states are identified by their A. =0 structure. The ra-
tio of the mass (M) of the lowest four-particle state
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2.8

I' 26-

I I I ) I ( I

16

2.36

2.35

2.34—
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3 4 5 6 7 8910
) I )

20

2.32—

2.31—

FIG. 1. Ratio of the mass (M) of the lowest four-particle
state i(K/4) ) to the mass (M, ) of the lowest two-particle state
~(K/2)'), as a function of K for different values of k. Solid
lines: with mass renormalization; dashed lines: without mass
renormalization. Smooth lines are drawn through results ob-
tained at values of K which are multiples of 4.

i(E/4) ) (two particles and two antiparticles) to the
mass (Qe, =M, ) of the lowest two-particle state
i(E/2) ) (one particle and one antiparticle) is plotted in
Fig. 1 as a function of K for different values of A, . I
choose rn =1.0 for the calculations without mass renor-
malization. The results from Fig. 1 indicate that the in-
variant mass of the state (M/M, ) approaches 2m h„, for
large E in the weak-coupling region (A, (8). Convergence
becomes much slower as the coupling becomes stronger.
The results begin to depend significantly on whether mass
renormalization is adopted when k exceeds about 8. In
the theory under discussion the only dimensionless pa-
rameter is A. /m . In Fig. 1, for A, =16 the dashed curve
represents A, /m =16 for all E, while the solid curve
represents A, /m =12 at E =8. Its value decreases with
increasing E.

I now study the Fock-space decomposition of the state
i(E/4) ) for A, =2 as a function of E. Let me denote the
square of the coefficient of the state ~(E/4) ) by Co, and
the sum of the squares of the coefficients of all two-
particle state components of this state by C&. In Table II
I present Co and C, as functions of E. The fact that Co
differs from unity with increasing E indicates the pres-
ence of scattering in the continuum limit. C, remains
close to unity, indicating that the dominant mixing of the
four-particle state ~(E/4) ) is with other four-particle
states (all of which have higher invariant masses at A, =0).
For real-scalar P theory the renormalized coupling is
nonvanishing in 1+1 dimensions [17]. My results for
complex scalar theory are also consistent with that con-
clusion.

The matrix diagonalization gives the invariant mass

2.30—

Q. 24

4.20-

4.16—

4.1 2—

4 08-

4.04-

4 00-

2.020

2.018—

2.014—

2.010—

2.006—

2,002—

2.000—

2.36

2.35-

2.34—

2.32—

) I I ) I I i I

3 4 5 6 78 10

K

I I I I I I

) I

3 4 5 6 78910
K

(b)

I

2 3 4 5 678 10

K ~
l I I I I I

2)2

20

20

20

TABLE II. Co the square of the coefficient of the state
~
(K/4) ), and C„ the sum of the squares of the coefficients of

all four-particle state components of this state, as a function of
I( at A, =2.0.

2.31—

2.30—
I l l l ) I I234567810

K ~ 20

4
8

12
16

C0

0.9990
0.9915
0.9865
0.9798

Cl

0.9990
0.9981
0.9979
0.9979

FIG. 2. Invariant mass of all the states at X=4 (single-
particle m phy 1 0) as a function of k for A, =2.0. The horizon-
tal reference line shows the mass at A, =O. Smooth lines are
drawn through results obtained at values of EC which are multi-
ples of 4.
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10

I I & & I I

0 VJ

I i I I I I I ]

10

I I I I I I I

4

FIG. 3. The intrinsic dimensionless cou-

pling A. /m as a function of A, in the scheme
with mphys 1.0. The bare coupling at which

the mass gap vanishes in the calculation {the
critical coupling A,, ) with fixed mass parame-
ters in the Lagrangian (m =1.0) is shown as a
horizontal line. Both results correspond to
K =8.

and Fock-space composition of many multiparticle states.
The lowest excitation is the state with one particle and
one antiparticle with the mass of either fixed at
m h„, =m =1.0. At K =4, there are 3 two-particle (one
particle and one antiparticle) states and 1 four-particle
state (two particles and two antiparticles). All these
states reappear at E values which are integer multiples of
4. I select the case with mass renormalization for the
moment. In Fig. 2 the invariant masses of these four
states are plotted as functions of E for A, =2.0. As men-
tioned earlier, states are identified by their Fock-space
structure at X=O, and the mass at A, =O is shown as a
horizontal reference line. The results for the four-
particle state indicate the lack of bound states in the con-
tinuum limit, since the convergence is similar to that of
the two-particle state.

I now examine the behavior of the theory with in-
creased coupling, both with and without the finite-mass
renormalization. Without mass renormalization, the
DLFQ results yield an invariant-mass squared eI of the
lowest excitation state (one particle and one antiparticle
in the present case), which decreases with increasing A,

and eventually becomes negative for all values of K ~4.
The calculations which incorporate the finite-mass renor-
malization define the value of the mass gap, and thus
avoid this vanishing mass gap. I consider the results at
E =8 as a typical example. Here the mass gap is found
to vanish at the critical coupling A.~=19.57. This is
shown as a horizontal reference line in Fig. 3. The values
of the intrinsic dimensionless coupling A, /m with mass
renormalization are plotted as a function of A, in Fig. 3
and are clearly seen to approach A, ~ as A.~~. Thus, it is
impossible to go to a strong-coupling (to exceed A, c) re-

gion by adopting mass renormalization. Thus finite-mass
renormalization prevents the phase transition by restrict-
ing the theory to the weak-coupling region.

The actual value of A,, changes with K. In the treat-
ment of the real-scalar theory in Ref. [6], they obtained
the results for K =16 with the corresponding value of
Ac=43. 9. This should be compared with Chang's Har-
tree result [14] of 54.3 when expressed in conventions of
Ref. [6] for the coupling constant. For comparison,
another numerical method [18] gives 22. 8&A,c ~51.6.
The significance of my result for k, is not so much of a
concern since the discussions are restricted to a single
phase of the theory.

V. CONCLUSIONS

DLFQ, a recently proposed method to solve relativistic
field-theory problems nonperturbatively, is applied to
((t )z theory in the complex scalar region of the field. The
results are in agreement with those of real scalar theory
with properties established for constructive quantum field
theory. The exact physical spectrum emerges only after I
take the limit E~~. In this e6'ort I have obtained re-
sults with modest values of I(, which are sufficient to
sense the continuum limit for weak coupling. Finite-mass
renormalization restricts the discussion to a single phase
of the theory.

The value of dimensionless coupling I,/m approaches
A, c (the critical coupling at which the mass gap vanishes)
but remains below it.

With a fixed mass parameter in the Lagrangian, as I in-
crease the value of the coupling strength, the mass gap
vanishes. This indicates the nontrivial vacuum structure
of the theory.

Lastly, I emphasize the fact that I have neglected the
zero-mode problem (k+=0 states). This might lead to
the presence of zero-momentum condensates, which is
essential for a study of the vacuum structure, and thus to
an extension of the method.
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