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Quantum kinks: Solitons at strong coupling
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We examine solitons in theories with heavy fermions. These "quantum" solitons differ dramatically
from semiclassical (perturbative) solitons because fermion loop effects are important when the Yukawa

coupling is strong. We focus on kinks in a (1+1)-dimensional P theory coupled to fermions; a large-N
expansion is employed to treat the Yukawa coupling g nonperturbatively. A local expression for the fer-

mion vacuum energy is derived using the WKB approximation for the Dirac eigenvalues. We find that
fermion loop corrections increase the energy of the kink and (for large g) decrease its size. For large g,
the energy of the quantum kink is proportional to g, and its size scales as 1/g, unlike the classical kink;
we argue that these features are generic to quantum solitons in theories with strong Yukawa couplings.
We also discuss the possible instability of fermions to solitons.

PACS number(s): 11.10.Lm, 11.15 Kc, 11.15.Pg

I. INTRODUCTION

Topological solitons, despite their inherently nonper-
turbative character, are typically studied semiclassically,
that is, in a perturbative expansion in the coupling con-
stants [1]. The first term in this expansion, the classical
soliton, is the solution to a nonlinear classical field equa-
tion. This solution is nonperturbative because its energy
diverges as the coupling constants, which parametrize the
nonlinearity, vanish. Perturbative corrections to the soli-
ton are important: they split the degeneracies of the clas-
sical solution resulting from Poincare and internal syrn-
metries, and project the solitons onto eigenstates of
momentum, angular momentum, and charge. If the cou-
pling constants are small, however, corrections to the
shape and energy of the soliton are small, and the classi-
cal description of the soliton is essentially accurate.

If the couplings are large, on the other hand, there is
no reason to expect the quantum soliton states to resem-
ble the classical solitons, at least quantitatively. In gen-
eral, the strong coupling behavior of solitons in a quan-
tum field theory is not well known. One notable excep-
tion is the sine-Gordon kink in 1+1 dimensions; because
of the equivalence of the sine-Gordon theory to the mas-
sive Thirring model [2], the sine-Gordon kink at strong
coupling becomes a weakly coupled fermion in the Thir-
ring model, which is well described by perturbation
theory.

In this paper we study strongly coupled solitons more
generally, when such a fortuitous equivalence does not
arise. We focus in particular on solitons in theories with
large Yukawa couplings. One motivation for doing so is
the following. Fermions can acquire mass through a Yu-
kawa coupling to a scalar field with nonvanishing vacu-
um expectation value. Solitons in such theories often car-
ry {possibly fractional) fermion number. It has recurrent-
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ly been suggested that when the Yukawa coupling is large
such a soliton may have less energy than a fermion in a
constant scalar field background; consequently, fermions
may be unstable to the formation of solitons [3—11]. To
determine whether this is so, however, one must know
the form and energy of solitons in a strongly coupled
theory, which may differ appreciably from classical soli-
tons. Indeed, we expect fermion loop corrections to
significantly affect the solitons when the Yukawa cou-
pling is large.

One means of studying a strongly coupled Yukawa
theory is through a large-N expansion [5,10—13]. To
leading order in 1/N, the theory can be solved for arbi-
trary values of the Yukawa coupling. This expansion
captures some of the strong-coupling behavior of the
theory, which one hopes is representative even when N is
not large. To carry out this expansion, we introduce N
fermion flavors and choose the N dependence of the cou-
plings so that the theory has a sensible N ~ Do limit, with
only fermion loops contributing to Green's functions to
leading order in 1/N. The total contribution of the fer-
mion loops can be summed in closed form to give the ex-
act large-N effective action

S,tr[({)]=S[P]—iN ln det(iP ),
where S [P] is the classical scalar field action and g is the
Dirac operator in the presence of the field P.

Solitons in this large-N theory are c-number
configurations of the scalar fields; scalar field fluctuations
are suppressed because scalar loops do not contribute to
the effective action to leading order in 1/N. The shape of
the large-N soliton differs from the classical soliton, how-
ever, since it extremizes not the classical action but the
effective action (1.1). The fermion loop contribution
significantly alters the form of the soliton when the Yu-
kawa coupling is large. In this regime, where quantum
effects are so important, the large-N soliton is truly a
"quantum soliton. "

To determine the form of the quantum soliton, we need
to know iNln det(if') explic—itly for an arbitrary scalar
field configuration. One generally resorts to some local
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approximation, such as the gradient expansion [5,14], ac-
curate for slowly varying configurations. The gradient
expansion, however, breaks down for topological solitons
in the theories that we are considering. Another ap-
proach to computing the fermion loop contribution relies
on the fact that for static solitons (iN/T) lndet(i4) is
just the energy of the "Dirac sea, " the sum of negative ei-
genvalues of the Dirac equation in the soliton back-
ground [15]. Unfortunately, the Dirac eigenvalues must
be numerically computed [16] for each separate back-
ground considered, rendering this approach inconvenient
for a variational problem.

In this paper, we propose a hybrid of the gradient ex-
pansion and eigenvalue sum methods. Following an idea
of Wasson and Koonin [17],we use the WKB approxima-
tion to estimate the Dirac sea eigenvalues for an arbitrary
static scalar field background. We then sum these to ob-
tain a local expression for the fermion vacuum energy.
Unlike the gradient expansion, this expression is finite for
topologically nontrivial configurations. Using this WKB
approximation, we extremize the effective action to find
the form of the quantum soliton in the large-N theory.

We illustrate this method on a well-known example,
the kink of the (1+1)-dimensional P theory coupled to
fermions. The classical kink is reviewed in Sec. II. In
Sec. III, we derive the WKB approximation for the
large-N effective action in this theory. This result is used
in Sec. IV to find the form of the quantum kink, which is
contrasted with the classical kink. The question of fer-
mion stability is also discussed. In Sec. V, we present our
conclusions and discuss the features of the model that we
expect are generic to strongly coupled solitons.

II. CLASSICAL KINKS

We begin by recalling the form and quantum numbers
of the classical kink [1]. The (1+I)-dimensional
theory coupled to N flavors of fermion has the Lagrang-
ian

Z= —(a„y)'— (y' Nu')'+ y q—' ir) — g
y |('.

(2.1)

The N dependence of the parameters has been chosen so
that this theory has a sensible N ~ ~ limit. If we rewrite

P as ~N q&, the parameter N becomes an overall scale:

N

X=N —,'(B„(p) —
—,'A, ly —v ) + g g'(i8 ger)g' . —

(2.2)

In the vacuum state ~q&~=u, the scalar field has mass
&2A,u and the fermion field mass gv. In two dimensions,
v is dimensionless, the scalar self-coupling A, has dirnen-

sion 2, and the Yukawa coupling g dimension 1. It is
convenient to substitute for A, and g the parameters

1/2 1/2
2 2

(2.3)

The parameter x,&
is proportional to the scalar field

Compton wavelength (and, as we will see, the size of the
classical kink), and will serve as the overall scale of
length and energy in the theory. There are two dimen-
sionless parameters v and y, the latter being proportional
to the ratio of fermion and scalar masses.

The Lagrangian (2.2} gives rise to the field equations

d y+A, qr ku —tp= —g—gN, .

(i8—gq&)f'=0 .

(2.4)

(2.5)

The topologically nontrivial solutions of these equations
give a "classical" description of the soliton states in the
Hilbert space, which is accurate when the quantum
corrections are small. If we neglect the fermion source
term, the scalar field equation (2.4) has the well-known
static kink solution

Xy„(x)=u tanh
~c1

(2.6}

which is the lowest energy state with topological charge
[y( ~ ) —y( —ao }]/2v = 1. There is also an antikink solu-
tion which interpolates from v to —v, with topological
charge —1. The Dirac equation (2.5) in the kink back-
ground (2.6) has a self-conjugate zero-mode solution

[ sech(x/x„)]»
gv(x) = (2.7)

The state with the zero mode occupied has the same ener-

gy as that with the zero mode unoccupied. Since there is
a zero mode for each flavor i, the kink is 2 -fold degen-
erate. If n of the zero modes are occupied, the kink has
fermion number n —

—,'N, which ranges from —
—,'N to —,'N

[18]. The antikink too has degeneracy 2, and fermion
number ranging from —

—,'N to —,'N. Although the fermion

zero modes increase the degeneracy of the kink, their
contribution to the source term in the scalar field equa-
tion (2.4) vanishes, so the kink (2.6) remains a solution
even in the presence of ferrnions. The energy of the clas-
sical kink

2v'2 —
q 4 2 NE[p„]= N&Au =—ucl 3 x

&

(2.8)

has no dependence on the Yukawa coupling g, even
though the kink carries fermion number due to the zero
modes.

This classical picture leads to the fascinating possibility
that, even if fermion number is conserved, "ordinary"
fermions may be unstable to the formation of solitons
carrying fermion number. A configuration consisting of
a widely separated kink and antikink, each carrying fer-
mion number —,'N, has zero topological charge, fermion
number N, and energy —,'u (N/x, i ). On the other hand, a
set of N widely separated ferrnions in the vacuum back-
ground y= v, a state which has the same quantum num-
bers, has energy Ngu =y (N/x, i }. Thus, when y )—', u, it
is energetically favorable for a state of N fermions to
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coalesce onto a spontaneously created kink-antikink pair.
Each kink acts as a kind of bound state of —,'N fermions.

Even more surprising, in a theory with one flavor of fer-
mion (N= 1), a single fermion could split into a kink-
antikink pair, each with fermion number —,.

This putative instability occurs only when y is large,
however, where the quantum corrections from fermion
loops are important and the semiclassical approximation
breaks down. To determine whether fermions are truly
unstable, one must compare their energy not with that of
a classical kink, but of a "quantum kink, "which includes
the effects of quantum corrections. The quantum kink
extremizes not the action but rather the effective action.
In the next section we will derive a local expression for
the effective action suitable for finding the quantum kink.

III. EFFECTIVE ACTION FOR KINKS

iN ln det(i g—gy)—
+fd x 5X(p)+iN lndet(i8 —gu) . (3.1)

%e have added the counterterm

5X(y) = AN(y v)— (3.2)

Quantum solitons are field configurations that extrem-
ize the effective action, which includes quantum correc-
tions. To find the form of quantum solitons, one needs an
explicit local expression for the effective action. The fa-
rniliar gradient expansion, however, diverges for topolog-
ically nontrivial configurations in (1+1)-dimensional P
theory. In this section, we derive an alternative local ap-
proximation for the effective action that is finite for
kinks.

Since we are interested in the properties of solitons for
large Yukawa coupling g, the effective action must be cal-
culated nonperturbatively in g. This can be done by tak-
ing the number N of fermion flavors to be large, holding
k, v, and g fixed, and calculating to leading order in 1/N.
Scalar field fluctuations are subleading in 1/N, so only
fermion loops contribute to the large-N effective action

~.~[+]=fd'x&.dm)

=N fd x —,'(B&p) —
—,'A, (y —v )

This counterterm also renders finite the two-point func-
tion

2

2A, v
2 g

p=0 7T
(3.5)

where o.=y —v. Fermion loop contributions to all other
Green's functions are finite.

We must write the effective action (3.1) in a more tract-
able form if we are to find the quantum kink explicitly.
The gradient expansion [5,14]

)= —V, ( )+X', '( )+ (3.6)

is a useful approximation for slowly varying fields. The
first term in this expansion is minus the effective poten-
tial:

I'.s(m) A,
(

2 v2)2+ g 21 P g
(

2 u2)
N 4 4m v

2 4m.

(3.7)

The term with two derivatives is

4~(m) 1+ (B„q))
12m'

(3.&)

E.s[q ]=E.i[a ]+Q[m],
a sum of the classical energy,

(3.9)

At this point, we discover that the gradient expansion
fails for topological solitons in this theory; any
configuration p(x) with unit topological charge must pass
through y=0 somewhere, at which point X'es'(y), as well
as higher-order terms, diverges. This failure is quite gen-
eral. For the gradient expansion to converge, field gra-
dients must be small relative to gy, the "local fermion
mass. " Since the latter vanishes at the core of solitons
with fermion zero modes, the gradient expansion neces-
sarily breaks down there, no matter how slowly varying
the field.

An alternative approach for a static scalar field back-
ground such as the kink is to express the effective action
in terms of Dirac equation eigenvalues [15,4]. For time-
independent (x), the effective action equals E,tt[y]T, —
where T= dt and E, [ps] is the energy of the
configuration,

to tame the divergent contributions of the fermion deter-
rninant to the one- and two-point functions, and the
overall constant iN ln det(i' —gu) to ensure that
S,s[q&=u] =0. The coefficient A is fixed by requiring the
one-point function to vanish at y =v,

2

E„[y]= f dz — + (tp —v )
N ~ 1 dy 1

Xl — 2 dZ

XZ=
X i

(3.10)

d p l0=2AV +Ig tr
(2'�) gf

—gv

Q[qr]= lndet(i8 —gy) — lndet(ig gv)+5E—[y] .iN . iN
T Tso that v remains the minimum of the effective potential.

With a cutof A on the spatial momentum p&, Eq. (3.3)
gives (3.11)

(3.3) and the quantum correction, the fermion vacuum energy,

A dp)
5X(y) = — (y' —u') f2m. o

(3.4)
The first term in Eq. (3.11) can be interpreted as the ener-
gy of the Dirae sea in the background y(x).

To write Eq. (3.11) more explicitly, we observe that the
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Dirac equation (2.5) implies that the spinor components Using k „L +5 (k)=k' „'L =2mn, and letting L~oo,
we can write Eq. (3.17) as [15]

obey the Schrodinger-type equations

d'
2 2—y V+(z) —y +x„e+ /+=0z' (3.12)

E,.„,[~]=Ny f' " [5,„,„(k)+5, (k)]

o
(3.18)

in a static background g(z), where

V~(z) = —1 + 1 d
+

U2 yU dz
(3.13)

where 5= —,'(5,„,„+5,dd). The integral over k diverges as
the momentum cutoff A is removed, but this divergence
is canceled by the counterterm energy:

We restrict y(z) to configurations of unit topological
charge that obey y( —z) = —q&(z); the Schrodinger poten-
tials V (z) are then even, and the solutions g (z) can be
taken to be parity eigenstates. (Here cr=+ labels the
upper and lower spinor components. ) Since ~q&(+ ~ )

~

=v,

the potentials V (z) vanish at +De, so Eq. (3.12) has a
continuous spectrum of states classified by their asymp-
totic momentum, k =Qx, ~

e y, and th—eir parity. The
asymptotic forms of the continuum wave functions

5E[q]= —f dz 5X(q&)

y N & dk
277 x~1 0 gk2+y2 ~ v

(3.19)

Ed;„[q&]= — Ng g e, ——1

cr i cl

(3.16)

and the sum over continuum eigenvalues,

E„„,[y]=— Ng g g e(k—„)—e(k' „')1

o n )0 parity

,„,„(k,z) — cos[kz+ —,'5,„,„(k)],
2,
' —++ 00

,dd(k, z) — sin[kz+ —,'5,dd(k) ],g~+ QO

serve to define the phase shifts 5,„,„(k) [5,da(k)] for
the even- (odd-) parity states. If we put the system into a
box, ~z~

(
—,'L, with periodic boundary conditions, Eq.

(3.14) implies that the allowed momenta satisfy
k „L+5 (k)=2irn. Equation (3.12) may also have a
series of discrete bound states with eigen values

e;(y /x, ,. Because the configuration has topological
charge 1, the upper spinor component is guaranteed [18]
to have a zero mode, a+=0. Thus, any configuration
with unit topological charge can carry fermion quantum
numbers.

The difference of fermion loop contributions can be
written as the shift of the Dirac sea energy [15]:

iN . iN
T

ln det(i8 gp) — ln —det(i8 gv)—
T

Ng g e z
——e' i', (3.15)

1

O' A,

where e & denotes the positive root of e &, and e'
& are the

Dirac eigenvalues in the constant configuration qr(x) = v.

Equation (3.15) may be separated into the sum over
discrete eigenvalues,

The sum of Eqs. (3.16), (3.18), and (3.19),

Q [%]=Ed;„[tp]+E„„,[q ]+5E[f) (3.20)

is precisely the fermion vacuum energy (3.11).
The expression (3.20) for the fermion vacuum energy is

much more explicit than Eq. (3.1), and can even be com-

puted analytically for certain scalar field configurations

[19]. For an arbitrary background, however, e, and

5 (k) must be computed numerically [16]. Wasson and

Koonin [17] showed how to speed up the convergence of
these "brute force" numerical calculations by employing
the WKB approximation for the high momentum phase
shifts, but the discrete eigenvalues and low momentum

phase shifts must still be computed numerically for each
separate field configuration. Thus, Eq. (3.20) is still not
very convenient for extremizing the effective action. '

Taking our cue from Ref. [17],we adopt the WKB ap-
proximation for all the Dirac eigenvalues, both continu-
ous and discrete, and use them in Eq. (3.20) to obtain a
local expression for the energy of an arbitrary scalar field

configuration. The resulting expression will be accurate
for field configurations slowly varying on the scale of the
fermion Compton wavelength, but unlike the gradient ex-

pansion, does not diverge for solitons. We will then use

this approximation expression to find the form of the
quantum kink in Sec. IV.

In the WKB approximation, the continuum eigenfunc-
tions of Eq. (3.12) are

+k +JP (3.17)
iCampbell and Liao [4] were able to extremize (3.9) using

powerful inverse scattering methods, but only for the special

casey =1.
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gwKB„(k, z) = cos f 'k (z')dz'
Qk (z)

by

5 (k)= f dz[k (z) —k], (3.22)
1qwKB(k )—

k (z)
sin f k (z')dz'

0
(3.21)

k (z)=Qk' —y'V (z),

whence the phase shift defined through Eq. (3.14) is given

independent of parity. [We assume V (z) ~ 0 every-

where; this will be true if y(z) does not vary too rapidly. ]
Ilsing the WKB phase shifts (3.22) in the integral (3.18)
and adding the counterterm energy (3.19), we find

oo
2

Ew~K~B[ )+fiE[ )
y + f d 1

'P Q V +Q V
4m Xl v

+(1+V+) ln I++—V+ +(1+V ) ln 1++—V (3.23}

We also need to approximate the sum over discrete eigenvalues (3.16). In the WKB approximation, the Schrodinger
equation (3.12) has discrete eigenvalues e whenever w (e), defined by

e)
w (E)=—f dzk (z)8(k (z)), k (z)=Qx„e —y —y V (z), (3.24)

equals half an odd integer, w GZ+ —,. The number of discrete eigenstates is given by the integer closest to w (y/xd).
We define e (w) by inverting Eq. (3.24) and setting e (w)=0 for 0~w ~w (0). The sum over discrete eigenvalues
(3.16}in the WKB approximation is then written

w GZ+1/2
0 ( II) ~ m (y /X

&
)

We separate this into two terms,

EwKB [~] E(1) [~]+E(2) [tp)

~~(w)—
&el

(3.25)

(3.26)

where Ed';,', [y] is the integral approximation of the sum (3.25),

(y/~,
&

)

Ed; [g] Q f dw e' (w)
CF X~l

and Ed;,', [y] is the remainder. The integral (3.27) may be rewritten

y/x
&

Ed';,', [q ) = ——g f de w (e)

1 y/x
&f dz g f dek (z)8(k (z))

(3.27)

2 f" d. V' —V, +&—V +(1+V, )ln
4m x,l

Q/I+ v, /

1+Q —V+

1+V
+(1+V ) ln I++—V

(3.28)

Adding the contributions from the continuum (3.23}and discrete (3.26) states, we obtain
r

2
gwKB[ )

y + f ~
d 1 g + 1 g + 1 d(P

1
g7 1 dye

4~ +cl oo v2 2 v2 yv dz v2

+ 1 g 1 d g 1 dye

2 v yv dz v~ yv dz

for the fermion vacuum energy in the WKB approximation.

+Ed;,', [0 ] (3.29}
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When y(z) is slowly varying on the scale of the fermion Compton wavelength, the number of discrete states
w (y/x, &) is large, the sum (3.25) is well approximated by the integral (3.27), and Ez;,', [y] is much smaller than
E~;,', [g]. If we therefore neglect E~;,', [y], Eq. (3.29) provides a completely explicit local expression for the energy of a
static configuration:

2

EwKB[ ]
—N f d

1 dV + 1
(

2 2)2
x~ —~ 2 dz 2v

+ y N f d 1
% + 1 0 + 1 dV

1
0 + 1 dV

x~ —~ v 2 v yv dz v yv dz

1 y 1 dy
2 v yv dz

1 dy
yv dz

(3.30)

For y(z) constant, Eq. (3.30) reduces to the effective potential (3.7). When y(z) is not constant, Eq. (3.30) yields a
correction to the effective potential which, unlike the gradient expansion, does not diverge for configurations going
through y =0.

We conclude this section by comparing the WKB approximation of the fermion vacuum energy of the classical kink,
y,~(z) = v tanh(z), with the known exact result. The WKB approximation should be accurate for y ))1, when y,~(z) is
slowly varying relative to the fermion Compton wavelength. The Dirac equation can be solved analytically in the clas-
sical kink background. Using the resulting eigenvalues, Chang and Yan [19] computed the exact fermion loop correc-
tion (3.20) to the energy of the classical kink:

Q[ma]=
xc&

&(y) . (3.31)

2 y —1 2 2

b(y)= + g —')/2yn n+——+y —n arctan —1
7T 7T n

yEZ .

The function b, (y) is given by a complicated integral, but for integer y it simplifies to [19]
1/2

(3.32)

Using the Euler-Maclaurin formula, we obtain the large y behavior of Eq. (3.32):

&(y) = 3 vr 2
— 1 (4j& —5 )!!

y + 2&2p+ — &y +const, p= g k
"82k =0.0206

2n. 8 3V'2 22"(2k)!
(3.33)

where B2k are the Bernoulli numbers. The series defining

P is asymptotic, so we only keep 4 or 5 terms in the sum.
The WKB approximation is obtained by substituting

y,~(z) into Eq. (3.29) and expanding for large y:

g WKB[

~c]

3 K 2
V

g WKB[ ]
N

~c]

3 m 2 1
y +—&y +const

2m 8 6

+E~a"..[V.i] . (3.34)

+ 2&2P+ — &y +const
3&2

(3.36)

[2~ N
Ea;..[V.&]

=
~ci

2&2P+
3&2

1
&y +const

6

(3.35)

Thus the WKB approximation of the ferrnion vacuum en-

ergy is

Using the WKB approximation for the discrete eigenval-
ues e,. together with the Euler-Maclaurin formula, we
find the leading behavior of the remainder term:

in agreement with Eq. (3.33) to this accuracy. The y
term, of course, is just the contribution from the effective
potential (3.7). The nonanalytic subleading &y depen-
dence cannot be seen in the gradient expansion, but is
correctly given by the WKB approximation (3.29).

Obviously, the coefficient obtained for the subleading
&y dependence would be incorrect if we made the fur-
ther approximation of dropping Ez [q&], as was done in
obtaining the local expression (3.30). Nonetheless, Eq.
(3.30) correctly gives the order of the subleading depen-
dence. In general, it provides a useful estimate of the
correction to the effective potential for a spatially varying
field.
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IV. QUANTUM KINKS

f(y)=
4 1 d
4 y2v2 dz

'2

1 y dy
2~v' f(y)

(4.1)

Using the program COLSYS [20], we have solved this
equation numerically for various values of the parameters
subject to the boundary condition y(+~)=+v. The
solutions obtained interpolate smoothly between —v and
v. Indeed, their profiles are almost indistinguishable from
the hyperbolic tangent shape of the classical kink (see
Fig. 1). The slope of the quantum kink differs from that
of the classical kink, however, being much steeper for
certain values of the parameters.

We can more easily see how the slope of the quantum
kink depends on the parameters of the theory by restrict-
ing gr(x) to the one-parameter family of functions:

y„(x)= v tanh
p Xp

(4.2)

The quantum kink extremizes the effective action of
the (1+1)-dimensional P theory. For small Yukawa
coupling y, the effective action (3.1) differs only slightly
from the classical action, so the quantum kink nearly
coincides with the classical kink. When y is large, how-
ever, fermion loop corrections are important, and the
quantum kink differs significantly from the classical kink.

To find the explicit form of the quantum kink, we use
the local approximation (3.30) for the energy E,ff[qr) of a
static scalar field configuration derived in Sec. III. The
equation of motion for the quantum kink follows from
extremizing Eq. (3.30):

2 d2 2 2

1+ =2y —1 + grin~ f(y)!
4m. v f(q) dz v 4n.u

'2

where xp is the "size" of the ansatz. We write the energy
of the ansatz,

XpE ff(zp)=E, I(zp)+Q(zp) zp=
Xci

(4.3)

E, (Izp)= —u zp+
2 2 1

Xcl 3 zp
(4.4)

has a minimum at zp = 1, of course. The quantum contri-
bution is obtained by substituting the ansatz (4.2) into the
WKB approximation (3.29) and retaining the leading
power ofy

gWKB(Z )
N

Xcj

3 K 2

2~ 8
y zp+0

ZQ

1/2

(4.5)

The WKB approximation is accurate when the neglected
terms are small, which requires zp))1/y. That is, the
size of the ansatz must be much larger than the fermion
Compton wavelength (xp &) I/gv).

In the following discussion, we assume large Yukawa
coupling y ))1. The size of the quantum kink is found
by minimizing (4.3),

9zp= 1+
4a

3'
16 v2

—1/2

(4.6)

and depends on the values of both dimensionless parame-
ters y and v. When v ))y, the kink size zp=1 and the
quantum kink reduces to the classical kink, because the
classical contribution to the energy is dominant in this re-
gime. On the other hand, when v «y (but v»1), the
kink size zp=(9/4m. —3m/16) '~ (v/y)=2. 8(v/y); the
quantum kink is much smaller than the classical kink.
The energy of the quantum kink in this regime,
E,ff=(4/n m/3)' uy(—N/. x,I ) =0.48vy(N/x, I ), is larg-

where zp is the ratio of the size of the ansatz to that of
the classical kink. The classical contribution
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FIG. 1. A representative quantum kink. The solid line shows
the solution of Eq. (4.1) for the parameters y =20 and u =4.
The dashed line shows the ansatz y(z)=v tanh(z/zp), with zp
given by Eq. (4.6). The dotted line shows the classical kink,
zp =1.

0.0
0

I

2 3
I I I I I I

FIG. 2. The function U(t). The exact fermion vacuum ener-
gy for the ansatz y(z) = U tanh(z/zp ) is given by
(N/x,

& )y U(yzp ).
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er than the classical kink energy (2.8) due to the positive
fermion vacuum energy (4.5).

When u & 1, the WKB approximation (4.5) breaks
down because the kink size is no longer much larger than
the fermion Compton wave}ength. By using the exact
Dirac eigenvalues for the background (4.2) rather than
the WKB eigenvalues, however, we can calculate the fer-
mion vacuum energy Q (zo ) without approximation, just
as for the classical kink. We find

N
Q«o) =

+cl
yU(yzo), U(t) = A(r)

(4.7)

where b, (y) is the fermion vacuum energy of the classical
kink defined in Sec. III. The function U(t) is shown in
Fig. 2, and equals I/m at its tninimum t = l. (That its
minimum is at t = 1 can be seen from Eq. (3.32) and from

db 1=—fi,o+ —+ gdt 2 m

1/2 ' ' 1/2
2 t —n+— arctant+n

—1
ll

1/2

(4.8)

obtained by a calculation similar to that in Ref. [19].) When u « 1 (and y ))1), the fermion vacuum contribution (4.7)
dominates the energy, so the size of the quantum kink is determined by the minimum of Q(zo), that is, zo= 1/y. The
quantum kink energy, E,tr=(y /rr)(N/x,

~
), is much larger than that of the classical kink (2.8).

The classical contribution to the energy E„(zo) is minimized for zo = 1, when the ansatz size equals the scalar field
Compton wavelength, xo=x,~. The quantum contribution Q(zo) is minimized for zo= 1/y, when the ansatz size equals
the fermion Compton wavelength, xo=x,l/y =1/gv. The size of the quantum kink always lies somewhere between
these two values. The three limits we considered above,

4v N1«y «v zo 1 E,ff=
+cl

—1/2 1/2
9

1 « v «y =zo =
4m.

3'
16 y

4 m
eff

N
vy

Xcl
(4.9)

v «1«y zo= —,E,ff=—1 y N

y
' 'ff ~ X„

correspond to the regime in which the classical energy is
dominant (u ))y), the regime in which the fermion vacu-
um energy is dominant (u «1), and the regime in which
both contributions are important (1 «u «y). For u )y,
the classical and quantum kink nearly coincide, while for
v ~y, the quantum kink is smaller and has greater energy
than the classical kink. Note that due to the fermion vac-
uum contribution (4.7), the energy of the kink is bounded
below by (y/rr)(N/x, ~)=Ngu/rr, that is, 1/rr times the
mass of N fermions.

We now turn to the question of fermion stability. In
Sec. II, we saw that for suSciently strong Yukawa cou-
pling, y & —', v, a state of N widely separated fermions has
greater energy than a kink-antikink pair, computed in the
classical approximation, so one might expect a kink-
antikink pair to appear spontaneously, with the ferrnions
coalescing to occupy the zero modes. Since the zero
modes do not increase the kink energy, the energy of the
fermions on the kinks is independent of y in the classical
approximation, and would be much less than the energy
of the ferrnions in a constant scalar field background for
y »v . The kink binding energy could approach 100%
for very large Yukawa coupling.

Instead we have found that, for large y, quantum
corrections significantly increase the energy of the kink.
For u ) 1 (but u «y), a kink-antikink pair has energy
-yu(N/x, &), greater than the energy of N fermions, so
the fermions are stable. For v ~ 1, the energy of a kink-
antikink pair may be less than y (N/xd) =Ngu, in which

I

case a state of N fermions may be unstable to the forma-
tion of a kink and antikink, each carrying fermion num-
ber —,'N. Since the kink energy is never less than

(y /rr)(N/x,
~ ), however, the energy of a widely separated

kink-antikink pair is not significantly less than that of the
original fermions; the binding energy per fermion cannot
exceed 1 —2/n. —36go.

Up to this point, we have been chiefly concerned with a
large Yukawa coupling, y »1; we conclude this section
by briefly considering y &1. When y is not large, the
WKB approximation is no longer useful, but we can use
the exact solution (4.7) for the ansatz (4.2). The case
y =1 is interesting, because then z0=1 minimizes both
the classical and quantum contributions to the energy;
the classical kink is an extremum of the effective action
restricted to the subspace of functions (4.2). One might
suspect from this that the classical kink extremizes the
effective action over the space of all functions. Campbell
and Liao [4] proved this to be the case by using inverse
scattering methods (which were tractable only when

y =1). Thus, the quantum kink exactly coincides with
the classical kink (for all values of u) when y = l. As we

~The stationary phase approximation of Ref. [4] is equivalent
to our large-N approximation.

Interestingly, the theory is supersymmetric precisely when

y =1 [4,21].
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have seen, they differ when y%1.
The energy of the kink when y = 1 is

4 2 1 NE,ff= —
U +—,y =1,

3 m- x„ (4.10)

so a kink-antikink pair will have less energy than N wide-

ly separated fermions when v ( [—', (1—2/m. )]'r2=0.37. It
turns out that for y = 1, N fermions are unstable to kink
formation only if v (( I/4n. )'r =0.28; the most energeti-
cally favorable configuration of N fermions for y = 1 and
v ) 1/(4n)'r~ .is a bag [4]. (See also Ref. [9].)

Finally, for small Yukawa coupling, y & 1, the fermion
Compton wavelength is larger than the scalar field Comp-
ton wavelength, so quantum corrections tend to increase
the size of the kink. When U «y & 1, the quantum con-
tribution dominates the energy, and the kink has size
zo= 1/y and energy F.,tt=(y/rr)(N/x, &).

V. CONCLUSIONS

We have examined the effects of quantum corrections
on solitons in a (1+1)-dimensional P theory with a large
Yukawa coupling y to fermions. To treat the Yukawa
coupling nonperturbatively, we have solved the theory in
the large-N limit, where N is the number of flavors. The
solitons in this theory are kinks which carry fermion
number ranging from —

—,'N to —,'N. In the classical ap-
proximation, the energy of the kink is independent of y,
and its size is proportional to the scalar field Compton
wavelength. We have found that fermion loop correc-
tions increase the energy of the kink and (when y ) 1)
reduce its size. As a result of the fermion vacuum contri-
bution, the kink energy is bounded below by
(y /n)(N/x, ) ) =.

Ngv /tr, and its size can be as small as the
fermion Compton wavelength.

When y is large, a state of N fermions is expected on
classical grounds to be unstable to the formation of a
kink and antikink, each carrying fermion number —,N.
Quantum corrections eliminate this instability for v -1
by increasing the kink-antikink energy. The instability
persists for U & 1, but the difference in energy between the
N fermions and the kink-antikink pair is only about 36%
because the kink energy is proportional to the Yukawa
coupling in the large-y limit.

In the large-N limit, scalar loops are suppressed. The
energy of scalar field fluctuations is of order 1/x, &, small
compared to the classical kink energy -NU /x, &. What
happens when N is not large? Will a single fermion decay
into a kink-antikink pair when N =1? Scalar field fluc-
tuations are still relatively unimportant as long as U is
large; 1/v is the usual semiclassical expansion parame-
ter. We found fermions to be stable in this regime. Sca-

lar corrections become more important for small U, but
on the other hand 1/x, ) is still small relative to the quan-
tum kink energy y/nx, ) when y is large. It is difficult to
say whether a single fermion is unstable when v ~ 1.

Some aspects of the model discussed in this paper are
peculiar to two dimensions. Presumably only in two di-
mensions can a fermion split into a pair of solitons, each
carrying fermion number —,'. We expect other features of
the quantum kink to be more universal, however. First,
its energy acquires a linear dependence on the Yukawa
coupling in the strong coupling limit through the fermion
vacuum energy. Second, for large Yukawa coupling, fer-
mion loop corrections tend to reduce the size of the soli-
ton in the direction of the fermion Compton wavelength.
Both of these features apply not only to the (1+1)-
dimensional solitons described in this paper, but also to
(3+ 1)-dimensional (large-N) nontopological solitons [10].

General arguments can be adduced to suggest that
these are generic features of quantum solitons in any
(large-N) strongly coupled Yukawa theory in 3+1 di-
mensions. The fermion loop contribution to the effective
action is iN ln—det(ig ). After renormalization, its con-
tributions to the effective potential (of order g ) and to
the two-derivative term (of order g ) overwhelm the
tree-level contributions when g is large. For large Yu-
kawa coupling, therefore, quantum solitons are deter-
mined by the fermion vacuum energy (iN/T) ln det(i8).
If this has a minimum for given boundary conditions, the
resulting configuration must have size R —1/gv (the only
scale present) and energy —(gv) R ", where d is the di-
mension of the soliton. For pointlike solitons (d =0), the
energy is proportional to the Yukawa coupling. Assum-
ing that the large-N restriction is only a technical one to
facilitate calculations at strong coupling, we conjecture
that these properties hold for quantum solitons in any
strongly coupled Yukawa theory.

Note added in proof. D. Wasson [Nucl. Phys. A535,
456 (1991)] has also considered Dirac sea effects on the
kink.
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4Skyrmions, in which the fermion loop contribution to the
two-derivative term vanishes after renormalization, apparently
present an exception [5,6,14,16].

[1]S. Coleman, Aspects of Symmetry (Cambridge University
Press, Cambridge, England, 1985), Chap. 6; R. Rajaraman,
Soli tons and Instan tons (North-Holland, Amsterdam,
1982).

[2] S. Coleman, Phys. Rev. D 11, 2088 (1975); S. Mandelstam,
ibid. 11,3026 (1975).

[3] P. Vinciarelli, Lett. Nuovo Cimento 4, 905 (1972); T. D.
I.ee and G. Wick, Phys. Rev. 0 9, 2291 (1974);A. Chodos,



5496 STEPHEN G. NACULICH 46

R. Jaffe, K. Johnson, C. Thorn, and V. Weisskopf, ibid. 9,
3471 (1974); M. Creutz, ibid. 10, 1749 (1974); M. Creutz
and K. Soh, ibid. 12, 443 (1975); W. Bardeen, M.
Chanowitz, S. Drell, M. Weinstein, and T. Yan, ibid. 11,
1094 (1975); R. Friedberg and T. D. Lee, ibid. 15, 1694
(1977); 16, 1096 (1977); 18, 2623 (1978).

[4] D. Campbell and Y.-T. Liao, Phys. Rev. D 14, 2093
(1976).

[5] R. MacKenzie, F. Wilczek, and A. Zee, Phys. Rev. Lett.
53, 2203 (1984); R. MacKenzie, Ph. D. thesis, ITP Report
No. NSF-ITP-84-135 (unpublished); Mod. Phys. Lett. A 7,
293 (1992).

[6] E. D'Hoker and E. Farhi, Nucl. Phys. B241, 109 (1984);
B248, 77 (1984).

[7] R. L. Davis, Phys. Rev. D 38, 3722 (1988).
[8] D. Kaplan, Phys. Lett. B 235, 163 (1990).
[9] R. MacKenzie and W. Palmer, Phys. Rev. D 42, 701

(1990).
[10]J. Bagger and S. Naculich, Phys. Rev. Lett. 67, 2252

(1991);Phys. Rev. D 45, 1395 (1992).
[11]T. Banks and A. Dabholkar, Phys. Rev. D 46, 4016 (1992).
[12] S. Peris, Phys. Lett. B 251, 603 (1990).

[13]A somewhat different large N limit is used in M. Einhorn
and G. Goldberg, Phys. Rev. Lett. 57, 2115 (1986); K.
Aoki, Phys. Rev. D 44, 1547 (1991);K. Aoki and S. Peris,
Report No. UCLA/92/TEP/23, OHSTPY-HEPT-92-008
(unpublished).

[14] I. Aitchison and C. Fraser, Phys. Lett. 146B, 63 (1984);
Phys. Rev. D 31, 2605 (1985); C. Fraser, Z. Phys. C 28,
101 (1985); L.-H. Chan, Phys. Rev. Lett. 54, 1222 (1985);
56, 404(E) (1985); 55, 21 (1985);O. Cheyette, ibid. 55, 2394
(1985);J. Zuk, Z. Phys. C 29, 303 (1985).

[15]R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D
10, 4114 (1974); 10, 4130 (1974); 12, 2443 (1975).

[16]G. Ripka and S. Kahana, Phys. Lett. 155B, 327 (1985); S.
Kahana, R. Perry, and G. Ripka, ibid. 163B, 37 (1985); R.
Perry, Nucl. Phys. A467, 717 (1987).

[17]D. Wasson and S. Koonin, Phys. Rev. D 43, 3400 (1991).
[18]R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
[19]S.-J. Chang and T.-M. Yan, Phys. Rev. D 12, 3225 (1975).
[20] U. Ascher, J. Christiansen, and R. Russell, ACM Trans.

Math. Sftw. 7, 223 (1981).
[21] P. DiVecchia and S. Ferrara, Nucl. Phys. B130, 93 (1977);

J. Hruby, ibid. B131,275 (1977).


