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Nonrelativistic field-theoretic scale anomaly
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We construct a nonrelativistic scalar field theory with a quartic self-interaction in 2+1 dimensions as
an infinite mass limit of a relativistic theory, and calculate the two-particle scattering amplitude and
two-particle bound-state energy. We show that the results are the same as for quantum mechanics of
two scalar particles interacting via a 5-function potential. Renormalization of the theory reveals an
anomalous breaking of scale symmetry. The renormalization group structure is presented and the anom-

aly is expressed in terms of the trace of the energy-momentum tensor.
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I. INTRODUCTION orders to give

mom
T(p~ao~A) =ao 1— ln —+ +O(ao)A i~ 2

p 2

where p is the relative momentum and A is the momen-
tum cutoff. T diverges in the limit A~~, unless a
redefinition of the coupling constant is made:

o.o =o, — 1n-m A

4~ p
(1.2)

where o, is independent of the cutoff, and p is an arbitrary
scale. The amplitude is then reexpressed as

T(p, u, p)=a 1 — in++ +O(a )
4m p 2

(1.3a)

The perturbation expansion can now be summed to a11

Two- and three-dimensional 5-function potentials have
been studied as models for applying renormalization
theory to nonrelativistic (NR) quantum mechanics [1].
The bare 5-function potentials do not give an interaction
between particles. This has been used to argue that A,P
theory, at least in the nonrelativistic limit, is trivial.
However, a renormalization procedure produces a point
interaction with a nonzero scattering amplitude and a
single bound state. More recently, planar point interac-
tions have arisen in the ¹ nyon system. A system of N
partic1es interacting with a Chem-Simons gauge field,
and interacting among themselves via 5-function poten-
tials, has been shown to obey fractional statistics. In ad-
dition, classical soliton solutions have been constructed
for this system [2].

For two particles in two dimensions interacting via a
6-function potential of strength ao, the quantum mechan-
ical scattering amplitude to second order in the Born ap-
proximation contains a UV-divergent integral. Upon reg-
ularization, it becomes

T(p, a, lJ, ) =a 1+ ln++
4n p 2

(1.3b)

In addition a bound state is found, with energy

2
P 8 y

2m

The scattering amplitude can be rewritten
—1

8~ 2mE~
T(p, Ett ) = ln

p

(1.4)

(1.5)

which shows that it depends on only one dimensionful
parameter (other than the mass) Ett and not on a and p
separately. The branch of the logarithm is chosen real
for a negative real p . From (1.2) we see that a finite
bound state energy requires ao to be negative, implying
that the attractive point interaction leads to nontrivial
physics, whereas the repulsive one does not.

This nontrivial point interaction can also be viewed as
a self-adjoint extension of a free Hamiltonian on a space
with one point removed [3]. The self-adjoint extension
parameter then has the interpretation of the renormal-
ized coupling constant n.

The 5-function potential in quantum mechanics is the
formal NR limit of the relativistic Ap theory [4].
2+ 1 dimensions, the relativistic A, (b interaction is super-
renormalizable. The loop corrections to the scattering
amplitude are finite, and therefore no coupling constant
renormalization is necessary. In the NR limit, the ampli-
tude becomes

2
crom 2m i ~ 2A (p)=4m ao 1 — ln + +O(ao)

4m. p 2
(1.6)

in the center-of-mass (c.m. ) frame. The relativistic cou-
pling constant has been written as 4m ao. Since m ))p
in the NR limit, the logarithmic divergence of the quan-
tum mechanical amplitude (1.1) is also apparent in (1.6),
so apart from the prefactor 4m the two amplitudes are
the same. The prefactor is compensated for by kinematic
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factors, which are different for relativistic and NR phys-
ics, so that the resulting cross sections are the same.

We shall study the (2+ 1)-dimensional point interaction
from a NR field-theoretic (second-quantized) approach.
In Sec. II we derive the NR Lagrangian density, calculate
the two-particle scattering amplitude, renormalize the
theory, and find the bound-state energy. In Sec. III the
issues of scale invariance in the NR theory and its anom-
alous breaking are discussed through renormalization-
group techniques.

II. NONRELATIVISTIC FIELD THEORY

The Lagrangian density of the real relativistic scalar
field theory can be written as

(2.1)

where m is the physical mass and 5m is the mass coun-
terterm, determined in an expansion in powers of A,o. We
shall discuss the mass counterterm in the context of the
NR field theory, where we will show that it actually van-
ishes.

Before taking the limit m —+ ao, we must rewrite (2.1)
in terms of NR fields, so we substitute

(e
—

imply+ eimty» }
1

&2m
(2.2)

Terms in X which oscillate with a frequency ~ m will not
contribute to fd x X in the NR limit, so we drop them.
The resulting Lagrangian density is given by

p2 (g
'a, +

2 P
—4'(P'P)', (2.3)

where ao=k,o/4m . The mass counterterm has been
dropped. For convenience we eliminate the mass from
the action by the transformation

X~mX,
t~t/m (2.4)

The mass dimension of time is now —2. The action is
unchanged, and the Lagrangian density becomes

T

(2.&)

[P(x, t),P(y, t) ]= [Pt(x, t), Pt(y, t) ]=0,
[P(x, t), P (y, t)]=5(x—y) .

(2.7)

When we posit the existence of a vacuum state ~0), such
that a(k)~0) =0, the particle picture follows. a(k) an-
nihilates a particle of momentum k, and a (k) creates
one. Therefore, P destroys particles and P creates parti-
cles. As a consequence of the U(1) symmetry of (2.5) the
number of particles is conserved, as it should be in NR
quantum mechanics. [We could equally as well have
started with a complex relativistic field theory instead of a
real one, and taken its NR limit. The resulting NR
theory would contain antiparticles, and would possess a
U(1}XU(1) symmetry, implying separate conservation of
particle number and antiparticle number. We could then
choose to work in the zero-antiparticle sector by conven-
tion, and the same Lagrangian density would result. ]

The free NR propagator is given by

d k dc' 1;(„,~.„)l N 'X

(2m) a) ——,'k +ie

8(t) ix
exp

2nt 2t
(2.8)

I e '(p, to) =to —
—,'p —X(p, o) ) —II(p, co)

where, diagrammatically,

(2.10)

The interaction is handled through the usual Dyson per-
turbation expansion of the scattering matrix. There is an
ambiguity in the ordering of the fields in the interaction,
but the physics is independent of the choice of ordering.
We choose to normal order the interaction, so it has the
form PtPtPP. This is what allows us to drop the mass
counterterm.

The only nontrivial Green's functions in this theory are
the (2n)-point functions given by

(2n) (x(& ' ' '
& xn&y) t ' ' ' &yn )

=&0ITP(x) } ' ' '(('(x. )Pt(y&) ' ' Pt(y. )10&, (2.9)

where x;=—(x;, t;). We will be interested in the one-
particle-irreducible (1PI) parts of these Green's functions
in momentum space, defined in the same way as in rela-
tivistic field theories.

Exact propagator. The bare 1PI two-point function is
given by

where vo =—mao. The free fields can be written as Fourier
integrals

-iZ(p, ut) =

2

P(, t)=f, (a)k
(2m. )

d kP*(x,t)= I a*(k)e
(2' }

(2.6)

and

where cok =
—,'k .

Quantization The theory is. quantized by promoting
the fields to operators (P*~P ), and imposing the com-
mutation relations

X(p, o) ) vanishes to all orders due to normal ordering of
the interaction. It is easiest to show that II(p, a)) also
vanishes by noticing that the lowest-order diagram, in
coordinate space, contains the factor 8(y —z )8(z —y ).
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This is seen by the opposing arrows in one of the loops.
This feature persists to all orders; hence, II(p, co) vanishes
exactly. (Note that the second- and higher-order dia-
grams in X(p, co) vanish for this reason as well. ) The re-
normalization condition

R subscripts from now on.
The resulting Lagrangian density

iB(+—7
2 4

(2. 12)

I (2)(p )
— t 2 (2.11)

is then satisfied if 5m =0, so that neither mass renormal-
ization nor field renormalization are required. The ab-
sence of field renormalization allows us to drop the 8 and

I

contains no dimensionful parameters, so the theory is
classically scale invariant. The relativistic theory (2.1) is
not scale invariant, but its limit as m ~ ~ is. The quan-
tum theory, however, requires further examination.

The NR scattering amplitude. The bare 1PI four-point
function is given diagrammatically by

The third and fourth terms vanish because they contain opposing arrows on their loops. Because of the form of the NR
propagator (2.8), the direction of the arrows corresponds to increasing time (in coordinate space), so these diagrams
represent unphysical contributions. In a relativistic theory, these diagrams would correspond to pair creation and an-
nihilation, and would have a nonvanishing contribution. The vanishing of such diagrams in the NR theory can also be
seen as a consequence of analyticity properties in momentum space.

The four-point function can now be expanded in loops,

;p(4)

because only insertions of the one-loop s diagram give nonvanishing diagrams. Apart from an energy- and momentum-
conserving 5 function, the four-point function to one-loop order is given by

lvo
iI', '(—p, , co, , uo, A) = —ivo+ ln

7T

4A

(p, +p~) —4(co, +co2)
1 y ~ ~ ~ ) 4 (2.13)

where A is an ultraviolet cutoff. We redefine the coupling
constant:

—i r'4'(p;, ru, . , u, p)

VO=U +6V

5v= u In —+O(u ) .
1 2 A

4~ p

(2.14)

U= —iv 1+ ln
8m

4p

(P&+P2) 4(~1+~2)

(2.17)

This allows us to rewrite the four-point function in a
cutoff-independent form

—iI '& '(p;, co;, u, p)

The exact scattering amplitude is then

A (p, v, p) =u 1+ In++
4m p 2

(2.18)

EU 4 2= —iv + ln
(Pi+Pe)' —4(~i+~z)

(2.15)
which agrees with (1.3b). Relation (2.14) can now be
made exact:

The renormalized scattering amplitude is gotten by tak-
ing the momenta on shell and going into the c.rn. frame:

U A
vo =v 1 — ln—

4~ p
4,2.19)

A (p, v, p)=v 1 — In~+ +O(u )
4m. p 2

(2.16)

This agrees with (1.3a), with m =1. Because of the van-
ishing of the t- and u-type diagrams, the exact 1PI four-
point function can be expanded in powers of the one-loop
term. The series is summed to give

2 87T./U
—,p e (2.20)

which agrees with (1.4) with m =1. Like Eq. (1.5), Eqs.
(2.17)—(2.19) can also be rewritten in terms of only the
bound-state energy. In particular, the amplitude is given

The bound-state energy is given by the position of the
pole in (2.18):
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by

2E~
A (p, E&)=gn ln

2
(2.21)

6 (e"'(y,x„.. . , x„)
= 0 T 200oy — 8;. y x . . x 0

(3.6c)
where the branch of the logarithm is chosen as in (1.5).
This shows that the only physical parameter is Ez, and it
defines the scale of the physics. The scale dependence in
(2.21) contradicts the apparent scale invariance of the
theory, and is a sure sign of a scale anomaly. In other
words, the classical theory possesses a scale symmetry,
but quantization and renormalization, which involve an
introduction of an arbitrary scale, necessarily break this
symmetry.

III. RGK AND THE SCALE ANOMALY

1VR scale invariance. Scale transformations in the NR
theory take the form

where n is an even integer. Differentiating (3.6a} with
respect to yo and (3.6b) with respect to y and comparing
the sum with (3.6c), we obtain a relation between G(e"'

and the n-point function, given in momentum space by

n —4(n —1)—p;. —2co; 6'"'(p;, c0; )
() ()

Bp; Bco;

iG—e"'(O, p;, co; ) (3.7)

where i =1, . . . , n. Performing a scale transformation
on the momenta and energies gives

3n+4—6'"'(e p;, e co;)x~e x,
t~e t .

(3.1)
iG(e"—'(O, e p, , e co; ) . (3.8)

Under an infinitesimal scale transformation, the fields
change by

5/=[1+x V+2tB, ]P . (3.2)

The charge density p and current density J associated
with this transformation satisfy the relation

Scale invariance implies that (3.5) holds, so the right-
hand side of (3.8) vanishes.

For 1PI functions equation (3.8) becomes

a +(4—n) I'"'(e p;, e co; )
Ba

(),p+V J=28oo —g 8;;, (3.3)
i I (e"'(0,—e p;, e co; ) (3.9)

and, in a scale invariant theory,

where 8 is the energy and momentum tensor [2,5].
The Lagrangian density of the NR (2+1)-dimensional

theory contains no dimensional parameters, so it trans-
forms infinitesimally by

a +(4—n) I'"~(e p;, e co;)=0 .

For the four-point 1PI function this becomes simply

(3.10)

5Ã=(4+x V+2t(), )Z=V (m)+2(), (tX) . (3.4)

Therefore the action remains invariant, and the dilatation
charge and current satisfy the continuity equation
B,p+V J=O. In terms of the energy-momentum tensor,
we get'

g 8;;=28oo . (3.5}

So the spatial trace of the energy momentum tensor
minus twice its time-time component (the Hamiltonian
density), is a measure of scale invariance breaking in the
NR field theory [5].

8'ard identity. The Ward identity related to NR scale
invariance is derived by considering the vacuum expecta-
tion values

G'"'(y, x, , . . . ,x„)= (0~ Tp(y)$(x, ) .
Q (x„)IO),

() I (4)(e —
ap e

—2a~ ) 0
Ba 17 I (3.11)

p(v) =(M
Bp 4m

(3.12)

Like equation (2.19) this equation is exact. The RGE for
1PI functions is

We see that scale invariance of the classical action irn-

plies a scaling relation for the 1PI functions, and in par-
ticular it implies that the four-point function is scale in-
variant. To see whether scale invariance still holds in the
quantum theory, however, we must examine the
renormalization-group equation.

Renormalization group equatio-n (RGE). Equation
(2.19) gave us the relation between the bare and renor-
malized couplings. The p function obtained from this re-
lation is given by

(3.6a)

GJ"'(y,x, , . . . , x„)= (Oi TJ, (y)P(x, ). . . P (x„)iO), ((4 +p(U) I "(p, , co, , u, (M)=0 .
'8 (tt)

Bp Bv
(3.13)

(3.6b)

In relativistic field theories the equivalent statement is 0"„=O.

The anomalous dimension term is absent from this equa-
tion because, as was argued in part 2, field renormaliza-
tion is absent from the NR theory. Consequently, the
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Green s functions retain their canonical dimensions, and
the solution to (3.13) has the form

il ~o '(O, e p, , e co;, u, p)

=P(u) I' '(e p;, e co;, v, p), (3.20)(4) —a —2a

I'"'(p;, co;, u, )M)=Q "0 v' v, ln

where Q is the appropriate dynamical variable, e.g. ,

(3.14)
or equivalently as an operator equation rejecting an
anomalous trace of the energy and momentum tensor:

Q =
—,'p —to for n =2,

Q =
—,'(p, +p2) —to, t—o2 for n =4,

and v' is the running coupling constant given by

(3.15)

2 2

g (3;; =2)9oo+ A'00 .

IV. CONCLUSION

(3.21)

u'(u, in@/Q) =u 1+ ln
4m. Q

(3.16)

+p 4+n I'"—'(e p;, e co;, u, p)=0 .
cx Bp

(3.17)

Inserting this into (3.13) gives

a a+P(u) +4 n I'"'—(e p;, e co;, u, )M)=0 .
BEL BU

(3.18)

Finally, for the four-point function we get

a a+P(v) I' )(e p;, e co;, u, dtt) =0 .
Oct BU

For n =4, the 1PI function (2.17) does indeed have the
form dictated by (3.14)—(3.16), with Q(v') =v'. Rescaling
the momenta and energies in (3.14) and then
differentiating with respect to a and p gives the identity

The (2+1)-dimensional NR field theory with quartic
self-interaction is exactly solvable, at least up to the two-
particle scattering amplitude and bound state. The
theory is classically scale invariant, but acquires an
anomaly upon quantization of the fields and renormaliza-
tion of the scattering amplitude. The expression for the
anomaly is exact, in contrast with re1ativistic scale
anomalies, which can only be expressed to finite order in
perturbation theory. Another NR scalar field theory
with the above properties is the A. (tI) P) theory in 1+1
dimensions.

When the NR scalar theory is coupled to a Chern-
Simons gauge field it is suggested that the degree of diver-
gence of the theory is reduced, and renormalization is no
longer required [6].

It is yet to be determined whether the field theoretic
approach to NR quantum mechanics will yield useful re-
sults for more than two particles. I leave these calcula-
tions and the inclusion of Chem-Simons gauge field in-
teractions for future work.
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