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A framework for background-independent open-string field theory is proposed. The approach in-

volves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-

string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical "space of all

open-string world-sheet theories. " It is built into the formalism that classical solutions of the string field

theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that,
when expanding around a classical solution, the infinitesimal gauge transformations are generated by the
world-sheet BRST operator.

PACS number(s}: 11.17.+y

I. INTRODUCTION

Though gauge-invariant open- and closed-string field
theories are now known, the problem of the background
dependence of string field theory has not been successful-
ly addressed. This problem is fundamental because it is
here that one really has to address the question of what
kind of geometrical object the string represents. The
world-sheet or cr-model formulation of string theory is
the one known formulation in which anything can be
done in a manifestly background-independent way. It
has therefore been widely suspected that somehow one
should do string field theory in the "space of all two-
dimensional field theories, " by finding an appropriate
gauge-invariant Lagrangian on that space. The tangent
space to the "space of all two-dimensional field theories"
should be the space of all local operators, including
operators of very high dimension, time-dependent opera-
tors of negative dimension, and operators containing
ghost fields. This approach, which has been pursued in

[1—7], has two glaring difficulties: (1) Because of the ul-
traviolet difficulties of quantum field theory, it is hard to
define a "space of all two-dimensional field theories" with
the desired tangent space (this is why the cr-model ap-
proach to string theory is limited in practice to a long-
wavelength expansion); (2) one has not known what prop-
erties such a space should have to enable the definition of
a gauge-invariant Lagrangian.

In the present paper, I will propose a solution to the
second problem for the case of open (bosonic) strings,
leaving the first problem to the future. Considering open
strings means that we consider world-sheet actions of the
form I =In+I', where Io is a fixed bulk action (corre-
sponding to a choice of closed-string background) and I'
is a boundary term representing the open strings. For in-
stance, the standard closed-strong background is

I,= Jd'x&T ' h'a, X~aX +b'JDc
X 8~

Here X is the world sheet with metric h with coordinates
x, and c; and bjk are the usual ghost and antighost
fields. This theory has the usual conserved Becchi-

Rouet-Stora-Tyutin (BR T) current J'. The correspond-
ing BRST charge Q = do J (tr is an angular parame-
ter on a closed strong and 0 is the normal direction) obeys
the usual relations

Q =0 and T; =[Q,b; ], (1.2)

with T;J being here the stress tensor. We then take I' to
be an arbitrary boundary interaction:

I'= f d~V, (1.3)
BX

where V is an arbitrary local operator constructed from
X,b, c; in this paper, we consider two Vs equivalent if
they differ by a total derivative. A two-dimensional
theory with action I=ID+I', with Io defined as above
and I' allowed to vary, will be called an open-string
world-sheet field theory. Our goal will be to define a
gauge-invariant Lagrangian on the space of all such
open-string world-sheet theories (or, actually, a space in-
troduced later with some additional degrees of freedom).

This will be easier than it may sound because the
Batalin-Vilkovisky formalism [8—12] will do much of the
work for us. The use of this formalism was suggested by
its role in constructing and understanding classical and
quantum closed-string field theory [14], its elegant use in
quantizing open-string field theory [15,16] and its role in
string-theory Ward identities [17,18]. In particular,
while the Batalin-Vilkovisky (BV) formalism was first in-
vented for quantizing gauge-invariant classical field
theories that are already known, it was used in closed-
string field theory [14] as an aid in finding the unknown
theory; that is how we will use it here. The BV formal-
ism also has an interesting analogy with the renormaliza-
tion group [6].

Here is a brief sketch of the relevant aspects of the BV
formalism. (For more information see [10].) One starts
with a supermanifold JN, with a U(1) symmetry that we
will call ghost number, generated by a vector field U.
The essential structure on AL is a nondegenerate fermion-
ic two-form u of U = —1, which is closed, d~=O. One
can think of co as a ferrnionic symplectic form. As in the
usual bosonic case, such an co has no local invariants; co

can locally be put in the standard form co=+,d8, dq',
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with q' and 0, bosonic and fermionic, respectively.
Just as in the usual case, one can define Poisson brack-

ets

a,~, a,a
[ A, a I

= " co~~ (1.4)

with co the inverse matrix to coKL and u local coordi-
nates on Jlt. (The subscripts r and 1 refer to derivatives
from the right to left. ) These Poisson brackets, which are
the BV antibrackets, obey a graded Jacobi identity. (At
the cost of some imprecision, I will sometimes refer to co

rather than the Poisson brackets derived from it as the
antibracket. ) The BV master equation is

[S,S] =0 (1.5)

(which would be vacuous if cu were bosonic). An action
function S obeying the master equation is automatically
gauge invariant, with the gauge-transformation law

8 S 1 Bcu BS
5u — co +-

au'au 2 au au
(1 6)

mls

u
(1.7)

If S has U =0, then V has U =1. If we take S as an ac-
tion functional, then the Euler-Lagr ange equations
0=den are equivalent to V =0. As we will see later, the
master equation implies that V =0 or, in components,

VK VI 0a
auK

(1.8)

If we let iv be the -operation of contraction with V,

then the definition (1.7) of V can be written as

with arbitrary infinitesimal parameters e . It is straight-
forward to see that 5S=e Bx [S,S]/2=0. [The gauge
transformations (1.6) will only close, and are only well
defined, independent of the choice of coordinates u,
modulus "trivial" gauge transformations that vanish on
shell. These are of the form 5u =A, BS/Bu, with
gIJ gJI ]-

Let JV be the subspace of JN on which U=0. We
define the "classical action" So to be the restriction of S
to JV. The classical action has a gauge invariance given,
again, by (1.6), with the e restricted to have U = —1. In
usual applications of the BV formalism to gauge fixing, JV
and So are given, and the first step is the construction of
Jlt and S (the latter is required to obey a certain cohomo-
logical condition as well as the master equation). A gen-
eral theorem shows that suitable At and S exist, but their
actual construction is usually rather painful. The insight
of Thorn [15] and Boccicchio [16] (extending earlier
ideas, beginning with Siegel [13],on the role of the ghosts
in string theory) was that, in string theory, JR and S are
related to JV and So just by relaxing the condition on the
ghost number of the fields. Anticipating this structure
was a help in developing closed-string field theory, as ex-
plained in [14],and will be essential here.

If S is any function, not necessarily obeying the master
equation, one can define a vector field V by

(div+ivd )co=0 .

As dao=0, this reduces to

(1.10)

d (/ vcr) =0 )

and so is a consequence of (1.9). Therefore any vector
field derived as in (1.7) from a function S generates a sym-
metry of co. Conversely, if V is any symmetry of co, that
is, any vector field obeying (1.11), then a function S obey-
ing (1.7) always exists at least locally (and is unique up to
an overall additive constant). The possible failure of the
global existence of S would be analogous to the multi-
valuedness of the Wess-Zumino and Chem-Simons func-
tionals in field theory. Since topological questions analo-
gous to this multivaluedness would be out of reach at
present in string theory, we will in this paper content our-
selves with local construction of S.

Suppose that one is given a vector field V that gen-
erates a symmetry of co and also obeys V =0. One might
wonder if it then follows that the associated function S
obeys the master equation. This is not quite true, but al-
most. The actual situation is that, because of the Jacobi
identity of the antibrackets, the map (1.9) from functions
to vector fields is a homomorphism of Lie algebras; con-
sequently, V is the vector field derived from the function
{S,S ) /2 and vanishes precisely if [S,S ) is constant.

To verify this, one can begin by writing the equation
V =Oin the form

[div+ivd, iv] =0

Equation (1.10) then implies that

(di v+i vd )ivco=0 .

Using (1.11),we get

d(ivivco) =0 .

(1.12)

(1.13)

(1.14)

This is equivalent to

d [S,SI =0, (1.15)

so that [S,S j is a constant, perhaps not zero. Since this
argument can also be read backwards, we have verified
that V =0 if and only if [S,S] is constant.

Looking back at the proof of gauge invariance, we see
that the master equation is stronger than necessary. A
function S obeying (1.15) is automatically gauge invari-
ant, with gauge invariance (1.6). The generalization of
permitting [S,S] to be a nonzero constant is not very in-
teresting in practice for the following reason. If we take
S to be an action, then the corresponding Euler-Lagrange
equations are V =0. If these equations have at least one
solution, then by evaluating the constant [S,S] at the
zero of V, one finds that, in fact, [S,S]=0. Therefore

[S,S ] can be a nonzero constant only if the classical
equations of motion are inconsistent.

I can now explain the strategy for constructing a

'v~=dS

Under an infinitesimal diffeomorphism u ~u +@V of
Al, , a two-form co transforms as ru~co+e(i vd+div)co. V
therefore generates a symmetry of co precisely if
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gauge-invariant open-string Lagrangian. There are two
steps. (1) On the space of all open-string world-sheet
theories, we will find a fermionic vector field V, of ghost
number 1, obeying V =0. (2) Then we will find, on the
same space, V-invariant antibrackets, that is, a V-

invariant fermionic symplectic form co of ghost number—1. The Lagrangian S is then determined (up to an addi-
tive constant) from dS=ivco; it is gauge invariant for
reasons explained above. '

Of these two steps, the definition of V is straightfor-
ward, as we will see. The definition of ~ is less straight-
forward, and a proper understanding would depend on
really understanding what is "the space of all open-string
world-sheet theories. " I will give only a preliminary, for-
mal definition of co. At least the discussion should serve
to make clear what structures one should want "the space
of all two-dimensional field theories" to have.

II. DEFINITION OF V

In this paper our open-string quantum field theories
will be formulated on a disk X. As one might expect, this
is the relevant case in describing the classical Lagrangian.
The open-string quantum field theories will be required to
be invariant under rigid rotations of the disk, but are not
required to have any other symmetries such as conformal
invariance. That being so, X must be endowed with a
metric (not just a conformal structure). Since rotation in-
variance will eventually be important, we consider a rota-
tionally invariant metric on X, say,

ds =dr +f(r)d8, O~r ~1, 0 8 2n. . (2.1)

The choice off does not matter; a change in f would just
induce a reparametrization of the space of possible
boundary interactions. In any event the metric on X can
be held fixed throughout this paper.

As explained in the Introduction, by an open-string
world-sheet field theory we mean a two-dimensional
theory with action I =ID+I', where Io is the fixed bulk
action (1.1) and I' is a boundary interaction that does not
necessarily conserve the ghost number. Our first goal in
the present section is to describe an anticommuting vec-
tor field, of ghost number 1, on the space of such theories.
(Later, in defining co, we will add new degrees of freedom
to the open-string field theories. The construction of Vis
sufficiently natural that it will automatically carry over to
the new case. )

One way to explain the definition of V is as follows.
An open-string field theory can be described by giving all
possible correlation functions of local operators in the in-

terior of the disk. Thus the correlation functions we con-
sider are

(2.2)

with arbitrary local operators 6; and P, in t. he interior of
X. The correlation functions (2.2) obey Ward identities.
Since we choose the P, to be interior points, the Ward
identities are entirely determined by the bulk action Io of
Eq. (1.1) and are independent of the choice of boundary
contribution in the action. The boundary interactions
determine not the structure of the Ward identities, but
the choice of a specific solution of them. It is reasonable
to expect that the space of all solutions of the Ward iden-
tities, for all correlation functions in the interior of X, can
be identified with the space of possible boundary interac-
tions, since, roughly speaking, the boundary interaction
determines how a left-moving wave incident on the
boundary is scattered and returns as a right-moving
wave. We will use this identification of the space of solu-
tions of the Ward identities with the space of open-string
theories to define a vector field on the space of theories.
We also will give an alternative definition that does not
use this identification.

If one is given one solution of the Ward identities, cor-
responding to one boundary interaction, then another
solution of the Ward identities can be found by conjugat-
ing by any symmetry of the interior action Io. An impor-
tant symmetry is the one generated by the BRST charge
Q. Conjugating by Q is particularly simple since Q =0.
If e is an anticommuting c number, we can form a one-
parameter family of solutions of the Ward identities with

;P;,=;P; —ie, P;
i=1 i=1

(2.3)

At the tangent-space level, this group action on the
space of theories is generated by a vector field V, which is
anticommuting and has ghost number 1, since those are
the quantum numbers of Q, and obeys V =0 (or
I V, VI =0) since Q =0.

Here is an alternative description of V. Let J' be the
conserved BRST current. Let j =E''jJ Gfx be the corre-
sponding closed one-form. Let C be a circle that winds
once around all of the P, ; for instance, C may be a circle
a distance a from the boundary of X for small a. Since j
is closed, the contour integral fc j is invariant under

a
homotopically trivial displacements of C. The term in
(2.3) proportional to e is just

(2.4)

'On the basis of what happens in field theory, I expect that
when space-time is not compact, the formula dS =i&co is valid
only for variations of the fields of compact support; otherwise,
there are additional surface terms in the variation of S. Of
course, a formula for the change of S in variations of compact
support su%ces, together with locality, to determine S up to an
additive constant.

as one sees upon shrinking the contour C to pick up
terms of the form IQ, G; I. On the other hand, we can
evaluate (2.4) by taking the limit as a~O, so that C ap-
proaches the boundary of the disk. In this limit, f c ja
approaches f&+V for some local operator V defined on
the boundary. There is no general formula for V; its
determination depends on the behavior of local operators
(in this case the BRST current) near the boundary of X
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and so on the details of the boundary interaction in the
open-string field theory. But, in general, we can interpret
JzxV as a correction to the boundary interaction of the
theory, and as such it defines a tangent vector field to the
space of all open-string field theories. This is an alterna-
tive description of the vector field V defined in the previ-
ous paragraph.

The correction JsxV to the boundary Lagrangian re-

sulted from a BRST transformation of that Lagrangian.
Therefore V vanishes when, and only when, the bound-
ary interactions are BRST invariant. The BRST-
invariant world-sheet open-string theories are therefore
precisely the zeros of V. In other words, the equations

V =0 (2.5)

q =0. (2.6)

In the case of the vector field V on the space of open-
string world-sheet theories, the tangent space on which
the matrix q acts is the space of local operators that can
be added to the boundary interaction; so it is closely re-
lated to the space of first-quantized open-string states.
Thus, essentially, q is an operator of ghost number 1 and
square 0 in the open-string Hilbert space; it is, in fact,
simply the usual BRST operator for the world-sheet
theory with that particular boundary interaction.

What we have come upon here seems to be the natural
off'-shell framework for BRST invariance. 06' shell, one
has a vector field V of V =0. V vanishes precisely on
shell, and then the derivative of V is the usual BRST
operator q of q =0. In fact, this structure can be seen,
but is perhaps not usually isolated, in conventional ver-
sions of string field theory.

are the equations of world-sheet BRST invariance. These
equations are certainly background independent in the
relevant sense; no a priori choice of an open-string back-
ground entered in the construction. As explained in the
Introduction, a gauge-invariant Lagrangian with V =0
as the equations of motion can be constructed provided
we can find V-invariant antibrackets on the space of
open-string field theories.

Before undertaking this task, let us make a few re-
marks about the relation of the vector field V to BRST in-
variance. At a point at which a vector field does not van-
ish, there is no invariant way (lacking an affine connec-
tion) to differentiate it. However, at a zero of a vector
field, that vector field has a well-defined derivative which
is a linear transformation of the tangent space. For in-
stance, if V has a zero at, say, u =0, then we can expand
V =pl q I u +O(u ), and q I is naturally defined as
a tensor; in fact, it can be regarded as a matrix acting on
tangent vectors. Upon expanding the equation V =0 in
powers of u, one finds that q Lq M=0 or, more succinct-
ly,

{Q, 5VI =d8, (3.2)

for some 8 of ghost number 1. If we are given two such
tangent vectors 5, V, i =1,2, then {Q, 5;VI =d8, for two
operators 8, . Then we can define the antibrackets:

co(5,V, 52V) = ( 8,8~ & . (3.3)

Here ( .
& is the expectation value of a product of

operators inserted on the disk, in the world-sheet field
theory, and the 8; are inserted at arbitrary points on the
boundary of the disk. Conformal invariance ensures that
the positions at which the 8; are inserted do not matter.
With a view, however, to the later off-shell generaliza-
tion, I prefer to write

co(5,V, 52V)= /do, fd02(8, (o, )82(o2) &, (3.4)

with the length element do (determined from the metric
on X) now normalized so that the circumference is 1.

The correlation function in (3.4) is BRST invariant and
vanishes if either of the 8; is of the form of I Q, . . . I, and
so co can be regarded as a two-form on the space of classi-
cal solutions. co has ghost number —1 since the ghost
number of the vacuum is —3 on the disk, and the shifts
5, V~8;, i =1,2, have shifted the ghost number by +2.
Nondegeneracy of co follows from its relation to the Za-
molodchikov metric g(, ) on the space of conformal
field theories. Indeed, if V and 8'are two spin-1 primary
fields containing no ghost or antighost fields, and
5,V= V, 52V=Bc 8', then co(5,V, 52V)=g(V, W). Ac-
cording to the standard analysis of world-sheet BRST
cohomology, every tangent vector to the space open-
string solutions can be put in the form of 5iV or 52V.
The nondegeneracy of co thus is a consequence of the
nondegeneracy of the Zamolodchikov metric. co(, ) is
really the correct analog of g (, ~ ) when one includes the
ghosts.

In many respects, 8 is more fundamental than 5V. In
string field theory, for instance, the classical string field is
an object of ghost number 1, corresponding to 8. At the
level of states, the relation between 6V and 6 can be
written

(3.5)

This equation has the immediate consequence

are defined on shell; see also [18,17]. We start with a con-
formally invariant and BRST-invariant world-sheet
theory with action I=Io+I', where

I'= f der V, (3.1)
ar

for some V. A tangent vector to the space of classical
solutions of open-string theory is represented by a spin-1
primary field 5V. This perturbation must be BRST in-
variant in the sense that

III. DEFINITION OF THE ANTIBRACKETS b, l5V&=o. (3.6)

We now come to the more difficult part of our
problem —defining the antibrackets. What will be said
here is in no way definitive.

It might be helpful first to explain how the antibrackets

I want to reexpress these formulas in terms of opera-
tors inserted on the boundary of the disk (rather than
states), so that they can be taken off shell. A useful way
to do this is as follows. Let U' be the Killing vector field
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that generates a rotation of the disk, and let ejk be the
complex structure of the disk. Since v is a Killing vector
field, the operator-valued one-form b(v)=v'b;J. E kdx" is

closed. Let

But this formula is ambiguous, since the 8's are not
uniquely determined by the 5V's. I will make a proposal,
though far from definitive, for solving this problem.

b =pc b(v), (3.7)
A. Enlarged space of theories

where the contour C is a distance a from the boundary
of the disk. Since b ( v ) is closed, the operator b, inserted
in correlation functions, is independent of a except when
the contour C crosses operator insertions. The operator
b acts like b, on an open-string insertion on the
boundary of the disk (it acts as bo bo —on a closed-string
insertion at the center of the disk). A version of (3.6) that
involves no assumption of conformal or BRST invari-
ance, and hence makes sense off shell, is the statement

limb =0 .
a~O

(3.8)

This captures the idea that the operators on the boundary
of the disk, which is at a=0, are annihilated by b &. A
similar version of (3.5) that makes sense off shell is

limb 8(o )=5V(o),
a~0

(3.9)

with 0. an arbitrary point on the boundary of the disk.
We will use the symbol b, as an abbreviation for
lim~ ob, and so write (3.9) as b i8=5V

On shell, when 5V is given, 8 is uniquely determined,
either by (3.2) or by the pair of equations

and

5V=b, 8 (3.10)

0= [Q,6] . (3.11)

co(5,V, 52V)= )do, fd r (c82,(o, )8 (o2))2.

Off shell, neither (3.2) nor (3.11) makes sense. Equation
(3.10) still makes sense, but it does not determine 8
uniquely. It determines 8 only modulo addition of an
operator of the form b i ( ). Actually, since we con-
sider 5V to be trivial if it is of the form d ( ), 8 is also
indeterminate up to addition of an operator of the form
d( ). The possibility of adding a total derivative to 5V
or 8 causes no problem. The indeterminacy that causes a
problem is the possibility of adding b, ( ) to 8.

We might want to define the antibrackets off shell by
the same formula we used on shell:

By comparison to string field theory, it is easy to see
the origin of the problem. In string field theory, the basic
field is an object of ghost nuinber 1—an 8, in our present
terminology —and the antibrackets are defined, accord-
ingly, by a two-point function of 8's. Since the perturba-
tion of the (boundary term in the) Lagrangian of the
two-dimensional field theory is defined by 5V=b i8, in

passing from 6 to 5V, we are throwing away some of the
degrees of freedom, namely, the operators annihilated by
b, . To solve the problem, one must find a role in the
formalism for those operators. I will simply include them
by hand.

Instead of saying that the basic object is a world-sheet
Lagrangian of the form

I=IO+ f dcr V, (3.12)
ar

I will henceforth say that the basic object is such a
world-sheet Lagrangian together with a local operator 8
such that

V=b i8. (3.13)

0=(b i[U, (o, ) . U„(o„)]) . (3.15)

This is a consequence of the fact that (as all the operator
insertions are on c)X), the correlation function
(b g;U;(cr, )) is inde. pendent of a. Taking the limit as
the contour C shrinks to a point, this correlation func-
tion vanishes; taking it to approach c)X, we get (3.15).
This Ward identity can be written out in more detail as

The left-hand side is now V, not 5V, and so we are
changing the meaning of 8. Since V is determined by 6,
we can consider the basic variable to be 8, just as in
string field theory. (However, just as in string field

theory, one defines the statistics of the field to be the nat-
ural statistics of V and the opposite of the natural statis-
tics of 8.) Now we can define the antibrackets:

co(5,6,528)= )der, fdo2(5, 8(o, )526(o 2) ) .

To formally prove that de =0, one proceeds as follows.
First of all, if U;(cr; ) are any local operators inserted at
points cr; EBX, then

0=([b,U, (,)]U,(,). U„( „))—( —1) '(U, (,)[b, U,(,)) . . U„( „))
+(—1) ' '( U, (o, )Uz(o.z)[b, U3(o3) . ])+ . =0, (3.16)

with i); such that ( —1) is +-1 for U, bosonic or fermionic (and +I for b
&

U, bosonic or fermionic). Now if
8=8O+g, t, 8;, then

de(5;8, 5J8,5k8)= co(5,8,5„8)+cycli.c permutations .= a
at,

Also, since c)/Bt, is generated by an insertion of 5, V=b i5;8, we have

(3.17)
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co(5,8,5k6) =fdo, do2da, ( [b,5; 8(o)]5J8(o,)5k8(o 3) ) .
a

Bt;
(3.18)

Combining these formulas, we see that des=0 is a conse-
quence of (3.16). To establish BRST invariance of co, one
must show that d (i~co) =0 or, in other words, that

0= do, do2(5 6( o. , }[Q,6)(o 2))+i~j= a
(3.19)

This is proved similarly, using the additional facts that
Ib „Q]=v'8; (the operator that generates the rotation
of the circle) and ItIda v'B;8=0.

B. Critique

What is unsatisfactory about all this? To begin with,
we have been working formally in a "space of all open-
string world-sheet theories, " totally ignoring the ultravio-
let divergences that arise when one starts adding arbi-
trary local operators (perhaps of very large positive or
negative dimension) to the boundary action. Even worse,
in my view, we have tacitly accepted that a theory is
canonically determined by its Lagrangian, in this case
I =Io+ f&zdoV. .That is fine for cutoff theories with a

particular cutoff in place, but runs into difhculties when
one tries to remove the cutoff. In the limit in which one
removes the cutoff the theory really depends on both V
and the cutoff procedure that is used.

In our construction, can we work with a cutoff theory
or do we need to remove the cutoff The ingredients we
needed were rotation invariance, invariance under b

and Q invariance. There is no problem in picking a cutoff
(such as a Pauli-Villars regulator in the interior of the
disk) that preserves the first two (with a modified
definition of b, ), but there is presumably no cutoff that
preserves Q. Therefore we need to take the limit of re-
moving the cutoff. %'ith a cutoff in place, one can use the
above procedure to define co and prove du=0, but the
cutoff co will not be BRST invariant; one will have to
hope to recover BRST invariance of co in the limit in
which the cutoff is removed.

This may well work, if a "space of all world-sheet
theories" (with the desired tangent space) does exist. The
main point that arouses skepticism is actually the ex-
istence of the wished-for theory space. Even if such a
space exists, there is something missing (even at a formal
level) in my above definition of co. Because of the cutoff
dependence at intermediate stages, an open-string field
theory does not really have a naturally defined local
operator V representing the boundary interaction. Even
formally, there is some work to be done to explain what
type of objects V and 6 are (independently of the partic-
ular cutoff' procedure) such that the key equation
V=b, 6 makes sense. If this were accomplished, one
could perhaps give a direct formal definition of co mani-
festly independent of cutoff procedure.

IV. CONCLUSIONS

I hope that I have at least demonstrated in this paper
that, in trying to make sense of the "space of all open-
string world-sheet field theories, " the important structure
that this space should possess is a BRST-invariant anti-
bracket. This will automatically lead to a natural,
background-independent open-string field theory in
which classical solutions are BRST-invariant world-sheet
theories and on-shell gauge transformations are generated
by the world-sheet BRST operator. The reasons for hop-
ing that the appropriate antibrackets exist are that they
exist on shell, they exist in string field theory, and they
would exist (as we saw in the last section) if one could to-
tally ignore ultraviolet questions. Moreover, the anti-
brackets are the one important structure that always ex-
ists in (appropriate) gauge fixing of classical field theory.
Other structures, such as metrics in field space, etc. , may
or may not exist, but have no general significance in off-
shell classical field theory.

Perhaps it is worth mentioning that although our con-
siderations may appear abstract, they can be made con-
crete to the extent that one can make sense of the space
of open-string field theories. One does not even need the
space of all open-string field theories, since the considera-
tions of this paper are local in theory space and never in-
volve sums over unknown degrees of freedom. If one un-
derstands any concrete family of two-dimensional field
theories, one can determine the function S on the param-
eter space of this family (up to an additive constant) by
integrating the formula V ~IJ =ADJS; this formula can be
made entirely concrete (in terms of correlation functions
in the given class of theories}. I hope to give some exam-
ples of this elsewhere.

It seems reasonable to expect that natural antibrackets
also exist on the space of all two-dimensional closed-
string field theories. It would be nice to understand at
least a formal definition (even at the imprecise level of
Sec. III). As for defining an anticommuting vector field

on the space of closed-string theories, I hope that this can
be done by embedding the two-dimensional world sheet
as a nontopological defect in a topological theory of
higher dimension and by using the higher-dimensional
world much as we used the disk in the present paper.
Background-independent closed-string field theory may
therefore be closer than it appears.
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