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Quantum collapse of a self-gravitating shell: Equivalence to Coulomb scattering
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A spherically symmetric thin shell of dust with a fixed rest mass M is considered as a model for gravi-
tational collapse in general relativity. For a special choice of the time variable, the dynamical equations
of the shell have the same form as those of a charged relativistic particle moving radially in an external
Coulomb potential. The critical charge of the Coulomb potential, Z=137/2, corresponds to the rest
mass M of the shell attaining the Planck mass value M&. A boundary condition for wave functions at the
singularity is determined by requiring that the Klein-Gordon product and the total energy be conserved.
This leads uniquely to the spectrum of the relativistic "scalar hydrogen" obtained long ago by Sommer-

feld, if Z =137(M /2M') is substituted for the "central charge. " All stationary wave functions are ex-

pressed by means of standard special functions. The scattering states are symmetric under time reversal
for arbitrarily high energies. In particular, their asymptotic form shows that precisely the same amount
of probability and energy comes out as was sent in. This is surprising, because energy and/or informa-
tion losses down black holes are to be expected. The full solvability and the analogy to the charged par-
ticle does not, however, automatically remove some interpretational problems typical for quantum gravi-

ty.

PACS number(s): 04.60.+n

I. INTRODUCTION

In quantum gravity, progress has often been achieved
by studying simplified, solvable models (see, e.g., [1,2]}.
For this reason, fields or strings on lower-dimensional
spacetimes (as, e.g., [3,4]), lower-dimensional theories of
gravity (as [5]), or finite-dimensional minisuper space
models (as [6,7]) abound in the literature.

In the present paper, we study another system with a
finite number of degrees of freedom: a spherically sym-
metric thin self-gravitating shell (we follow papers [8,9]).
Our motivation is twofold. First, as with any solvable
minisuperspace model, the dynamics of the shell helps us
to clarify certain conceptual problems. Second, some of
the spacetimes in which the shell moves contain an
asymptotica11y flat region; thus, unlike in cosmological
models, one can investigate the scattering of matter by
the gravitational interaction. This scattering is a quan-
tum version of gravitational collapse, and as such it in-
vokes the problem of singularities and of the irreversibili-
ty of the collapse due to the formation of black holes [10].

Our shell is made out of incoherent dust. Let us first H9 =M cosh
M BR

m

2R

call attention to the fact that the three-dimensional
stress-energy tensor of any spherically symmetric shell is
necessarily isotropic and describes thus an ideal fluid.
Not to contaminate the dynamics by a physical force, we
put the surface tension equal to zero. This reflects the
idea of matter particles that interact only through gravi-
tation.

In the present era of strings and membranes (whose ac-
tion is most naturally chosen to be proportional to the n-

volume of the "n-brane"} one may feel forced to justify
the use of dust. While the action that is proportional to
the three-volume is physically sensible for, say, domain
walls between the false and true vacua, it does not lead to
the familiar form for gravitational collapse that we would
like to study. The reason is that, roughly speaking, the
rest mass of a three-brane is proportional to the second
power of its radius. Hence, the membrane will in general
reach its gravitational radius by expanding.

In Ref. [9], the time coordinate for the shell dynamics
was chosen to be the proper time along the shell history.
The corresponding Hamiltonian operator

'Present address: Department of Mathematics, University of
York, Heslington, York, YO15DD, U.K.

[for the classical version, see Eq. (2)] has been shown to
possess a positive self-adjoint extension if the rest mass
M of the shell is smaller than about one Planck mass Mz
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(m=M/Mp). In this case, a unitary quantum theory
was constructed. The corresponding boundary condition,
on a boundary of the configuration space, not of a space-
tirne, kept the shell away from the singularity. However,
many questions remained open, such as the following:
How many self-adjoint extensions exist below the Planck
mass? Are there any physically meaningful theories
above the Planck mass? Does the shell possess any bound
states and what is their spectrum? Are there scattering
states and what is the S matrix?, etc. One difficulty was
that the Schrodinger equation was not a difFerential
equation —it contained derivatives of all orders.

In the present paper we recast the problem into a much
more elegant and natural form by a clever choice of the
time variable. The classical system then becomes formal-
ly identical to a relativistic charged particle with zero
spin which is radially falling in a Coulomb potential. A
quantum version of this problem was studied in the
1920's by Sommerfeld [11],and later by Bethe [12]. Both
Sommerfeld and Bethe looked for solutions of the Klein-
Gordon equation with a Coulomb potential of the form
m /2R.

2
} m2 c%+,% —M'% =0 .a~ 2R aR'

This corresponds to the Wheeler-DeWitt equation for the
shell, and it is this method of quantization on which we
shall focus our attention in the present paper. Another
option is to take the corresponding square-root Hamil-
tonian

a2
H = — +M

BR

1/2
m

2R

[see Eq. (3) of Sec. II] as was done in the electromagnetic
case by Herbst [13]. (Thus, altogether there are three
nonequivalent quantum treatments of the same system,
two of them associated with the Hamiltonians H9, H„,
and the third one with the Wheeler-DeWitt equation
above. ) Sommerfeld almost threw away all s waves be-
cause they did not seem to him to be sufficiently regular
at the origin, but, in spite of his misgivings, he wrote
down the spectrum anyway. Bethe found two different
spectra, but he kept only Sommerfeld's because the ma-
trix elements of the kinetic energy between the states cor-
responding to the other spectrum seemed to him to
diverge. Bethe's argument is, however, inconclusive be-
cause the self-adjoint extensions of various operators of
the model do not act as the "naive" differential operators
which he uses. (This follows from the existence of a so-
called "weak zero mode, " and will be explained in the
next paper, Ref. [14].) As a by-product of the present pa-
per, we find an independent, self-consistent and rather
simple argument in favor of Sommerfeld's spectrum.

In constructing our quantum mechanics, we cannot
avoid some well-known conceptual problems of quantum
gravity. First of all, by choosing difFerent time coordi-
nates and quantization methods mentioned above, we ob-
tain quantum theories which are not unitarily equivalent

to each other. In particular, the theory of the Harniltoni-
an operator H» is not unitarily equivalent to that of H9.
This reflects the "multiple choice problem" of time [2].
The nonequivalence of the quantum theory associated
with H» from that of the present paper based on the
Wheeler-DeWitt equation is due to different factor order-
ings (see [2]). One should note, however, that these
different quantum theories have at least some qualitative
features in common, especially the existence of a unitary
evolution (generated by a positive Hamiltonian) if the rest
mass of the shell is lower than about one Planck mass as
well as the symmetry of the scattering states under time
reversal.

Another problem is how to construct a Hilbert space
from solutions to the Wheeler-DeWitt equation (this is
the "Hilbert space problem" of Ref. [2]).

For our particular model, we can use the method de-
scribed in Ref. [15], which is based on the existence of
time symmetry (the conservation of energy), and on the
positivity of energy. There is, of course, the question of
how general such a method can be: in full (classical) gen-
eral relativity, there is no such time symmetry [16].
However, at least for the broad class of asymptotically
flat spacetimes, there could be such a symmetry [17], al-
beit only for the asymptotic evolution, and, moreover, the
total energy is classically well defined, and it is positive
[18]for all systems in this class.

The plan of the paper is as follows. In Sec. II, we write
the basic equations of the classical version of the model
as they were given in Refs. [8,9]. Then, we introduce the
time coordinate such that the new equation is formally
identical with the dynamical equation of a spinless
charged relativistic massive particle in a Coulomb poten-
tial. In Sec. III, we write down the corresponding
Wheeler-DeWitt equation and use the formal analogy to
the classical charged scalar field in a static external po-
tential to find two conserved currents: that of charge and
that of total energy. We discuss the physical interpreta-
tion of these two currents in the quantum theory of the
shell. Finally, we study a time-reversal transformation.
In Sec. IV, we fix the boundary condition at the singulari-
ty by requiring the global conservation of probability and
of energy. We find that these requirements can be
satisfied only if the rest mass of the shell is strictly small-
er than the Planck mass. The boundary condition allows
us to complete the Dirac quantization program by con-
structing a well-defined unitary time evolution with posi-
tive Hamiltonian generator on a well-defined Hilbert
space. The details of this construction will be given in
Ref. [14]. In the present paper, we simply write down the
resulting formula for the Hilbert space inner product.
This enables us to interpret the positive-energy solutions
as quantum wave functions. In Sec. V, using the bound-
ary condition, we rederive the Sommerfeld spectrum and
write down the corresponding wave functions in terms of
standard special functions. The wave functions are all in-
variant under our time-reversal operation. Finally, in
Sec. VI, we draw those conclusions which are reasonable
at the present rudimentary stage of the theory, and list a
number of open problems. Throughout the paper, units
are chosen such that A=c =1.
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II. THE MODEI.

In this section, we briefly recapitulate the definition of
the model (following Ref. [9]). Then, we perform the
promised change of time variable and write down the cor-
responding Hamiltonian and super-Hamiltonian.

The world sheet X of the shell is a three-dimensional

hyper surface that separates the spacetime into two
parts —the inside and the outside. The inside spacetime
is a part of flat, Minkowskian, spacetime; the outside
spacetime is a part of the Kruskal spacetime with the
value E/M~ of its mass parameter (which has the dimen-
sion of length). The two spacetimes must induce the
same internal geometry on X (for more details, see [19]or
[20]). In the coordinates w, 8, and y adapted to the
spherical symmetry of X, the internal metric has the form

ds = dr +—R (w)(d8+sin Bdy2) .

E=M 1+ dt
—V(R ),

where the potential V(R ) is given by

m

2R

and m is the dimensionless parameter associated with the
rest mass of the shell, m =M/Ml, . Hence, the energy is
indeed conserved, and the system is symmetric with
respect to time translations r~r+5r We remark .that E
is not positive for all possible values of R and R. Howev-
er, the spacetime geometries corresponding to E &0 do
not contain any asymptotically fiat region (this is ex-
plained in Ref. [9]). Thus, they cannot communicate
with infinity, and no perpetua mobile can be constructed;
Witten's positivity theorem is not violated.

If one looks for the Hamiltonian H9 that generates the
motion determined by Eq. (1) (evolution in the proper
time r), and such that the value of H9 is equal to that of
E, one obtains [9]

Ho =M cosh(Pll /M ) —V(R), (2)

where P~ is the momentum conjugate to R.
In the present paper, we choose a different time vari-

able. Let T be the Minkowskian time coordinate in the
flat spacetime inside the shell. Physically, T is measured

Here, r is the proper time along the shell and R (r) is the
radius of the shell at the time ~. The three-dimensional
energy-momentum tensor SkI of the shell has the com-
ponents

~kl p ~k~1 ~

M o o4'
where the real constant M is the total rest mass of the
shell. In analogy with a single relativistic particle, we
will consider M as a parameter which distinguishes
different dynamical systems from each other. Hence, un-
like E, M is fixed and not a dynamical variable.

Einstein's equations imply the equation of motion for
the shell in the form of a first integral:

' 2 1/2

by clocks synchronized by light signals with the central
clock at R =0 [20]. Then,

'2 ' 2
dT
d7.

dR
d7.

and
2

dR dR
d~ dT

2
dR
dT

2 —1

Substituting this into Eq. (1), we obtain
' 2 —1/2

E=M 1— dR
dT

However, this is the energy of the radial motion of an or-
dinary relativistic particle with rest mass M in a Coulomb
potential V(R). It is easy to verify that the correspond-
ing motion is generated by the super-Hamiltonian

H, 3 =")/ Pa +M —V . (3)

The corresponding Schrodinger equation is again diScult
to solve [the potential V(R) does not commute with the
square root, so that the Schrodinger equation is not
equivalent to a partial differential equation of second or-
der]. The spectrum of the Hamiltonian H» has been
studied in Ref. [13]. In the present paper, we base the
quantum theory of the shell on the super-Hamiltonian h,
which is quadratic in all momenta.

III. WHEELER-DeWITT EQUATION
AND ITS SYMMETRIES

In the present section, we perform the first step in
quantizing the shell by the Dirac method. We write
down the Wheeler-DeWitt equation, and use its formal
identity with the field equation of a spherically symmetric
classical charged scalar field in a Coulomb potential to
find the conserved currents.

Let us choose the polarization so that the states will be
described by complex functions %(T,R) of T and R.
Then, the Wheeler-DeWitt equation corresponding to the
super-Hamiltonian h reads

2 '2
—i —V %'+ 4—M 4=0.~ a a 2

aT BR
(4)

In Eq. (4), we chose the simplest factor ordering of the
one-dimensional Laplacian: one which is symmetric with
respect to the measure dR. As has been explained in Ref.
[9],we are free in the choice of the measure because, if we
reorder the Laplacian to be symmetric with respect to a
new measure, we get a unitarily equivalent theory. In
particular, we could have used the measure

h = (PT V—) +P—„+M
on the extended phase space spanned by the variables T,
R, and PT, P„, where PT is the momentum conjugate to
T. The conserved value of PT coincides with —E. By
solving the Hamiltonian constraint h =0 for —PT, we
identify the true Hamiltonian
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dp(R) =4vrR dR associated with the interpretation of R
as a radial coordinate in a three-dimensional space.

Equation (4) is formally identical to the classical field
equation for a spherically symmetric charged scalar field
in a Coulomb potential, written in the Coulomb gauge.
Equation (4) follows from the action

S= ,' f—dRd'r[T)" (V„+)(V,g) M—'4'4'], (5)

where g" is the metric tensor of a two-dimensional Min-
kowskian spacetime with the pseudo Cartesian coordi-
nates T and R, 7„is the U(1)-covariant derivative,

ly, is not charged? The charge form is, of course, nothing
else but the well-known Klein-Gordon product. (This
will be used in Ref. [14] for the construction, along the
lines of Ref. [15), of the physical inner product, which
will define the final Hilbert space of the system —see also
Sec. IV.)

The energy operator —Pz commutes with the super-
Hamiltonian operator of Eq. (4): there are "common
eigenstates" [15]. This is due to the time-translation sym-
metry of the equation and leads to its separability. The
separating ansatz is

V„q =a„&+i~„q, ~„=(V, o), VE(T,R)=e ' g(R) . (6)

and the overbar denotes complex conjugation. The ac-
tion (5) is invariant under the gauge transformation

A„~A„+B„A,
e "+,

Then, Eq. (4) is equivalent to the "radial" equation

2E 4
Q" + (E M)+— + /=0 .4R'

The name "energy form" for e is justified, since we can
now show that

and also, if the potential A„ is time independent (as it is
in our case), under the time shift T~T+ b, T. The corre-
sponding conserved Noether currents are the charge
current J"and the energy current E": and

e(+E'+E) EQ(+E qlE)+boundary terms

5S
5A„

E~= 0 + 0 —5I'L8+„gq
where L is the Lagrange function in the action (5). These
can be generalized into conserved bilinear currents con-
structed from any two solutions 4 and 4 of the
Wheeler-DeWitt equation (4):

q(+E., %E ) =boundary terms

for all EKE'. Thus, if the "boundary terms" in Eqs. (8)
and (9) vanish, then the states %E diagonalize both the q
and the e forms and the diagonal elements of the e form
are equal just to the corresponding values of the energy,
if the states are q normalized.

To derive Eqs. (8) and (9), we substitute Eq. (6) for the
wave functions in the expression for the charge and ener-

gy forms and currents:

J (4%)=——4 4—4 4 + V4%,
2 BT BT (4 ql )=e' ' I dR + V g 1(t (10)

0 2

J'(4, %)=—
2

E =
—,'(4%'+4'ql'+M 4%—V 4%),

E'= —
—,'(4'0+4%') .

Indeed, the Noether currents which one immediately ob-
tains from the action are only a special case of the bilin-
ear currents, corresponding to 4=4. The conservation
of the bilinear currents follows immediately from that of
Noether's —one just has to replace 4 by 4+c@,and use
the arbitrariness of the complex number c. We call the
conserved bilinear forms the "charge form" q(4, q') and
the "energy form" e(N, 4):

q(@,%)=J dR J (4,%),

e(N, %)=f dR E (C&, 4) .
0

The names "charge" and "energy" form originate in
the analogy with the classical charged field. But what is
the meaning of these forms for the Wheeler-DeWitt equa-
tion (4) that describes a quantum system which, physical-

E'0E WE' PE

E'(O' E%' )E=(i/2)e' ' (E'g'E, gE EgE gE) . —
(12)

(13)

Then, from Eq. (7),

g E'gE +(M V+E E )fE fE—

=(PE.PE )'+E(E+E'+2V)QE.QE .

This, together with Eqs. (10) and (11),yields Eq. (8).
To derive Eq. (9), we multiply Eq. (7) with p=gE by

pE then interchange E with E', complex conjugate, and
subtract the result from the original expression. We ob-
tain

E+E' + V A 0E = ,'(4 E 4E PE 6 )' --—

(y ql )
—1 i(E' —E)T

E' E

X dR E' ~+ M2 —V2

+E'E)fE gE], (11)
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Integration of this equation over (0, 00 ) gives immediate-

ly Eq. (9).
Strictly speaking, one should integrate over a large

spherical box (O, RO) and the boundary terms in Eqs. (8)
and (9) will arise both from the origin R =0 and from the
wall R =Rp of the box. However, we assume the usual
infinite box limit and shall only be concerned with bound-
ary terms arising from the origin.

Similarly, for any two solutions 4 and 4 of the
Wheeler-DeWitt equation, the charge and energy forms
will be independent of T, if some boundary terms vanish.
A detailed study of boundary conditions is postponed to
the next section.

Another important symmetry of Eq. (4) is the time-
reversal transformation T:

T%(T,R ) =4( —T,R ) .

The behavior of the currents under the time reversal is
given by

J (T4,T%)=J (%,4),
J'(T4, T%)= —J'(%,4),
E (T4,T%)=E (%,4),
E'(T4, T%)= E'(%,—4) .

The solutions of form (6) transform in the following way:

Thus, T preserves the energy; in particular, it leaves in-
variant the spaces which are spanned only by the
positive- or only by the negative-energy states. The com-
plex conjugate of a solution to the radial equation (7) is
again a solution and, as usual, it corresponds to the time
reversal of the original solution.

IV. BOUNDARY CONDITION AT THE SINGULARITY

In this section, we will study possible choices of bound-
ary conditions at the singularity R =0 which make the
boundary terms in Eqs. (8) and (9) vanish. We will find
that the global conservation of the energy and probability
determines such a condition uniquely. We briefly men-
tion how this boundary condition leads to a well-defined

Hilbert space inner product on the corresponding
positive-energy solutions.

From the point of view of the ordinary differential
equation (7), the point R =0 is a regular singular point.
We set

g(R)=R y(R), (14)

where y(0) is nonzero and regular, and obtain the
characteristic equation for k,

4

A, (A, —1)+ =0,

with the roots

A,~ =
—,'+—,

' +1—m

Hence, the leading terms at the origin will have the form

QE(T, R)=u(E)(MR) ++v(E)(MR) (15)

where u (E) and v (E) are some constants.
These constants can be fixed by a boundary condition

at the origin. It seems natural to require that the charge
current and the energy current through the boundary
R=0 both vanish. This condition is necessary and
sufficient for the total energy and charge to be conserved.

In fact, the boundary "point" R =0 of the
configuration space can mean two quite different boun-
daries in the classical spacetime that has the shell as its
classical source —namely, it can mean either a past or fu-
ture singularity. This is similar to the situation at the
configuration space boundary R = 00, which also does not
distinguish the two timelike infinities, i + and i, of the
spacetime from each other. Thus, the condition of van-
ishing currents through R =0 can lead to a correlation
between the incoming current at the future
Schwarzschild singularity with the outgoing current at
the past one. Let us stress that as long as one insists that
the configuration space of a constrained system is the
domain on which the wave function is defined, one is not
free to distinguish the past and the future spacetime
singularities, and one is forced to impose the boundary
condition on the configuration space only.

Let us calculate the corresponding leading terms in J'
using Eqs. (12), (13), and (15):

J'(qi~, , y~)=(X+ —A+)u(E')u(E)(MR) + + +(A, —
A, )v(E')v(E)(MR)

+(X,—Z )u(E )u(E)(MR)
— +(X —A.,)u(E')u(E)(MR)

and

E'(qlE. , 'PE)=(EA+ E'A+)u(E')u(E)(MR) + —+ +(EA, E'A, )v(E')u(E)(MR)—

+ (EA+ E'A, )u (E')u(E)(M—R )
+ +(EA, E'A+ )u(E')u (E)(M—R) +
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The following three cases should be treated separately.
(1) m & 1. Then A, +PA, , both roots being real. It fol-

lows that

QF(R)=u(E)(MR) + .

This is Sommerfeld's boundary condition.
(2) m =1. Then A, +=A, =

—,', J'~z 0 vanishes, and

(16)

J'(qiF, +z)=(A, + —
A, )[u(E')v(E) —U(E')u(E)],

E'(%E,%~)=A+(E E'—)u(E')u(E)(MR)

+A, (E E')—U(E')U(E)(MR)

+(EA, + E'A—, )u(E')U(E)

+(EA, E'A, —+)u(E')u(E) .

E'=(E E—')[u(E')+U(E')][u(E)+U(E)] .

This implies immediately that /=0, and there is no non-
trivial solution to Eq. (7) for which the energy and charge
are simultaneously conserved.

(3) m &1. Then A, +=X+ = ,'+i—v,and we obtain

J'(mls, qlz) =(A+ —
A, )[u(E')u(E) —u(E')U(E)] .

Hence,
As 2A, —1 &0 and 2A. + —1 &0, u(E')U(E) has to vanish
for all E'AE. It follows that U (E)=0 for all E, and Eq.
(15) implies

u(E)/u(E)=e '

where a is independent of E. Similarly,

(17)

E'(+s., qiF ) =u(E')u(E) [(E E') 2—iv(E+—E')]+[(E E')+2—iv(E+E')] U(E') v (E)
u(E') u(E)

+ [(E E') 2i—v(E—E')] —(MR ) '"+[(E E')+2i v(E —+E')) (MR )
'"

u(E) u(E )

By using (17), we obtain easily

E'(%z, ill) =u (E')u (E)[1+m cos(arctan2v)+2a

+2v ln( MR ) ] .

There is no a for which this expression vanishes at R =0,
and so there is no boundary condition for solutions of Eq.
(7) which guarantees the conservation of both the charge
and the energy.

The boundary condition (16) together with the radial
equation (7) determines uniquely a definite set
[q'E(T, R)] of solutions. One can then complete the
Dirac quantization program along the lines proposed in
Ref. [15] by constructing the quantum Hilbert space &
from wave packets made from the positive-energy solu-
tions in [qjE(T,R)]. The Hilbert space inner product is
then defined by

(q'z q'E)~=q(q'E q's ) .

One should show that such wave packets are complete in
the sense that any function of R (satisfying suitable falloff'

conditions) may be expressed as the restriction of such a
wave packet to, say, the T=O surface. Further, the same
construction then represents dynamics by a unitary time
evolution with a positive quantum Harniltonian genera-
tor. The details of this construction wi11 be given in Ref.
[14] where it will be necessary to adopt a somewhat
different formalism based from the start on wave packets.

If the rest mass of the shell is larger than the Planck
mass, then the wave function changes its behavior: it be-
comes oscillatory near the origin. We will see in Ref. [14]
that there is then no unitary quantum theory of the shell,
at least within the framework we have employed. The

I

change of the behavior of the wave functions if the rest
mass crosses the Planck border is analogous to what hap-
pens with the wave function of the relativistic electron
(Dirac equation) or relativistic charged spin-0 particle
(Klein-Gordon equation) in a Coulomb field of a central
charge larger than Z=1/(2a) (a is the fine-structure
constant, a = i37). One can find two explanations of what

happens in the literature (these are not contradictory to
each other): Landau and Lifshitz [21] speak about a "fall
of the electron into the center. " This catastrophic behav-
ior of the wave function is associated in Ref. [21]with the
well-known nonexistence of relativistic quantum mechan-
ics for strong potentials. This is emphasized even more
strongly by Bjorken and Drell [22], where the oscillatory
behavior of the wave function is classified as a Klein-
paradox effect. In the real world, there is no such effect.
Quantum field theory must be applied to the system so
that pairs will be created or the vacuum will be polarized
by the strong potential, and the potential will decay or
will be screened. This seems to indicate that in quantum
gravity, one has to "second quantize" the shell. Howev-
er, such a procedure is not viable if one wants to perform
it in full formal analogy to the second quantization of a
charged particle. Indeed, the map corresponding to
charge conjugation sends the wave functions satisfying
Eq. (4) into functions obeying an analogous equation with
the reversed potential —V. The potential for the scalar
field of charge q in an external Coulomb potential of
charge Q is proportional to the product qQ. The sign
change of the potential can thus be naturally interpreted:
the antiparticle has the charge —q. However, the shell
potential contains the factor m /2 in place of qQ. There
is no conceivable shell for which this quantity could be
negative. Considerations like these assign quite a new
role to the Planck mass in the quantum theory of collaps-
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ing objects. This must be studied carefully, and one
should not restrict oneself from the beginning just to the
solutions suggested by the Coulomb analogy. In princi-
ple, one could also try to abandon the positivity of ener-
gy. (The operators corresponding to the Hainiltonians

H9 and H, 3 written down in the Introduction will have
nonpositive self-adj oint extensions above the Planck
mass. ) In fact, the classical theory has negative-energy
states which cannot communicate with infinity, so that
no paradoxes can be based on their existence. One
should check if this property can be carried over into a
quantum theory with a nonpositive Hamiltonian.

V. SOLUTIONS TO THE RADIAL EQUATION

In this section, we wi11 describe the solutions to the ra-
dial equation (7) satisfying the boundary condition (16)
for each M &Mz. We shall restrict our attention to
"bound states" and "scattering states, " where by bound
states we mean solutions which decay exponentially at
infinity, and by scattering states we mean solutions which
are oscillatory at infinity. For the physical interpretation
of the quantum theory of the shell, it is important to re-
strict oneself to the positive-energy solutions. Then, the
states will be "bound" or "scattering" in the sense of the
quantum theory on the Hilbert space & mentioned in the
previous section. The bound states and their spectrum
were found long ago by Sommerfeld [11]. We rederive
these results and calculate the wave functions of the
scattering states, using the accumulated knowledge of
special functions, as given, e.g., in Ref. [23]. As far as we
know, the results on scattering states are published here
for the first time.

A. Scattering states

Let us assume that E ~ M . If E &M, we can define
a dimensionless variable p by

p=+E MR . —

Equation (7) then takes the form

4

g+ 1 —2rip '+ p /=0, (18)

where

F& i(rl, p)=C&, (ri)p e 'i'M(A, iri, 2A, , 2—ip),

where Ci, (ri) is a real constant (see Ref. [23], p. 538).
Formula 13.5.1 on page 508 of Ref. [23] yields

m E
2V'~E' —M'~

and the primes denote derivatives with respect to p.
Equation (18) is called the Coulomb wave equation (see
Ref. [23], p. 538). It has precisely one solution satisfying
condition (16): the Coulomb wave function
Fi i( —rl, p) with index A, + —1. Here ri can be either

+
positive or negative, depending on the sign of E. The
Coulomb wave functions are well defined for either
—oo &E & —M or M &E & ~; these intervals define the
continuum part of the spectrum. For the shell, only the
positive-energy solutions are relevant. The negative ones
play a role in the corresponding electrodynamics prob-
lem. The Coulomb wave function, both of whose argu-
ments are real and whose index is real, is a real function.
Thus, the scattering states are invariant under the time
reversal of Sec. III.

The Coulomb wave functions have been tabulated only
for non-negative integral values of the index; in the non-
relativistic theory, this is just the angular momentum
number l. (As already observed by Sommerfeld, solutions
of the relativistic theory are given by the same special
functions, but with rescaled arguments and shifted in-
dices. ) Our index, A. + —1, lies, however, between —

—,
' and

0. Thus, to study the behavior of the solution near the
Schwarzschild radius, one should put the problem on a
computer. Fortunately, the asymptotic form of the solu-
tion can be obtained from that of the Kummer function
M(a, b,x). This is related to the Coulomb wave function
by

2
—1,+ig (m /2)(g+i A. )e —i(p —g 1np)

Fi, , (vl p)=C&, (vl) . [1+Oi(p ')]
I A+iri,

+
g —

A, —i rf (7T/2)(ff —iA, ) i(p —
TI ]Ilp)2 e eC, , (n)

r(A, ln)
[1+02(p ')] .

This is a particular combination of an ingoing and an
outgoing wave: the shell bounces at the singularity with
a well-defined phase shift. The asymptotic behavior is
spoiled by logarithmic terms because the Coulomb poten-
tial is long range. To define the scattering matrix, one
typica11y introduces "the distorted free Hamiltonian"
(see, e.g., Refs. [24,25]). Then, the scattering matrix will
be uniquely determined by the above asymptotic expres-
sion. We will not go into details here.

Next, let us set E=+M. Equation (7) then becomes

g"+[+m R '+m (2R ) ]/=0 .

We introduce a new variable p by

p=++4m MR

and a new function w(p) by P=pw(p). Then, w satisfies
the Bessel equation of order ~=2k, —1. The so1ution
which is regular at the origin is

/=pl„(p) .
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For large p, the leading term in the positive-energy solu-
tions is proportional to p

' cos(p r—fw/2 n—./4),
whereas the negative-energy solution increases exponen-
tially.

B. Bound states

Let us assume that E (M, define

p =2+M E—R,
and set

g=e ~ p"w(p) .

Equation (7) then implies an equation for w:

pw" +(2A.—p)w' —(A. —ri)w =0 . (20)

This is known as the Kummer equation (or confiuent hy-
pergeometric equation). The only solution to this equa-
tion with a behavior at infinity that is appropriate for a
bound state is

f(R)= 2 +(1 EM ) —+ (MR) +=
r(x —q)

+ 2 (1 EM ) (M—R), (21)r(x, —q)

where v is given by

Condition (16) applied to the wave function (21) im-
plies that E must satisfy the condition

r(x, —q)=* (22)

because I does not vanish on the real axis. Since the
poles of I are at nonpositive integers, all solutions to Eq.
(22) are given by

g=A, +n,
where n is a non-negative integer. Then,

n!r 2A,

I 2A, +n

(23)

where L„' '(x) is a generalized Laguerre polynomial (see
Ref. [23], p. 775). By substituting expression (23) for q
into Eq. (19), we obtain the energy spectrum of the bound
states:

2(k+n )

+m +4(A, +n)
In all these formulas, one should set A, =A, +. The lowest
positive energy is easily calculated to be

E =MA, '/
0 (24)

w(p) = U(A, +
—r), 2A, +,p)

where U(a, b,p) is Kummer's function defined in Ref.
[23], p. 504. Then, asymptotically, f=e ~~ . The be-
havior of P(R) at the origin is determined by formulas
13.1.2 and 13.1.3 of Ref. [23]:

with the corresponding (unnormalized) wave function
—p/2 A,o=e p (25)

What is the meaning of a wave function such as the
ground-state wave function (25)? We know that in the
Klein-Gordon theory, the wave functions are not proba-
bility amplitudes for the particle to have a given coordi-
nate. To calculate such probabilities, one should first
define a position operator, find its eigenstates, and expand
the wave functions in these eigenstates. For a free parti-
cle, this was done by Newton and Wigner (see, e.g. , Ref.
[26]; a generalization for a field in an external potential
was proposed in Ref. [27]). In spite of all this caution, let
us find the maximum of the wave function (25) and tenta-
tively interpret the corresponding value of the radius R
as giving order-of-magnitude information about the ap-
proximate position of the shell. Let the maximum of the
wave function (25) be achieved for the value p,„ofp.
Equation (25) determines

pmax

or

VI. CONCLUSIONS

In the last section, we have found the system

[ qiE ( T,R ),E)Oj of wave functions which satisfy the
Klein-Gordon constraint (4) under the boundary condi-
tion (16). This, as stated in Sec. IV, is the main in-
gredient in constructing the unitary quantum mechanics
with positive energy on the Hilbert space &.

One of the most interesting results (to anticipate the
completion of the program in Ref. [14]) is that there is a
quantum theory of the self-gravitating shell (at least for
small rest masses) compatible with the requirements of
unitarity, of positivity of energy and of energy conserva-
tion, and that this theory seems to be unique. The
uniqueness question is, however, both important and sub-
tle. One must check carefully whether or not there are
any technical assumptions on which our present results
are based for which there is no good physical reason. For
example, the form of the charge and energy functionals is
fixed only for wave functions which are zero in some
neighborhoods of the singularity R =0 [that is, for func-

The Schwarzschild radius of the spacetime classically
generated by the shell with energy E is Rs(E) =2E/Mp.
In particular, if the shell has the ground-state energy,

Rs(Eo) 2m''~ Mz ' .

The ratio of the two radii R,„and R, is a decreasing
function of m satisfying

00 &R „/R, )—'

for all m E [0, 1]. Thus, the bound states seem to lie well
outside the Schwarzschild radius only if m is small with
respect to 1.
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tions from 8o (I+)]. One can speculate that the exten-
sions of these forms to C" functions on [0, Oo) can differ
from our "naive" forms by some boundary terms, like

f(0}f'(0}, etc. Self-consistency of such proposals can be
studied only within a more elaborate mathematical
framework. We thus postpone further discussion of this
question to Ref. [14].

The spectrum obtained in the foregoing section con-
tains bound states with discrete energy levels between
Eo ~ ( —,

'
)

'~ M and M. Such bound states do not exist in

the classical theory. They are a direct consequence of
our boundary condition in the configuration space of the
shell which implies a particular correlation between the
wave function describing the shell coming out of the "ini-
tial" singularity and the wave function describing the
shell going into the "final" singularity in the associated
classical spacetEme. One possible description of this re-
sult may be that the uncertainty principle of quantum
mechanics leads to an effective repulsive force which
prevents the shell from being squeezed into a small
volume. However, one should be careful about this inter-
pretation: One would intuitively expect such forces to
succeed only if they keep the shell in the bound state
hovering well outside its Schwarzschild radius, which we
were not yet able to show.

The quantum scattering states have energies in the in-
terval (M, oo). They are quite definite linear combina-
tions of ingoing and outgoing waves. There are no losses
of probability and energy. This means, in particular, that
there are no losses down the black holes. This is a
surprising result. Indeed, the unitary quantum mechan-
ics exists for all values of the incoming energy of the shell
(only the rest mass must be smaller than the Planck
mass). The Schwarzschild radius of a shell with arbitrari-
ly large energy is, however, itself arbitrarily large. It is
quite stunning that no part of such an energetic shell
would go down into the hole. One can trace this unintui-
tive result back to the condition at the boundary R =0 of
the configuration space that leads to superposition of two
wave functions, one of which describes the collapse down
a black hole, and the other one the time reversal of such a
process, that is, an emergence of the shell from a white
hole. (One has to keep in mind that the arena for quan-
tum dynamics of the shell is its configuration space rather
than any spacetime. Therefore, it is misleading to draw a
Penrose-Kruskal diagram and to search for a "smeared
trajectory" of the quantum shell therein. ) As a result of
our boundary condition, the quantum theory seems to ac-
quire more time-reversal symmetry than the original clas-
sical one had because the scattering states are invariant
under the time-reversal transformation; this is not the
case for the classical scattering solutions, which describe
either a shell collapsing from past infinity to the future
singularity or a time reversal of this process.

We have been unable to construct a reasonable quan-
tum theory if the rest mass of the shell is not smaller than
the Planck mass. The behavior is analogous to that of a
relativistic particle moving in a supercritical potential.

The next question which naturally arises is the follow-
ing: What are the physical predictions of our "unique
and existing" theory? This is quite a difficult question be-

cause we do not know how the wave functions are to be
interpreted. So far, we have only one observable: the en-

ergy. The energy operator commutes with the super-
Hamiltonian, and so it is an observable even according to
the traditionally stringent (and quite likely misguided
[28]) criteria. It is not difficult to turn it into a self-
adjoint operator (this is again postponed to Ref. [14]).
However, even for a system which has only one degree of
freedom (as our system has), there are a lot of physically
interesting questions, other than the question of what is
the conserved energy of the system, which one would like
to ask and answer.

The most interesting among these concerns the posi-
tion of the shell. Consider questions such as does the
shell in a scattering state cross the horizon? To spell out
what this question means, we need to have a position (ra-
dius) operator. As already mentioned, multiplication by
R is not such an operator, and our wave function is not a
probability amplitude for the corresponding value of R.
For a free theory, one can use the Newton-Wigner con-
struction, but for our system with a potential term, there
are problems. An observable must commute with the
projector onto the positive part of the spectrum, and it
must be symmetric with respect to the charge form.
Clearly, the momentum P~, the radius R, or, say, the
variable RPti (which may be more suitable for quantiza-
tion on the half-axis [29]) are not such quantities. An ap-
proximate solution to this problem, as given in Ref. [27],
may be useful.

Suppose next that we could calculate the position
operator representation of our stationary states. It turns
out that even then it will not be simple to give the above
question about the shell crossing the horizon a precise
meaning. We could try to use the energy operator to get
information about the spacetime geometry. Indeed, in
the classical version of the theory, the total energy is re-
lated to the Schwarzschild mass parameter. Thus, if we
know the energy of the shell, we seem to know everything
about the geometry outside the shell. However, the wave
functions of the stationary scattering states will be
smeared over all values of the radius and, hence, one not
only does not know where the shell is, but there is no re-
gion which could be called "outside the shell. " If we try
to localize the shell by forming wave packets, to know
better where the shell is, and to be sure that there is an
approximately "shell-free" region including infinity, we
would have to smear the energy, and consequently lose
information about the size of the Schwarzschild radius.
We clearly need more specific observables: some suitable
operators giving direct information about the spacetime
geometry. However, the spacetime geometry is described
by quantities which play the role of "dependent vari-
ables" in the canonical theory (analogous to the Coulomb
field in electrodynamics). Thus, in order to obtain any in-
formation about geometry, we need relations determining
the geometry in terms of the true degrees of freedom.
Such relations are not yet at our disposal because we have
circumvented the minisuperspace reduction by guessing
the super-Hamiltonian of the reduced system directly
from the equations of the motion. We intend to perform
such a reduction procedure and to calculate the geometri-
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cal observables in another paper.
One might think that one could construct the scatter-

ing (i.e., asymptotic) observables more easily. However,
even here, there are unexpected problems. First, the con-
struction is complicated by the long-range potential. For
example, the "free" Hamiltonian is a nonlocal, time-
dependent operator (see Refs. [24,25]). Second, the vari-
ables R and T are not suitable for the asymptotic theory:
in the classical version of the model, they coincide with
the Minkowskian coordinates of the shell as measured by
an observer that is situated inside the shell. An observer
far outside the shell will observe the Schwarzschild coor-
dinates t and r. Across the shell R (~)= r(~), but t(r) de-
pends on the dynamical state of the shell through the re-
lation [20]

T —R = [ I 2E/(—RMp )]t —[1 2E/—(RMp ) ] 'R

Thus, one can define a function of the variables T, R, Pz-,
and P (that is, a function on the phase space of the sys-
tem), which will coincide with t if the equations of

motion are satisfied. By integration, differences of t along
a classical orbit can be calculated from t, but nothing
more. This is understandable because if a piece
(T(~),R(~)), rE(a, b), of a classical orbit can be
matched with a piece (t(~), r(w)), rE(a', b'), of hypersur-
face in the Schwarzschild spacetime, then it can also be
matched with (t(r)+bt, r(~)), rE(a', b'), where ht is
any constant. It is not clear to what extent this is only a
technical difficulty rather than a manifestation of a
deeper problem.
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