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We show that a whole class of quantum actions for dilaton gravity, which reduce to the Callan-
Giddings-Harvey-Strominger theory in the classical limit, can be written as a Liouville-like theory. In a
subclass of this, the Seld space singularity observed by several authors is absent, regardless of the num-

ber of matter fields, and in addition it is such that the dilaton-gravity functional integration range (the
real line) transforms into itself for the Liouville theory fields. We also discuss some problems associated
with the usual calculation of Hawking radiation, which stem from the neglect of back reaction. We give
an alternative argument incorporating back reaction but find that the rate is still asymptotically con-
stant. The latter is due to the fact that the quantum theory has no lower bound in energy and Hawking
radiation takes positive Bondi (or Arnowitt-Deser-Misner) mass solutions to an arbitrarily large negative
mass.

PACS number(s): 04.60.+n, 97.60.Lf

I. INTRODUCTION

The theory of dilation gravity coupled to scalar fields
proposed by Callan, Giddings, Harvey, and Strominger
[1] (CGHS) has generated a flurry of activity on black-
hole physics. What one has is a simple toy model, within
which the puzzling questions associated with Hawking
radiation [2] can be addressed in a systematic way. In the
original work of CGHS, as well as in several subsequent
papers, it was assumed that quantum effects to leading
order could be included by just adding a piece to the ac-
tion which reproduced the conformal anomaly. Howev-
er, it was later realized that the consistent quantization of
the theory in the conformal gauge required that the
cosmological constant term and/or the kinetic terms
should get renormalized in a dilaton-dependent manner
so that the theory becomes a conformal field theory
(CFT) [3,4]. This requirement that the theory be an exact
CFT (though not necessarily a soluble one) is not a
matter of choice. It is a necessary consequence of general
covariance. In other words, dilaton gravity coupled to
matter fields must be a CFT in exactly the same way that
string theory [i.e., ordinary two-dimensional (2D) gravity
coupled to matter fields] is a CFT.

In this paper we will first review this argument and
then consider the generalization of previous solutions to
the conformal invariance conditions. We show that there
is a subset of models which are free of the quantum
black-hole singularity pointed out in [5,6] and which are
such that the original range of integration for the confor-
mal factor and the dilation is transformed into itself for
the Liouville theory fields. We will also argue that the
calculations of Hawking radiation that have been given in
the literature are inconsistent with the constraints and
equations of motion of the theory in that they neglect

back reaction. There is no sensible approximation
scheme in which the latter can be ignored. We then show
that when the exact solution of the system of equations
coming from a quantum-corrected action is considered,
the results differ from previous calculations. However, it
turns out that one cannot see the radiation turning off in
this theory; the (Bondi) mass of the solutions of the
theory can be arbitrarily negative, and the Hawking pro-
cess causes a positive-mass solution to decay indefinitely
to an infinitely negative mass. Although Liouville theory
has a positive-definite spectrum, the same is not true of
the Liouville-like theory that is obtained from the CGHS
theory. It is possible that the origin of the problem lies in
the CGHS theory itself, but a more rigorous quantum
treatment of the Bondi mass may resolve this question.

In the next section we review the quantization of the
CGHS theory. In the third section we discuss a class of
solutions to the integrability conditions for the con-
straints and present arguments for taking the resulting
exact conformal field theory as a quantum theory of dila-
ton gravity. In the fourth section we demonstrate explic-
itly how the classical singularities are tamed by quantum
effects. In the fifth section we review the CGHS calcula-
tion of Hawking radiation in this model. In the sixth sec-
tion we given an alternative calculation which is con-
sistent with the constraints (this is basically a detailed
version of a calculation contained in the second paper
[3]),and in the final section we make some concluding re-
marks.

II. QUANTIZATION

The CGHS theory is defined by the classical action

S= Id o & ge ~[R—+4(VQ) +4k, ]
l

4a

'Electronic address: dealwis@gopika. colorado. edu (2.1)
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In the above G is the 2D metric, R is its curvature sca-
lar, P is the dilaton, and the f ' are X scalar matter fields.
This action may be obtained as a low-energy effective ac-
tion from string theory, in which case the f fields will
arise from the Ramond-Ramond sector. Note that the
(zero-mass) tachyon of 2D string theory is excluded from
this action. If this field had been coupled then the theory
would not be solvable even at the classical level. '

The quantum field theory of this classical action may
be defined as

f [dg]s[dp]s[df]s
[dV]

(2.2)

where

Xexp[iI(X,g )+iS(f,g )+iS(b,c,g )], (2.4)

I[x,g]= — f&—g [-,'g "G„.a.x~a,x

+RA(x)+T(x)] . (2.5)

S(b, c,g) is the Faddeev-Popov ghost action, and we have
written (P,p)=x". Note that all the measures in (2.4)
are defined with respect to the 2D metric g and that in
particular the measure [dX"] is derived from the natural
metric on the space II5X„II = jd o+—g G„„5X"5X".
In the limit of weak coupling (e ~ && 1) we have

where dV is the volume element of the diffeomorphism
group.

The metrics which define these measures are usually
given by

II5g II,'= fd'o& gg—"g"(5g.p5g, s+5g.,5gtts),

ll5ylls = fd'~& g5—y', (2.3)

I 5f I ls
——f d'tran' g5—„5f5fJ .

However, we can be more general in these definitions as
long as 2D diffeomorphism invariance is preserved. Now
let us gauge fix to the conformal gauge g=e ~g and
rewrite the measures with respect to the fiducial metric g.
Following the work of David and of Distler and Kawai
[8], we may expect the action to get renormalized, except
that unlike in their case the renormalization will be dila-
ton dependent (since the coupling is e ~). Thus, in gen-
eral we may expect the gauge-fixed path integral to be
written as [9,7,3]

Z= f [dX"] [df ] ([db][dc])

This is obtained from (2.1) by putting g =e t'g and in-

cluding a very specific high-order term, namely, the usual
conformal anomaly term. x in the above is equal to
[26—(%+2)]/6=(24 N—)/6 if one includes the contri-
bution of the transformation of the measure for P and p.

I is a generalized o.- model action, and we have kept
only renormalizable terms. The o.- model action intro-
duces three (dilaton-dependent) coupling functions 6,4,
and T, respectively, the field-space metric, dilaton, and
tachyon. The only a priori restriction arises from the fact
that the functional integral for Z in (2.4) must be in-
dependent of the fiducial metric g, as is obvious from the
expression (2.2) for it. This implies that the following
constraints should be satisfied:

(T +t+ ) =0 (2.7)

and

(T+ +t+ ) =0, (2.8)

P = —%+46" 8 48 4 —4V 4+p v G 3

+6"'"d„TB,T 2T'+-
P = 2V2 T+46"—'B„@B„T 4T+ . —

(2.9)

where % is the curvature of the metric G. These equa-
tions have to be solved under the boundary conditions
that in the weak-coupling limit (e ~ && 1) we get, compar-
ing (2.5) with (2.6),

G = —8e ~ G ——4e
tt1P

G =2m, (2. 10)

e= —e ' +~p T= —4X'e"«' (2.11)

III. FROM CGHS THEORY TO LIOUVILLE THEORY

where T„ is the stress tensor for the dilaton-gravity and
matter sectors, and t„ is the stress tensor for the ghost
sector. [Equation (2.8) is equivalent to the equation of
motion for p and so is not an additional constraint. ] Fur-
thermore, one has to satisfy the integrability conditions
for these constraints, namely, that they generate a
Virasoro algebra with zero central charge. As is well
known (see for instance [11]and references therein), this
is equivalent to the requirement that the P functions [12]
corresponding to the coupling functions G, 4, and, T
vanish:

P„„=X„„+2V„'a„e —a„Ta„T+

Let us first discuss the renormalization of the field-

space metric and dilaton (6 and @)and postpone the dis-
cussion of the tachyon T. The (renormalized) field space

+R(e ~ —trp) —4A, e 't' ~'] .

(2.6)

f d rr (I g Ie ~—[4(VP) 4VQ. Vp] trVp. V—p-
4vr

'For a discussion of how in this case 20 black-hole solutions

are affected far away from the black hole by the presence of the
tachyon see [7].

zFor alternative approaches to the quantization see [10].

We will justify this in more detail later on.
4In effect this means that the field space must be exactly like

the target space of string theory, though here we do not give

this space a space-time interpretation. The only space-time in

the theory is the original one parametrized by the coordinated
0.
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metric may be parametrized as

ds = —8e ~[1+h(P}]dP +8e ~[1+h(P)]dpdP

expand the expression for x [(3.4), (3.3)] to get

x= ——e ~+ dPe ~h+ —P+O(e ~) .
2 2

(3.9)

+2~(1+h }dp (3.1)

where h, h, and h are O(e ~). If we are going to consider
only O(e ~} effects, then we should certainly set h to zero.
But even if we consider the renormalization functions h
and h to all orders, it is consistent to limit ourselves to
the class of quantum versions of the CGHS theory which
have h =0, provided that we satisfy the P- function equa-
tions. This corresponds to confining ourselves to theories
in which the field-space curvature %=0. In this case we
can transform this metric to Minkowski form. First put

T= —4A, exp ——x+2y4
K

(3.10)

For a )0 there is another (additive) term satisfying the
boundary condition, namely,

Then we find that —(4/v)x+2y=2p —2P+O(e ~), so
that the unique solution (confining ourselves to multipli-
cative renormalizations) obeying the required boundary
condition is

y=p —a 'e 4'+ —fdPe &h(P) . (3.2} pe ( I )x p exp4 Q 2
np

Then the metric becomes

ds = — P(P)d—g +2K dy
8

K

where

P(P)=e ~[(1+h ) +fez&(1+h )]'~2 .

Putting

(3.3)
Y=&2~~~y, (3.11)

This is in fact a nonperturbative ambiguity. %'e wi11

set p=O in the rest of the paper. In any case, it is absent
for ~&0, since in that case we will have an oscillatory
solution which will not vanish in the classical limit.

It is convenient now to introduce rescaled fields,
' 1/2

X=2 2

x = fdPP(P), (3 4} in terms of which the metric and the tachyon become

we have

8
ds = ——dx +2&dy2 .

K
(3.5)

With this form of the metric, ignoring O(T ) terms, we
find from the first (graviton) P-function equation in (2.9)
that B„B„4=0. In the other words, 4 is linear in x,y.
Demanding that we recover the CGHS 4 given in (2.11)
in the weak-coupling limit, we find the unique solution

ds =+dX +dY

T= —4A, exp[+&2/~a~(X+ Y)] .

In the above and in the equations below, upper/lower
signs correspond to having ir) 0/~(0, respectively. In
terms of the new field variables the functional integral be-
comes

Z= f [dX][dY)[df][db][dc)exp(iS[X, Y f]+iS h„,),
4=my . (3.6) (3.12)

Substituting in the second (dilaton) equation in (2.9),
we then get

where

S= fd'a +a,xa X+a, Ya Y+ga f'a f'
4m

24 —NK—
6

(3.7)

+2k, exp + 2
' 1/2

(X+ Y)

To determine T we consider the third equation of (2.9),
to linear order, and get

—8 T——8 T+28 T—4T=O .]C 2

4 & k v v (3.8)

This has solutions of the form T=e~"+ v, where
—,'aP —(1/k )a +2a —4=0. Now we need to impose the
boundary condition that we recover the CGHS tachyon
given in (2.11) in the weak-coupling limit. To do so we

(3.13)

Several comments need to be made about this function-
al integral. First and most obviously, there is the ques-
tion of the range of the integration. As we see from (3.4}
and (3.3), in general the range of integration in X will not
extend over the whole real line. What we then have is an
approximate solution to the P-function equations (2.9)
valid only to leading order in the o-model (a') expansion
and to leading order in the weak field expansion in T. On

We wi11 only consider theories with re&0, i.e., NA24.
I wish to thank Andy Strominger for pointing this out to me

[13].
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the other hand, if we dePne the quantum theory by (3.12)
with the range of integration for X being the whole real
line, we have a solution to the exact P-function equa-
tions. Thus, this definition of quantum dilaton-gravity
theory, even if somewhat unorthodox, is a very compel-
ling one. It is on the same footing as, for instance, the
definition of (2+1)-dimensional quantum gravity given
by Witten [14] in which the functional integral is taken
over all values of the vielbein field. Also let us point out
that if we restrict the range of integration to be consistent
with the original definition of the quantum theory, then
since we only have a solution to the leading-order P-
function equations, it seems as if we will need an infinite
number of terms to satisfy the exact conformal invariance
conditions. It is plausible to suppose that this theory is
equivalent to the one above with the unrestricted range of
integration. This argument is also reinforced by the fact
that, as in the usual Liouville theory, the integration
range is effectively cut off (albeit softly) by the Liouville
potential term. Finally (and perhaps this is the most
compelling reason for the quantum Liouville-like confor-
mal field theory), there exist choices of h and Ii for which,
when the integration ranges for P and p are as usual tak-
en over the whole real line, the same is true for the ranges
for X and Y [see case (d) at the end of this section].

The second comment is with regard to the approxima-
tion in which the dilaton and graviton loops can be ig-
nored. By rescaling and translating the fields X, Y it is
easily seen that R=~, so that the semiclassical approxi-
mation is valid only for large ~. Thus, one might be in-
clined to believe that any (even qualitative) conclusions
derived for the N &24 theory [3] are drastically effected
by dilaton-graviton loop corrections. On the other hand,
for X= 1 we get ~=3.8, which is of the same order as the
relevant parameter in QCD where the approximation
works quite well.

Finally we comment on the different possibilities for
the functions h and h. Three special cases have so far
been discussed in the literature.

(a) h =h =0. That is, the field-space metric of the clas-
sical CGHS Lagrangian is not renorma1ized. However,
in this case the cosmological constant term T is renor-
malized.

(b) h = —e ~, h = —2e ~. This is the case proposed by
Strominger [16]. In this case both the metric G and the
tachyon T are renormalized.

(c) h =0, h = —(i~/4)e ~. This is the case considered in

[17] where P is a perfect square [see (3.3) from which we
find P =e ~(1+—,'ae ~)]. In this case the metric is (obvi-
ously) renormalized, but the tachyon is not [as is easily
seen from (3.10) and the expressions for x and y with the
above value of P].

(d) In all of the above cases the transformation (3.4) has
a singularity when re &0. For instance, in case (a) it is at
e ~= —~ '. It is, however, quite easy to find a class of
models which have no such singularity. Put h =ae ~ and

7The theory is very much like Liouville theory, which is an ex-

act CFT [15]. In fact, it is less singular than Liouville, so one

expects it to be an exact CFT as well.

2

x = f d y e '& 1+—e 4&

4

' 1/2

and

2—+e1 ~ 4

2 4

y=p —~ 'e

1/2

+ arcsinh e ~, (3.14)
2

(3.15)

Clearly as P,p range from —ao to + ao so do x and y.

IV. EXACT SQI UTIONS

The equations of motion coming from (3.13) are'

a, a y=o, (4.1)

2
8+8 X—A,

1/2

exp
2

1/2

(X+ Y)

2a, a Y= —X'
1/2

exp
2

1/2

(X+ Y)

(4.2)

We have taken the case with the lower signs in (3.13) so
that the discussion is for X)24. There is no qualitative
difference in the other case, so it is unnecessary to write it
out explicitly. These equations are easily solved. From
(4.2) we have t)+t) (X+ Y)=0, so that X+ Y
=~/~ir~/2[g+(o+)+g (cr )] where g+ are arbitrary
chiral functions. Substituting into the X equation of
motion and integrating we have

1 1/2

X= [u+ (cr+ )+ u (tr )]
2

+~2
1/2

f d ~'e" 't' d ~-e'-' '

' 1/2

= —Y+ (g++g ),
2

(4.3)

where u+ are arbitrary chiral functions to be determined

by the boundary conditions.

8In this section and in Sec. VI, wherever it is appropriate, all

equations are to be understood as being valid inside the func-

tional integral, i.e., as expectation values of quantum operators.
Since, following the arguments of Ref. [15], the theory can be

mapped into a free theory, it is plausible that the only quantum

effects come from normal ordering.
9It is also contained in [4] and the second paper of [3].

h =be ~. Then, putting e ~=z, the condition for the ab-
sence of a singularity is that the quadratic equation
z P =(a +ah)z +(2a+rc)z+ 1=0 has no real roots.
I.e., we must choose x +4(a b—)a &0. Obviously there
are many solutions to these conditions, but this class is of
particular importance since members of it naturally allow
the range of integration in the X, Y variables to go over
the whole real line. The simplest member of this class
has h =0 and h = —

—,'~e ~. In this case we have, from
(3.3), (3.4), and (3.2),
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By a coordinate choice we can set g+=0. In these
coordinates (the analogue of Kruskal-Szekeres coordi-
nates for the black hole) we get

1/2

the expression for Y in terms ofp, P, we have

Ka a p=(1+h)B h(B u —
A, o )P

—(1+h )(c) u —
A, o )d PP

(u —
A, o.+cr ), (4.4)

X=2 2
' 1/2

2

fdye '~ 1+—'e'~
4

1/2

' 1/2

where u =u++u
These solutions are, of course, the same as those of

CGHS, except that they are for X and Y and all effects of
the quantum anomalies are now incorporated in the ex-
pressions for them in terms of p and P. To be explicit,
consider the case (d) discussed at the end of the last sec-
tion (h =0, h = —

—,'Ke ~):

1+h
P

(4.8)

V. PROBLEMS IN CALCULATING
HAWKING RADIATION

From this expression the curvature R =8e ~B+8+p is
easily seen to be nonsingular at the classical singularity in
all the cases (a)—(d} discussed at the end of Sec. III (as is
obvious from the fact that the metric is nonsingular
there), and furthermore, in case (d) it is seen that there
are no curvature singularities anywhere for either sign of
K.

and

Y=~/2~K~p+
2

' 1/2

=i/2~K~ f dp 1+—e-'~
K Before we calculate Hawking radiation we would like

to comment on previous calculations of this phenomenon
in 2D dilaton gravity. These comments may have a bear-
ing on the original calculation [2] in 4D as well.

In the CGHS calculation the stress-tensor anomaly is
added to the classical stress-tensor trace to give

In the weak-coupling limit (e ~&&1) we have from
(4.4) the classical solution

e 2&=e 2&=u —A2o+o (4.5}

which exhibits the classical (black-hole type) singularity
on the curve where the right-hand side vanishes. But the
singularity is in the strong-coupling region where we
have to use the strong-coupling expansion (from the
second line of the above equation for X)

e
—4p

X=&2~K~ y — +
K

Then we have, from (4.4),

f—K (u A, 0' o' )

and

p= —exp[ —2K '(u —
A, o+o )] .

K

The metric (e ~) is clearly nonsingular at the classical
singularity. Differentiating the solution for X with
respect to o.+ we get

2e
8+u+ A c7

P(P)
(4.6)

where P=e ~P, P being defined by (3.3). This equation
gives the trajectory of the apparent horizon (c)+/=0) in-
troduced in [6] (once the unknown function u is deter-
mined) as

T =e +(2B d P 4d pc—) ((})

—ke ~ ~ —
—,'NB 8 p.

From the conservation equation for the stress tensor
the remaining components of the stress tensor are then
determined to be

T++ =e ~(4d~~ c)+P—2c)+$)+ TI++,

with the quantum (one-loop) part of the stress tensor be-
ing given by

T/ = ,'X[aZa—~—a~~+t (—o+ )], -

where t+ are arbitrary chiral functions to be determined
by the boundary conditions. Of course, in a consistent
quantization ghosts have to be included and N~N —24
[16,3,4] and t+ must be related to the ghost stress tensor
[3,4], but we will ignore this for the inoment. The usual
argument then goes as follows. To leading order, Hawk-
ing radiation may be computed by substituting the classi-
cal solution (corresponding to the formation of a black
hole due to an incoming matter shock wave alon
o + =o o ) into the quantum piece of the stress tensor T,
and then imposing boundary conditions. In terms of
the asymptotically Minkowski coordinates o.

=(I/A, )ln(A, o+), o = —(I/A, )ln( —A.o —a/A, ), the
classical solution is

Q2p= —ln 1+—exp(A. cr ), o+ &oo+,

1 +
iE2, a+u+(o ). (4.7)

a2p= —ln 1+—exp[A(cr —o++cro+)], o+ &oo

By difFerentiating the solution for Y and using (4.6) and
Substituting this in T and demanding that the latter

vanishes for o + & cr o+, one determines t (o )
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= —
—,'k [1—1/[1+(a/A, )e ] ]. Then observing that

c)p, c) p~0 when cr+~ co (2+ in the Penrose diagram),
we have

Tf X l—N
24 [1+(a/A. )e" ]

One has to now find a consistent solution to this set of
equations (and the P equation of motion). Such a solution
will have a classical piece plus a one-loop quantum
correction. Now, in calculating T to order A it is
sufficient to substitute the classical part of the solution
into it. But to the same order one should keep the result
of substituting the O(A') correction to the classical solu-
tion into T". One should not just keep the former as
Hawking radiation and ignore the latter. In fact, the
classical solution by definition satisfies the classical equa-
tions T" + =0, T'++ =0, so that in order to satisfy (5.1),
the leading quantum correction to the classical solution
when substituted into T" must give a value which exactly
cancels the value obtained by substituting the classical
solution into T . The CGHS calculation, of course,
agrees with the calculations involving quantization in a
fixed background since keeping the background fixed is
tantamount to ignoring the quantum correction to the
classical solution and is of course inconsistent with the
quantum-corrected equations of motion and constraint.

A related point is that the energy-momentum-
conservation equation and the equation of motion for

pmake T++ chiral fields as in conformal field theory.
This is because in any conformal gauge the stress-tensor-
conservation law (which is a consequence of general co-
variance and the matter-dilaton equations of motion}
takes the form

Indeed the theory, is, as we argued earlier, a conformal field

theory.

This determines the Hawking radiation rate at timelike
future infinity to be N/24K. , in agreement with earlier
calculations (see for instance [18]}.

This calculation, however, neglects back reaction.
This is, of course, true for all previous calculations of
Hawking radiation. In the original calculations [2,18]
one quantized in a fixed-background metric, which means
that back reaction is ignored. But there is no sensible ap-
proximation in which back reaction can be ignored.
Back reaction is of the same order as the radiation.
Within the context of this toy model and our explicit
solution of it, this problem can be resolved. But before
we do it let us elaborate on this question further.

This point is that the one-loop- (matter-) corrected
theory has an action [Eq. (23) of [1]]and associated equa-
tions of motion and constraints. Aside from the dilaton
equation, these correspond to (2.8) and (2.7) and read, in
this notation,

T + =T"++T + =0,
(5.1)

VI. A PROPOSAL FOR CALCULATING
HA%'KING RADIATION

How then can we identify Hawking radiation? In gen-
eral relativity there is a definition of the energy left in a
system which is asymptotically Aat, after radiation has
been emitted for a certain time. This is the so-called Bon-
di mass. This is defined relative to some reference static
solution and must be given in asymptotically Minkowski
coordinates. So if 6T„, is the first variation of the stress
tensor around the reference solution, then for a solution
(static or nonstatic) which asymptotically approaches the
static solution at future null infinity, the Bondi mass is
given as (cr —are the asymptotically Minkowski coordi-
nates)

pc+ pc+

M(cr )=f do+5TO~ = —f do+(5T+++5T+ ) .

(6.1}

In the above the integral is to be evaluated at the future
null infinity line 2~, i.e., at o +~ ac . Now the linearized
stress tensor satisfies the linearized conservation equation

0 —6T +8 5T =0. (6.2)

Using this we find, from (6.1),
pc+

a M(o )= f-'Zo—+(a 5T, +a 5T,
y+

=+f do (d 5T +8 5T )

=(5T+ +5T ), i . (6.3)

This equation gives the rate of decay of the Bondi mass.
We may therefore identify the negative of the right-hand
side as the radiation Aowing out to future null infinity.

To proceed we need the exact solutions of our
quantum-correlated equations of motion (4.3) or (4.4).
Once a coordinate system is chosen, these solutions are
given in terms of two unknown chiral functions u+(cr+}—
which need to be determined from the constraint equa-

T——+0—T —2B—p T =0,
and the equation of motion for p is equivalent to the first
equation of (5.1), so that d+T++ =0. Since this is au-
tomatically true for t it is also true separately for the
nonghost part of the stress tensor. Now how can we
identify the "radiation" part of the stress tensor? As we
argued earlier it does not make sense to just subtract off
the "classical" part of the stress tensor. One can subtract
the classical value of the classical stress tensor (i.e., the
value when .he classical solution is substituted into it).
But by definition this is zero, so we are left with the
whole stress tensor. Also, as we have seen, T is in-
dependent of o + and hence cannot be zero in the region
o+ &o.o+ and nonzero for o. + &cro+. Indeed, since T in
this section is defined to include the ghost contribution
(the translation is ,'Nt+ —~—t++) it is zero everywhere,
for that is the equation of constraint [second equation of
(&.1)].
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2
a' Y+ —'ya, f'a,f'

I

=e ~[4a Qa~ 2a+—P+O(ice ~)]

and

+—g a,f'a, f'+~(a~ a~ —a' p),
I

? = +K/2a, a Y—X'exp[ v'2/Ia I(X+ Y')] . (6.5)

In the coordinate system in which g+ are zero we have
from (4.3)

T = 'ya f'a f'-+&~/2a2 Y

=-,'ya f'a f'+a', u
I

Hence, the constraint equations (2.7) become

tions and the boundary conditions. As we argued in the
last section, the boundary conditions that are usually

used do not make sense because of the chirality of the
stress tensor, so we have to proceed in an alternative
manner. Let us first impose the constraint equations
(2.7}.

The stress tensor calculated from (3.13) is

1
Tq+ =—(a+X a~X —a+ Y a+ Y)

o+ =—ln(i, cT+ }, o = ——ln( —A.cr } . (6.8)

The latter follows from the first equation and the con-
straint. However, it still leaves us the freedom of choos-
ing the separate values of the ghost and X, Y stress ten-
sors. Let us put t = —aA, /24= —f' '; i.e., we have
in the & frame an arbitrary constant influx of ghost stress
energy balanced by a constant outflow of X, Y stress ener-

gy. On 2z there is incoming f stress energy, which fol-

lowing CGHS [1] we take to be V++ akao+5(& —oo}.
Then we may take t++ = —ai. /24 and

1++= —akoo+5(o —oo)+aA, /24 to be consistent with
the constraints.

Then by putting o'=o in (6.7), we get in the cr frame

26 —o! 1 f N 1

24 +, , T
24 (y

This condition seems to correspond to Hawking's
boundary condition, and the reasoning is that there
should be no f-particle energy coming in from S~. Now
from the point of view of the exact theory the total (in-
cluding ghosts) stress tensor is zero, so that it is diIIicult
to see what objective meaning this condition has. Never-
theless, in order to be as close as possible to the original
calculation, let us impose

=0, f' "+t =0.

a', u, +-,'ya, f'a f'+t =0. (6.6) =a 5(o cr )
——

24

Now we have the problem of determining the ghost stress
tensor t. This, as well as the nonghost stress tensors
T ', T transform like connections under coordinate
transformation because of the conformal anomaly. It is
only the sum which transforms as a tensor (since the con-
formal anomalies cancel between the two). Thus, under a
conformal coordinate transformation 0.+—~0'*
=f*(o+), —

Using these values in (6.6) we find

u + =a + +b+ cr
+ —a ( o'+ —o o+ )8(o'+ cr 0+ }—— ln

I
o + I.+ + N

(6.9)

u =a +b o — lnIcr

where

' —2g+
Tg~(o') =

ao'
Tf++(o )+ Df

T&x, Y++
af
Bo

Tx, r(o }+ Df+ (6.7)

N =N+a —26 . (6.10)

We now need a reference static solution. This is ob-
tained from (4.4) and (6.10) by putting a =a+ =b+ =0 in
the latter:

= a-
t++ (cr') =

ao'

—2 —26
t++(o )+ Df

Xo= —Yo=&2/I&I A, o+o + ln( cr+cr —), f=0.

where Df is the Schwartz derivative defined by
2f lit/It 3 fII

Df= f' 2 f'
At this point we do not know how to proceed without

making an assumption about the boundary conditions.
We assume that in a preferred coordinate system, name-
ly, one which covers the whole space (i.e., including the
region behind the classical horizon) and is asymptotically
Minkowski, the expectation value of the matter stress
tensor T vanishes. These coordinates are related to
the Kruskal-Szekeres coordinates by

This solution is in Kruskal-Szekeres coordinates, and we
need to transform this into the asymptotically Minkowski
coordinates" cr defined by o.+ =( I/A, )e
o = —(I/A, )e . Under a coordinate transforma-
tion, X transforms as a scalar and [since
p(o )~p(o )+—,'A(o —o )] Y' transforms as
Y(cr)~ Y(o )+&Ia.I/2A, (c7 —o ). Hence we have, in
the new coordinate system,

~ ~For the static solution these are the same as a defined
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~(o —o-)+»~'
24 24

= —Yo+&Ilcl/2A(c, r —o. ) . (6.11)

5T +5T = —&2/Isla [k ' '(5X+5Y)]

This solution corresponds to the linear dilaton solution
of the classical equations. To obtain the Bondi mass of a
general solution which asymptotically tends to the above
static solution we need to linearize the stress tensors
around the latter. From (6.4) and (6.5) we have, using
(6.11),

0 + Av' 1 g— a
A2

g = ——e

to get

2X=—
1/2

0
g(

—+ —+)+ A(e —8 )

hole by an incoming matter shock wave and its decay by
Hawking radiation. This solution is obtained in the o.

frame by putting a+ =b+ =0, a&0, in (6.6) and substitut-

ing in (4.4). Then in the region outside the classical hor-
izon we transform to the asymptotically Minkowski coor-
dinates 0., defined by

+&2/l~l && (»+»}N
24

A. cT

24
ln

A.o'

—&I I/2~5, 5Y

+&I~I/25, (5,5Y—5 5Y} .

Substituting into (6.1) we get

M(o )= —fdo+(5T+++5T+ )

= [&2/icie (5X+5Y)

X(5X+5Y)N
24

++IK /2A5Y+&Iicl/2(c} 5Y—8 5Y)],,
8

(6.12)

Using (3.4) and (3.2) we find that when e ~ &(1 this ex-
pression tends (not surprisingly) to the expression given
by CGHS [Eq. (26) of [1]]except for the ghost terms.

Static solutions corresponding to black holes (in the
classical limit) are obtained by putting a =b+ =0 and
a+NO. Then for cr+ ))1, —5Y=&2/a. (a++a )=5X,
and we have, from (6.12), a constant Bondi [Arnowitt-
Deser-Misner (ADM)] mass

M(a )=A(a++a ) .

The parameters a+ can be of either sign, and hence we

may have negative-mass solutions of the theory. This is
not surprising since the Hamiltonian is not positive
definite. Of course, the classical theory has such solu-
tions too, but there these correspond to naked singulari-
ties, whereas here these are nonsingular solutions (as we

argued in Sec. IV). ' However, one might ask whether it
is the case that we cannot generate these unphysical solu-
tions dynamically by starting with positive-mass solu-
tions, in which case we might choose to ignore them.
Unfortunately, this is not the case. To see this let us
compute the Bondi mass of the analogue of the dynamic
CGHS solution corresponding to the formation of a black

This point has been emphasized by Giddings and Strominger

= —Y+ &ic/2X(o —o ),
where we have put Mo =A,ao.o+, the mass of the classical
black hole. Comparing with the static solution we find

1/2
Mo

8(o —o'0 )

N
1n 1+ ac+A

24

Substituting into (6.12) we get

M(o )=M, — kin 1+ e'—
24 jE

24 1+(A,/a)e

ln the infinite (light-cone time) past cr

Bondi mass tends to the classical black-hole mass Mo, but

at future infinity o. ~+ ao one gets an infinitely nega-

tive value.
This unphysical conclusion is equivalent to the state-

ment that the Hawking radiation rate does not go to zero
asymptotically. This rate may be calculated either from

the left-hand side, or as the negative of the right-hand

side, of (6.3),

dM(o )

dO

A,
2

24
[ 1+(g/ )

—lu ]2
A,2.N

24
(6.13)

Now so far a has been kept arbitrary, but perhaps the
most natural choice is a=26, so that [see (6.10)] N=N.
This choice corresponds to the decoupling of the ghosts
from the Hawking radiation which is positive regardless
of the number of matter fields. This agrees with the two-
dimensional analogue of the original Hawking result [2],
as well as that of [1] asymptotically, but back reaction
still modifies the o. dependence. Unfortunately, al-
though the formalism allows this value of¹itis certainly
not the only possibility. Perhaps this choice has to be
made on physical grounds. It is also possible that our
analysis of the Bondi mass is not the complete quantum
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mechanical story, and a proper treatment would resolve
both this issue as well as the question of positivity.

VII. CONCLUSIONS

What progress have we made in understanding quan-
tum black holes, and in particular the phenomenon of
Hawking radiation, from this work?

First, let us stress that even if we leave aside our argu-
ment for regarding the Liouville-like theory as the com-
plete quantum theory, it still gives us the only consistent
treatment of the semiclassical theory (i.e., to first order in
ne 4). As we pointed out in Sec. III, if we just include the
leading-order corrections then the field-space curvature is
zero, and one immediately has a soluble semiclassical
theory. All of the above calculations are then still valid,
except that we cannot draw some of the conclusions that
we have drawn from them. Thus, we can no longer ex-
plicitly demonstrate the taming of the classical singulari-
ty, and of course there is no need to conclude that Hawk-
ing radiation does not stop, and that positive-mass black
holes radiate into negative-mass solutions. Nevertheless,
one has a consistent semiclassical picture of black-hole
radiation and back reaction. In particular, it should be
emphasized again that our remarks about the incon-
sistencies associated with the usual calculation of Hawk-
ing radiation, which ignores back reaction, are valid al-
ready at the semiclassical level. To belabor the point, the
calculations with the Liouville-like theory when inter-
preted in terms of the p, P variables, and when considered
as being valid to O(tee ~), are the correct semiclassical re-
sults coming from the classical CGHS theory. En partic-
ular, they show that the semiclassical physics is obtained
whatever options are chosen for the functions h, h (as dis-
cussed in Sec. III) simply because h is zero at the semi-
classical level. In other words, we may use the exactly
soluble conformal field theory to make the calculations,
provided we interpret the result as being valid only at the
semiclassical level.

Second, we have shown that there is a class of quantum
dilaton-gravity theories, namely, those for which the
field-space curvature is zero to all orders in e & [h =0, see
discussion after Eq. (3.1)], whose exact quantum treat-
ment is possible since they can be transformed into a
Liouville-like theory. ' These theories allow for the first
time a complete quantum-mechanical treatment (includ-
ing the eff'ects of dilaton-graviton loops) of a theory of
gravity with classical black-hole solutions. Unfortunate-
ly, as we have sho~n, these theories may not be physical.
It is an open question whether it is possible to find a solu-
ble theory with 5 %0 which does not have this problem,
but we believe that this is unlikely. After all, as we have
explicitly demonstrated, quantum mechanics does what
one expects it to do; namely, it tames the classical singu-
larities, including the naked ones. Unfortunately it there-
by eliminates the usual argument (in the classical theory)
for eliminating negative-mass solutions on the grounds
that such spaces are not globally hyperbolic. It is likely
that the problem is not so much with the soluble class of
models that we have treated as with the original classical
dilaton-gravity theory itself, which does not have a
positive-definite field-space metric. On the other hand it
is also possible that the fault lies with our rather heuristic
treatment of the Bondi mass in the quantum theory, and
that a rigorous quantum treatment may resolve this issue.
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' The objection raised by some authors on the range of in-

tegration has been answered in Sec. III. In particular, for sub-

class (d) there can be no objection on these grounds.
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