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Dirac equation is separable on the dyon black hole metric
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Using the tetrad formalism, we carry out the separation of variables for the massive complex
Dirac equation in the gravitational and electromagnetic fields of a four-parameter (mass, angular
momentum, electric, and magnetic charges) black hole.

PACS number(s): 04.40.+c, 97.60.Lf

I. INTRODUCTION

In studies of the behavior of a matter field on a black
hole background, e.g. , the possible evolution of the black
hole by exchanging energy, charge, and angular momen-
tum with the field, one would like to know if the variables
can be separated in the relevant Geld equation. Obvi-
ously, the study becomes much easier if the system of
partial differential equations can be reduced to a system
of ordinary differential equations. This paper concen-
trates on the spin-zi (Dirac) field.

The "no-hair" theorem in general relativity asserts
that the metrics of stationary black holes can be
described uniquely by three parameters: mass M,
charge Q, (assuming the absence of magnetic charges),
and angular momentum per unit mass, a. Therefore,
when one writes a matter field equation on a black hole
background, these parameters become parameters of the
Geld equation.

The Dirac equation and its separability properties on
black hole metrics have been investigated in increasingly
complicated contexts. The early pioneering work was
done by Brill and Wheeler [1], who separated the neu-
trino field equation on the Schwarzschild metric. Teukol-
sky [2] separated a master equation for massless spin 0,
1, and 2 and noted that the separated equations for the
massless spin 2 have the same form, and therefore could
be incorporated into the master equation. Unruh [3]
showed the spin- z result independently. The unexpected
result that the massive Dirac equation was also separable
came from Chandrasekhar [4]. The Chandrasekhar result
was generalized to the Kerr-Newman (Q, a, M) case by
Page [5].

However, black holes could also have a magnetic
charge, if such exists. Such a black hole would acquire an
additional label Qm for the magnetic charge. The interest
in this possibility has grown since magnetic monopoles
have been found to be required in various extensions of
the standard model of particle physics. Dudley and Fin-
ley [6] carried out the separation of variables for all real,
massless, single-spin 6eld equations with s = 0, 2, 1, 2

on the seven-parameter class of Petrov type-D solutions
of Einstein-Maxwell equations found by Plebanski and
Demianski [7]. The seven parameters include M, a,
Q„and Qm (the coordinates are not of Boyer-Lindquist
type). Since the fields are real, these results apply only
to neutral particles, In this paper, we use the tetrad
formalism to show that the Dirac equation for mas-
sive, charged fermions remains separable when magnetic
charge is added to the black hole, i.e. , in the dyonic
Kerr-Newman case; and we present the separated radial
and angular equations. We anticipate using this separa-
bility in a thought experiment to test the cosmic censor-
ship conjecture by considering a massive, charged Dirac
field on a dyonic black hole, i.e. , the Dirac-field analogue
of work done in [8].

II. THE TETRAD FORMALISM

a b
g bV„V„=g„. (2)

We can write down components of physical fields in the
LLCS,

The equivalence principle tells us that the laws of
physics, as written in Minkowski space, are also valid
in a freely falling frame on a curved space, i.e. , a local
Lorentz coordinate system (LLCS). This principle can be
utilized to construct the tetrad formals'sm, i a prescription
for writing the laws of physics on curved spaces. We erect
at each point in spacetime, four vectors V", the "basis
vectors of a LLCS." Here, the latin indices from the early
part of the alphabet label the coordinates in the LLCS,
and the greek indices the spacetime coordinates. The set
of four V 's, the tetrad or vierbein, is usually chosen to
be orthonormal,

g„„V"Vb"——q b .

The LLCS indices are raised and lowered with the
Minkowski tensor rl g [we use rl b=diag(-1, 1,1,1)] and
spacetime indices with the metric g„; the tetrad satisfies
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(3)

These objects A,&.
'.-. are scalars with respect to spacetime

operations, and tensors in the LLCS, the number of the
covariant and contravariant indices being the same as for
the original object A~"„:::.

In terms of these components, we want to write down
the laws of physics in the LLCS, in their Minkowskian
form. We also want the laws to be invariant un-
der local Lorentz transformations, i.e., difFerent tetrad
choices. This leads us to define the coordinate-scalar,
Lorentz-vector "derivative"

III. THE DIRAC EQUATION ON THE DYONIC
BLACK HOLE METRIC

The Dirac equation in flat space with a background
electromagnetic field is

ip (8 +ieA )@= p 4', (5)

where 4 is a four-component spinor, p the mass, e the
charge of the field quantum, A the vector potential of the
electromagnetic field, and the constant p matrices satisfy

(V, V') = —2 n"

(4) We will be using p matrices of the form

where Z ~ are generators of the Lorentz group in the rep-
resentation associated with the field 17 is acting on, and
the semicolon denotes the (metric-)covariant derivative. z

Now the prescription is as follows: We take the
Minkowskian form of the relevant equation, replace each
term by its LLCS equivalent via Eq. (3) and each deriva-
tive by its LLCS equivalent via Eq. (4).

where the o matrices are the identity matrix and the
Pauli matrices

&101, &01'l &0 —il &I 01
o1 I, ~'=11o I, ~'=

I 0 I, ~'=10 1) 4 ) &' ) & )
For a spin- zi field, the Z matrices are given by

abc 1[~b ~c]

To get the Dirac equation in curved space, we follow the prescription and make the replacements (3,4)

i[p ]'„Vl"B„C,+ —,'i[p ]'„V,"V,"V, „[E')',0, —e[p )'„V."A„4, = p 4„
where we have written out the spinor indices j, A:, l explicitly.

The metric of the dyonic black hole iss

a sin 8 —b, „z (r +a ) —b,a sin 8
p2 p2

6 —rz+ az
+2 asin 8 dtdP+ —dr + p d8

pz

(10)

where

p =r +a cos8,
b, =r —2Mr+ az+ Q, + Q

(12)
(»)

with the vector potential

A= —Q.—+Q
p2 p

(14)

A„=AH = 0, (15)
2g 2 + 2

Weinberg [9] and Birrell and Davies [10] give, incorrectly,
an ordinary derivative here.

For derivations in Boyer-Lindquist coordinates, see [8] and
[12].

I

and we are using Boyer-Lindquist coordinates.
Of course, the vector potential is unique only up to a

gauge transformation, and the magnetic part of Ay con-
tains a string singularity. The two signs in that term
correspond to the two gauges we will be using. The
upper-sign term puts the string along the negative z axis
(8 = vr) and will be used when 0 & 8 & vr/2, the lower-
sign term puts it along the positive z axis (8 = 0) and will
be used when n/2 & 8 & vr. Therefore, the wave function
is also gauge transformed across the equator, and picks
up a factor of exp(2ieQ~Q) passing from north to south.
This matching of boundary conditions ensures that the
problem can be expressed meaningfully without strings
of diverging vector potential. Such a wave function is
called a section [13).

We will derive separated equations first using a simple
tetrad that we call "canonical. " For purposes of com-
parison at the appropriate limit with Chandrasekhar [4],
we will repeat the calculation using a more complicated
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tetrad, calling it "Kinnersley-type. " The labels (| ) and
(K) will be used for variables whenever it is not obvious
which ease they belong to or for emphasis.

V( )' = [
—a dt + (r + a ) dP],

p

Vt: ~'= d8,

(18)

A. The canonical tetrad

V(c)o = -(dt —asin 8 dy),
p

(17)

%e use the generalization of the simple "canonical"
tetrad emphasized by Carter, relabeling the vectors to
be able to compare with Carter and McLenaghan [14] in
the limit Q = 0:

v(&)
b

"' (20)

where 6 = ~A and p was defined above via its square.
Making all the necessary substitutions into Eq. (10),

we get the four coupled components of the Dirac
equation on the dyon black hole metric:

r2+a~ 6 a
Bq ——B„+—B4, —

2pp*

r —M . Q, r +—aQm (C)

a sin8 1 a sin8 i kl —cos8+ — Bq + Bs —-. By — + —cot8 —ieQ . 4's ———iy,4'e, (21)
p p p sin8 2pp' 2p psin8

a sin8 i 1 a sin8

p p p sin8 2pp'
+1 —cos8——cot8 —ieQ

2p psin8

r +a 6 a 6 r —M . Qr~—k Qa~

2PP" pb

rz+az 6 a 6 r —M . —Q, rkaQ~
p p p pp p6

t+ r+ —-6 ~+2-+ 26 +te
6 0

p

a sin8 i 1+ B, —-Bs+ . Bq-
p p psin8

a sin8 ——cot8 + ieQ . 4'~ = ip@z, (23)—+1 —cos8

2p p sin8

a sin8 i 1 asin8 i +1 —cos8
Bq+ -Bs+ . By+ + —cot8+ ieQ~

p p p sln8 2pp 2p p sin8

vs here

r2+a2 b a 6+ Bq — Br + —-By-
p6 p P6 2PP

Qer + aQm (C) (C)+ ie 4~ = —ipse's, 24
p p

p =r+iacos8, p' = r —iacos8, pp' = p .

B. The "Kinnersley-type" tetrad

For the sake of comparison with Chandrasekhar [4], in the limit Q, = 0, Q = 0, we write down the Dirac equation
using the generalization of the Kinnersley-type tetrad corresponding to the null tetrad used by him:

I1+2 dt+
I ~ I« —I1+2 Ia»n 8d&(sc)o 1 ( 4 (1 P ) (

a2 cos8 sin8 a(az + rz) cos8 sin8dt+ r dr+
p P

(25)

(26)

The calculations for going from Eq. (10) to Eqs. (21)—(24) or Eqs. (29)—(32) have been performed using the MATHEMATICA

symbolic mathematics software, and the "tetrad" package [15].
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(~)2 Gr Sin8 r(as + r2) sin8
dt + a cos8 d8-

p2 p2

I

—]. +
I

dt+ I

—+ —
I

dr+
I

1 — Iasin gdg(~)s 1 f b, l /1 p'l (
2p') 42 &)

(27)

(28)

Once again, making all the necessary substitutions we get the four coupled components of the Dirac equation on
the dyon black hole metric; for the Kinnersley-type tetrad

r +a2 6 a r —M i,e t'kaQ~ —Q,r)
. v&p'

'
v&p'

"
v&p' v&p' V& E

iasing 1 i (iasin8 1 ) t +I —cosg)
i ——s — . y

—
2 + —cot 8 + e ~ . 4s —— igloo — 29

p p Psing q p2 2P ) q P sing )

iasing 1 i 1 / +1 —cosg)s+, . y
— cotg —e

P' P' p' sin8 2p g p' sing

r~+ a2

ia sing 1 i 1 t' +1 —cosg ) (a.) . (~)+ Bi + —Bs + . By + —cot 8 —eQ
I .

I
4& ———iy,@&, (31)

p p psin8 2p p sin8 )

iasing 1 i ( iasing 1 l (+I —cosgli+ —e — . 4, + —
2 + cot8 +e

P' p p sing ( p2 2p ) q p'sing )

r +a
B

4 a r —M ie f'kaQ —Q,r)
v&p'

'
v&p'

"
v&p' ' v&p' v& & p' )

e i(utei(myeq —)Py (33)

A. The canonical tetrad

IV. THE SEPARATION

To separate Eqs. (21)—(24) or (29)—(32), we assign the
standard time and azimuthal dependence to 4', with the
above-mentioned gauge transformation across the equa-
torial plane:

i ( iasing) 6 t' 1 l—
I
l:+ —

I @o ——
I

D++ =
I 6 = &A's, —

2P ) p& 2p)

where D+ and l:+ are purely radial and purely angu-
(c') (e)

lar, respectively:

. (rs + a2)ur + eQ, r —ma r —M
'D+ —— „+i ~ +, 38

. (r + as)~+ eQ, r —ma r —M
2A

Substituting Eq. (33) into (21)—(24) gives, after some
algebra,

6 t' 1 l i ( iasing')—
I D++ . I A+ -

I
l:-+ . I @s= iplo,2p') pE 2P )

l:+ ——Bs —cue sing+ . + (s + eQ~) cot 8,
sin0

l: = Bs m+usi n—g . + (s —eQ~) cotg.
sin8

(4o)

(41)

(34)
i ( iasing'l 6 f 1——

I
l'-++ . I &s+ —

I &-+ . I @s= —i@@~2P' ) p E 2P")

Defining go = fo/~p, Q] = fy/~p, Qs = f2/~p', and
Qs = fs/~p"; multiplying Eqs. (34) and (35) by p~P',
Eqs. (36) and (37) by p~p, we get

6'D+ f2 + i2 fs = ip(r ——i a cos8) fo, —
6 D fs il:+f2 = —i@(r —iacosg)f&, —
b D fo —il: fq

—— ip(r + ia cosg) fs, —(36)

b f1) 'i ( ia sing)—
I

D- + = I @o ——
I

l'-- —
I 4~ = ip02-

p& 2p) pE» )
(42)

(43)
(44)
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—6 17+fq +iC+ fp = i—p(r + iacos8) fs. (45)

The structure of Eqs. (42)—(45) suggests that they can be
separated by the substitutions

fp=R S+, fy=RpS
f2 ——R+S+, fs = R S,

which gives

6 B+R+ —iprR = AoR

b 'V R +iprB+ ——AgR+,
b'D R +iyrRp ——A2R+,
6 'V+A+ —i prR = A3R

il. S + pa coseS+ ——AOS+,

iZ+S+ —pa cos8S = AqS

iL S + pa cos8S+ ——A2S+,

iZ+S+ —p,a cosL9S = A3S

(47)

(48)

(49)

(50)

The consistency of these equations requires

Ap =As=Ay =A2 =A

and we are leR with

6'V R —i R = AR—ZPT

6B R +ipTR = AR

(52)

(53)

)S( ) + ipacos8S( ) = —iAS( ),

Z( 'S' ) —ipacos8S( ) = -iAS( '.

Or, by combining pairs, we can get decoupled second-order equations:

I

~~'"~Z"'- '" X(c) -(A'+ '") IR(c) =0
%+iver

+ ) +

I
b Z)( )PZ)(c) '~ Z)(c) (A2+ 2„) IR(c) =0—lpr )

(54)

(55)

(56)

(57)

I

g(c)g(c) 0 g(c) (A2 2a2 cos28)
I

S(c) ()

~(c)~(c) P ~(c) (A2 2a2 o 28) IS(c) 0+ A —pa cos8

(58)

(59)

B. The Kinnersley-type tetrad

The same time and azimuthal dependence (33), when substituted into Eqs. (29)—(32) gives

&+@i —=. I
&-—

V&p2 p &

b , 1 f iasin8)
2'D+A+=

I
&++

2p2 P p' )
11 1

~2I &-+=. IA-=. & 02P') P'

~&
I
&-+ =

I
lp+ =&+@iP) P

ia sin8)

= ~p'A

= &O'&i

(61)

(62)

the radial and angular operators B+ and 8+ being(K) (K)

D+( ) ——8„+—[(r2+ a )u) —ma+ eQ,r]+

17 = c)„——[(r + a )ur —ma + eQ, r],(~)

(64)

(65)

l:+ ——c)s + aw sin8 — . + (2 + eQ~) cot 8,
sin8

(66)
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(67)=Bs —musin8+ . + (s —eQ ) cot8.(~) m ]
sin

Multiplying Eqs. (60) and (63) by p = pp", Eq. (61) by P", Eq. (62) by p; defining Fp = pgp, Fq = gq, Fs = Qs, and
Fs = p gs, we get

17+F2 + 8+Fs = 'lp(r ia cos8}Fp
2

v 2D Fs —l: F2 = —iy, (r —iacos8)Fq,

v 2'D Fp + L+Fj = —ip(r +iacos8)F&,

'D+Fq —8 Fp =i@(r+iacos8)Fs.
2

Again, Eqs. (68)—(71) can be separated by

Fp = R S+, Fg = R+S,

Fg = RpS+, Fs = R S

which gives

(68)

(69)

(70)

(71)

(72)

'D+R+ —i prR = ApR, E+S —pacos8S+ ———ApS~,
2

~2'D R +iprR+ ——AqR+, 8 S+ —pacos8S = AqS,
~2'D R + iijrR~ ——AsR+, E+S —pa cos8S+ ———A2S+,

17~R~ —iyrR = AsR, l: S+ —pacos8S = AsS .
2

As before,

Ap = As = Ay = As = A';

therefore,

—RIJT
+ g(&)R(&) R(&) AIR(&)

2

V 2'D R +iprR = A'R

(73)

(74)

(75)

(76)

(77)

(78)

(79)

S+( —pa cos8S = A' 8

~

a1)( )V& )+ '" V'~) —(A" + 'r') ~R&~) =0+ —CPT

t Z)(R') g~(K)— b, 'D —(A' +pr ) ~R =0,A'+iIJr + +

The corresponding decoupled second-order equations are

(8o)

(81)

(82)

(83)

l."~) + (A" — 'a'cos'8) ~S(~) = 0A'+ pacos8 y
+

~~g(a)g(~) I"a sm l (~) (Aa 2 2,28)~~ S(K) ()
A' —pacos8 + )

I

(84)

(85)

V. COMPARISON WITH PREVIOUS RESULTS

Both papers that we compare our results against use
the Newman-Penrose formalism. For the simpler canoni-
cal tetrad, our results [Eqs. (52)—(59)] agree with Carter
and McLenaghan [14] in the limit Q~ = 0, with 17/) ~

'Vpg]2) Z~ l:gg]g, R~ —+ Xg)]2) S+ —+ Yj(g)
(&) (e) (C)

S ~ —Y qyq, A ~ +2A, p, ~ +2@. For the(~)

Kinnersley-type tetrad, Eqs. (78)—(85) agree with Chan-
drssekhar [11] in the limit e = Q, = Q = 0, with
'D+ —+ D~(s, 'D -+ 17p, l:+ -+ l:, 2, l:(&) f (&) (&) t (&)
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S~ ~ Syg/2, R+ ~ R+g/z) R ~ —R g/2, A
(z) (K) (z)

—A. A difFerence with the Q~ = 0 case is that m can
now also take on half-integer values: To make the wave
functions (33) single valued, both m, +eQ and m —eQ
have to be integers, which makes m and eQ~ integers or
half-integers, the latter requirement being, of course, the
well-known Dirac quantization condition. Since the ex-
plicit forms of Eqs. (56)—(59) and (82)—(85) are not very
illuminating, we leave them in their present form. Un-
fortunately, the angular equations (58), (59), (84), and
(85), unlike in the simpler scalar case [16], are not of
the Sturm-Liouville form; therefore, we cannot make a
statement about the completeness of the solutions.

The Chandrasekhar result has been also generalized to
other cases [17—20], the mathematical structure of the
problem has been investigated [14, 18, 19, 21—25] and the
solutions studied [26—28]. Other approaches to the prob-
lem of separation of variables for the Dirac equation on
curved spaces include the Stackel space method [29] and

the "algebraic" method [30].
Note added in proof. After the completion of the

present work, we found out that an unpublished paper
[31], of which we were aware only through references to
it, does more than what it was referred to for: It too sep-
arates the Dirac equation on the dyonic Kerr-Newman
metric, with also a cosmological constant. But, although
the author starts with a null tetrad equivalent to our
canonical tetrad, he finds diferent separated equations.
We believe that our results are the correct ones, espe-
cially as they agree with [14] in the limit Q = 0.
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